summaryrefslogtreecommitdiffstats
path: root/Objects/complexobject.c
diff options
context:
space:
mode:
authorAntoine Pitrou <solipsis@pitrou.net>2010-05-09 16:14:21 (GMT)
committerAntoine Pitrou <solipsis@pitrou.net>2010-05-09 16:14:21 (GMT)
commit7f14f0d8a0228c50d5b5de2acbfe9a64ebc6749a (patch)
treed25489e9531c01f1e9244012bbfaa929f382883e /Objects/complexobject.c
parentb7d943625cf4353f6cb72df16252759f2dbd8e06 (diff)
downloadcpython-7f14f0d8a0228c50d5b5de2acbfe9a64ebc6749a.zip
cpython-7f14f0d8a0228c50d5b5de2acbfe9a64ebc6749a.tar.gz
cpython-7f14f0d8a0228c50d5b5de2acbfe9a64ebc6749a.tar.bz2
Recorded merge of revisions 81032 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/branches/py3k ................ r81032 | antoine.pitrou | 2010-05-09 17:52:27 +0200 (dim., 09 mai 2010) | 9 lines Recorded merge of revisions 81029 via svnmerge from svn+ssh://pythondev@svn.python.org/python/trunk ........ r81029 | antoine.pitrou | 2010-05-09 16:46:46 +0200 (dim., 09 mai 2010) | 3 lines Untabify C files. Will watch buildbots. ........ ................
Diffstat (limited to 'Objects/complexobject.c')
-rw-r--r--Objects/complexobject.c1640
1 files changed, 820 insertions, 820 deletions
diff --git a/Objects/complexobject.c b/Objects/complexobject.c
index 30d8b52..300398e 100644
--- a/Objects/complexobject.c
+++ b/Objects/complexobject.c
@@ -21,375 +21,375 @@ static Py_complex c_1 = {1., 0.};
Py_complex
c_sum(Py_complex a, Py_complex b)
{
- Py_complex r;
- r.real = a.real + b.real;
- r.imag = a.imag + b.imag;
- return r;
+ Py_complex r;
+ r.real = a.real + b.real;
+ r.imag = a.imag + b.imag;
+ return r;
}
Py_complex
c_diff(Py_complex a, Py_complex b)
{
- Py_complex r;
- r.real = a.real - b.real;
- r.imag = a.imag - b.imag;
- return r;
+ Py_complex r;
+ r.real = a.real - b.real;
+ r.imag = a.imag - b.imag;
+ return r;
}
Py_complex
c_neg(Py_complex a)
{
- Py_complex r;
- r.real = -a.real;
- r.imag = -a.imag;
- return r;
+ Py_complex r;
+ r.real = -a.real;
+ r.imag = -a.imag;
+ return r;
}
Py_complex
c_prod(Py_complex a, Py_complex b)
{
- Py_complex r;
- r.real = a.real*b.real - a.imag*b.imag;
- r.imag = a.real*b.imag + a.imag*b.real;
- return r;
+ Py_complex r;
+ r.real = a.real*b.real - a.imag*b.imag;
+ r.imag = a.real*b.imag + a.imag*b.real;
+ return r;
}
Py_complex
c_quot(Py_complex a, Py_complex b)
{
- /******************************************************************
- This was the original algorithm. It's grossly prone to spurious
- overflow and underflow errors. It also merrily divides by 0 despite
- checking for that(!). The code still serves a doc purpose here, as
- the algorithm following is a simple by-cases transformation of this
- one:
-
- Py_complex r;
- double d = b.real*b.real + b.imag*b.imag;
- if (d == 0.)
- errno = EDOM;
- r.real = (a.real*b.real + a.imag*b.imag)/d;
- r.imag = (a.imag*b.real - a.real*b.imag)/d;
- return r;
- ******************************************************************/
-
- /* This algorithm is better, and is pretty obvious: first divide the
- * numerators and denominator by whichever of {b.real, b.imag} has
- * larger magnitude. The earliest reference I found was to CACM
- * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
- * University). As usual, though, we're still ignoring all IEEE
- * endcases.
- */
- Py_complex r; /* the result */
- const double abs_breal = b.real < 0 ? -b.real : b.real;
- const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
-
- if (abs_breal >= abs_bimag) {
- /* divide tops and bottom by b.real */
- if (abs_breal == 0.0) {
- errno = EDOM;
- r.real = r.imag = 0.0;
- }
- else {
- const double ratio = b.imag / b.real;
- const double denom = b.real + b.imag * ratio;
- r.real = (a.real + a.imag * ratio) / denom;
- r.imag = (a.imag - a.real * ratio) / denom;
- }
- }
- else {
- /* divide tops and bottom by b.imag */
- const double ratio = b.real / b.imag;
- const double denom = b.real * ratio + b.imag;
- assert(b.imag != 0.0);
- r.real = (a.real * ratio + a.imag) / denom;
- r.imag = (a.imag * ratio - a.real) / denom;
- }
- return r;
+ /******************************************************************
+ This was the original algorithm. It's grossly prone to spurious
+ overflow and underflow errors. It also merrily divides by 0 despite
+ checking for that(!). The code still serves a doc purpose here, as
+ the algorithm following is a simple by-cases transformation of this
+ one:
+
+ Py_complex r;
+ double d = b.real*b.real + b.imag*b.imag;
+ if (d == 0.)
+ errno = EDOM;
+ r.real = (a.real*b.real + a.imag*b.imag)/d;
+ r.imag = (a.imag*b.real - a.real*b.imag)/d;
+ return r;
+ ******************************************************************/
+
+ /* This algorithm is better, and is pretty obvious: first divide the
+ * numerators and denominator by whichever of {b.real, b.imag} has
+ * larger magnitude. The earliest reference I found was to CACM
+ * Algorithm 116 (Complex Division, Robert L. Smith, Stanford
+ * University). As usual, though, we're still ignoring all IEEE
+ * endcases.
+ */
+ Py_complex r; /* the result */
+ const double abs_breal = b.real < 0 ? -b.real : b.real;
+ const double abs_bimag = b.imag < 0 ? -b.imag : b.imag;
+
+ if (abs_breal >= abs_bimag) {
+ /* divide tops and bottom by b.real */
+ if (abs_breal == 0.0) {
+ errno = EDOM;
+ r.real = r.imag = 0.0;
+ }
+ else {
+ const double ratio = b.imag / b.real;
+ const double denom = b.real + b.imag * ratio;
+ r.real = (a.real + a.imag * ratio) / denom;
+ r.imag = (a.imag - a.real * ratio) / denom;
+ }
+ }
+ else {
+ /* divide tops and bottom by b.imag */
+ const double ratio = b.real / b.imag;
+ const double denom = b.real * ratio + b.imag;
+ assert(b.imag != 0.0);
+ r.real = (a.real * ratio + a.imag) / denom;
+ r.imag = (a.imag * ratio - a.real) / denom;
+ }
+ return r;
}
Py_complex
c_pow(Py_complex a, Py_complex b)
{
- Py_complex r;
- double vabs,len,at,phase;
- if (b.real == 0. && b.imag == 0.) {
- r.real = 1.;
- r.imag = 0.;
- }
- else if (a.real == 0. && a.imag == 0.) {
- if (b.imag != 0. || b.real < 0.)
- errno = EDOM;
- r.real = 0.;
- r.imag = 0.;
- }
- else {
- vabs = hypot(a.real,a.imag);
- len = pow(vabs,b.real);
- at = atan2(a.imag, a.real);
- phase = at*b.real;
- if (b.imag != 0.0) {
- len /= exp(at*b.imag);
- phase += b.imag*log(vabs);
- }
- r.real = len*cos(phase);
- r.imag = len*sin(phase);
- }
- return r;
+ Py_complex r;
+ double vabs,len,at,phase;
+ if (b.real == 0. && b.imag == 0.) {
+ r.real = 1.;
+ r.imag = 0.;
+ }
+ else if (a.real == 0. && a.imag == 0.) {
+ if (b.imag != 0. || b.real < 0.)
+ errno = EDOM;
+ r.real = 0.;
+ r.imag = 0.;
+ }
+ else {
+ vabs = hypot(a.real,a.imag);
+ len = pow(vabs,b.real);
+ at = atan2(a.imag, a.real);
+ phase = at*b.real;
+ if (b.imag != 0.0) {
+ len /= exp(at*b.imag);
+ phase += b.imag*log(vabs);
+ }
+ r.real = len*cos(phase);
+ r.imag = len*sin(phase);
+ }
+ return r;
}
static Py_complex
c_powu(Py_complex x, long n)
{
- Py_complex r, p;
- long mask = 1;
- r = c_1;
- p = x;
- while (mask > 0 && n >= mask) {
- if (n & mask)
- r = c_prod(r,p);
- mask <<= 1;
- p = c_prod(p,p);
- }
- return r;
+ Py_complex r, p;
+ long mask = 1;
+ r = c_1;
+ p = x;
+ while (mask > 0 && n >= mask) {
+ if (n & mask)
+ r = c_prod(r,p);
+ mask <<= 1;
+ p = c_prod(p,p);
+ }
+ return r;
}
static Py_complex
c_powi(Py_complex x, long n)
{
- Py_complex cn;
-
- if (n > 100 || n < -100) {
- cn.real = (double) n;
- cn.imag = 0.;
- return c_pow(x,cn);
- }
- else if (n > 0)
- return c_powu(x,n);
- else
- return c_quot(c_1,c_powu(x,-n));
+ Py_complex cn;
+
+ if (n > 100 || n < -100) {
+ cn.real = (double) n;
+ cn.imag = 0.;
+ return c_pow(x,cn);
+ }
+ else if (n > 0)
+ return c_powu(x,n);
+ else
+ return c_quot(c_1,c_powu(x,-n));
}
double
c_abs(Py_complex z)
{
- /* sets errno = ERANGE on overflow; otherwise errno = 0 */
- double result;
-
- if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
- /* C99 rules: if either the real or the imaginary part is an
- infinity, return infinity, even if the other part is a
- NaN. */
- if (Py_IS_INFINITY(z.real)) {
- result = fabs(z.real);
- errno = 0;
- return result;
- }
- if (Py_IS_INFINITY(z.imag)) {
- result = fabs(z.imag);
- errno = 0;
- return result;
- }
- /* either the real or imaginary part is a NaN,
- and neither is infinite. Result should be NaN. */
- return Py_NAN;
- }
- result = hypot(z.real, z.imag);
- if (!Py_IS_FINITE(result))
- errno = ERANGE;
- else
- errno = 0;
- return result;
+ /* sets errno = ERANGE on overflow; otherwise errno = 0 */
+ double result;
+
+ if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) {
+ /* C99 rules: if either the real or the imaginary part is an
+ infinity, return infinity, even if the other part is a
+ NaN. */
+ if (Py_IS_INFINITY(z.real)) {
+ result = fabs(z.real);
+ errno = 0;
+ return result;
+ }
+ if (Py_IS_INFINITY(z.imag)) {
+ result = fabs(z.imag);
+ errno = 0;
+ return result;
+ }
+ /* either the real or imaginary part is a NaN,
+ and neither is infinite. Result should be NaN. */
+ return Py_NAN;
+ }
+ result = hypot(z.real, z.imag);
+ if (!Py_IS_FINITE(result))
+ errno = ERANGE;
+ else
+ errno = 0;
+ return result;
}
static PyObject *
complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval)
{
- PyObject *op;
+ PyObject *op;
- op = type->tp_alloc(type, 0);
- if (op != NULL)
- ((PyComplexObject *)op)->cval = cval;
- return op;
+ op = type->tp_alloc(type, 0);
+ if (op != NULL)
+ ((PyComplexObject *)op)->cval = cval;
+ return op;
}
PyObject *
PyComplex_FromCComplex(Py_complex cval)
{
- register PyComplexObject *op;
-
- /* Inline PyObject_New */
- op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));
- if (op == NULL)
- return PyErr_NoMemory();
- PyObject_INIT(op, &PyComplex_Type);
- op->cval = cval;
- return (PyObject *) op;
+ register PyComplexObject *op;
+
+ /* Inline PyObject_New */
+ op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject));
+ if (op == NULL)
+ return PyErr_NoMemory();
+ PyObject_INIT(op, &PyComplex_Type);
+ op->cval = cval;
+ return (PyObject *) op;
}
static PyObject *
complex_subtype_from_doubles(PyTypeObject *type, double real, double imag)
{
- Py_complex c;
- c.real = real;
- c.imag = imag;
- return complex_subtype_from_c_complex(type, c);
+ Py_complex c;
+ c.real = real;
+ c.imag = imag;
+ return complex_subtype_from_c_complex(type, c);
}
PyObject *
PyComplex_FromDoubles(double real, double imag)
{
- Py_complex c;
- c.real = real;
- c.imag = imag;
- return PyComplex_FromCComplex(c);
+ Py_complex c;
+ c.real = real;
+ c.imag = imag;
+ return PyComplex_FromCComplex(c);
}
double
PyComplex_RealAsDouble(PyObject *op)
{
- if (PyComplex_Check(op)) {
- return ((PyComplexObject *)op)->cval.real;
- }
- else {
- return PyFloat_AsDouble(op);
- }
+ if (PyComplex_Check(op)) {
+ return ((PyComplexObject *)op)->cval.real;
+ }
+ else {
+ return PyFloat_AsDouble(op);
+ }
}
double
PyComplex_ImagAsDouble(PyObject *op)
{
- if (PyComplex_Check(op)) {
- return ((PyComplexObject *)op)->cval.imag;
- }
- else {
- return 0.0;
- }
+ if (PyComplex_Check(op)) {
+ return ((PyComplexObject *)op)->cval.imag;
+ }
+ else {
+ return 0.0;
+ }
}
Py_complex
PyComplex_AsCComplex(PyObject *op)
{
- Py_complex cv;
- PyObject *newop = NULL;
- static PyObject *complex_str = NULL;
-
- assert(op);
- /* If op is already of type PyComplex_Type, return its value */
- if (PyComplex_Check(op)) {
- return ((PyComplexObject *)op)->cval;
- }
- /* If not, use op's __complex__ method, if it exists */
-
- /* return -1 on failure */
- cv.real = -1.;
- cv.imag = 0.;
-
- if (complex_str == NULL) {
- if (!(complex_str = PyUnicode_FromString("__complex__")))
- return cv;
- }
-
- {
- PyObject *complexfunc;
- complexfunc = _PyType_Lookup(op->ob_type, complex_str);
- /* complexfunc is a borrowed reference */
- if (complexfunc) {
- newop = PyObject_CallFunctionObjArgs(complexfunc, op, NULL);
- if (!newop)
- return cv;
- }
- }
-
- if (newop) {
- if (!PyComplex_Check(newop)) {
- PyErr_SetString(PyExc_TypeError,
- "__complex__ should return a complex object");
- Py_DECREF(newop);
- return cv;
- }
- cv = ((PyComplexObject *)newop)->cval;
- Py_DECREF(newop);
- return cv;
- }
- /* If neither of the above works, interpret op as a float giving the
- real part of the result, and fill in the imaginary part as 0. */
- else {
- /* PyFloat_AsDouble will return -1 on failure */
- cv.real = PyFloat_AsDouble(op);
- return cv;
- }
+ Py_complex cv;
+ PyObject *newop = NULL;
+ static PyObject *complex_str = NULL;
+
+ assert(op);
+ /* If op is already of type PyComplex_Type, return its value */
+ if (PyComplex_Check(op)) {
+ return ((PyComplexObject *)op)->cval;
+ }
+ /* If not, use op's __complex__ method, if it exists */
+
+ /* return -1 on failure */
+ cv.real = -1.;
+ cv.imag = 0.;
+
+ if (complex_str == NULL) {
+ if (!(complex_str = PyUnicode_FromString("__complex__")))
+ return cv;
+ }
+
+ {
+ PyObject *complexfunc;
+ complexfunc = _PyType_Lookup(op->ob_type, complex_str);
+ /* complexfunc is a borrowed reference */
+ if (complexfunc) {
+ newop = PyObject_CallFunctionObjArgs(complexfunc, op, NULL);
+ if (!newop)
+ return cv;
+ }
+ }
+
+ if (newop) {
+ if (!PyComplex_Check(newop)) {
+ PyErr_SetString(PyExc_TypeError,
+ "__complex__ should return a complex object");
+ Py_DECREF(newop);
+ return cv;
+ }
+ cv = ((PyComplexObject *)newop)->cval;
+ Py_DECREF(newop);
+ return cv;
+ }
+ /* If neither of the above works, interpret op as a float giving the
+ real part of the result, and fill in the imaginary part as 0. */
+ else {
+ /* PyFloat_AsDouble will return -1 on failure */
+ cv.real = PyFloat_AsDouble(op);
+ return cv;
+ }
}
static void
complex_dealloc(PyObject *op)
{
- op->ob_type->tp_free(op);
+ op->ob_type->tp_free(op);
}
static PyObject *
complex_format(PyComplexObject *v, int precision, char format_code)
{
- PyObject *result = NULL;
- Py_ssize_t len;
-
- /* If these are non-NULL, they'll need to be freed. */
- char *pre = NULL;
- char *im = NULL;
- char *buf = NULL;
-
- /* These do not need to be freed. re is either an alias
- for pre or a pointer to a constant. lead and tail
- are pointers to constants. */
- char *re = NULL;
- char *lead = "";
- char *tail = "";
-
- if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) {
- re = "";
- im = PyOS_double_to_string(v->cval.imag, format_code,
- precision, 0, NULL);
- if (!im) {
- PyErr_NoMemory();
- goto done;
- }
- } else {
- /* Format imaginary part with sign, real part without */
- pre = PyOS_double_to_string(v->cval.real, format_code,
- precision, 0, NULL);
- if (!pre) {
- PyErr_NoMemory();
- goto done;
- }
- re = pre;
-
- im = PyOS_double_to_string(v->cval.imag, format_code,
- precision, Py_DTSF_SIGN, NULL);
- if (!im) {
- PyErr_NoMemory();
- goto done;
- }
- lead = "(";
- tail = ")";
- }
- /* Alloc the final buffer. Add one for the "j" in the format string,
- and one for the trailing zero. */
- len = strlen(lead) + strlen(re) + strlen(im) + strlen(tail) + 2;
- buf = PyMem_Malloc(len);
- if (!buf) {
- PyErr_NoMemory();
- goto done;
- }
- PyOS_snprintf(buf, len, "%s%s%sj%s", lead, re, im, tail);
- result = PyUnicode_FromString(buf);
+ PyObject *result = NULL;
+ Py_ssize_t len;
+
+ /* If these are non-NULL, they'll need to be freed. */
+ char *pre = NULL;
+ char *im = NULL;
+ char *buf = NULL;
+
+ /* These do not need to be freed. re is either an alias
+ for pre or a pointer to a constant. lead and tail
+ are pointers to constants. */
+ char *re = NULL;
+ char *lead = "";
+ char *tail = "";
+
+ if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) {
+ re = "";
+ im = PyOS_double_to_string(v->cval.imag, format_code,
+ precision, 0, NULL);
+ if (!im) {
+ PyErr_NoMemory();
+ goto done;
+ }
+ } else {
+ /* Format imaginary part with sign, real part without */
+ pre = PyOS_double_to_string(v->cval.real, format_code,
+ precision, 0, NULL);
+ if (!pre) {
+ PyErr_NoMemory();
+ goto done;
+ }
+ re = pre;
+
+ im = PyOS_double_to_string(v->cval.imag, format_code,
+ precision, Py_DTSF_SIGN, NULL);
+ if (!im) {
+ PyErr_NoMemory();
+ goto done;
+ }
+ lead = "(";
+ tail = ")";
+ }
+ /* Alloc the final buffer. Add one for the "j" in the format string,
+ and one for the trailing zero. */
+ len = strlen(lead) + strlen(re) + strlen(im) + strlen(tail) + 2;
+ buf = PyMem_Malloc(len);
+ if (!buf) {
+ PyErr_NoMemory();
+ goto done;
+ }
+ PyOS_snprintf(buf, len, "%s%s%sj%s", lead, re, im, tail);
+ result = PyUnicode_FromString(buf);
done:
- PyMem_Free(im);
- PyMem_Free(pre);
- PyMem_Free(buf);
+ PyMem_Free(im);
+ PyMem_Free(pre);
+ PyMem_Free(buf);
- return result;
+ return result;
}
static PyObject *
@@ -407,266 +407,266 @@ complex_str(PyComplexObject *v)
static long
complex_hash(PyComplexObject *v)
{
- long hashreal, hashimag, combined;
- hashreal = _Py_HashDouble(v->cval.real);
- if (hashreal == -1)
- return -1;
- hashimag = _Py_HashDouble(v->cval.imag);
- if (hashimag == -1)
- return -1;
- /* Note: if the imaginary part is 0, hashimag is 0 now,
- * so the following returns hashreal unchanged. This is
- * important because numbers of different types that
- * compare equal must have the same hash value, so that
- * hash(x + 0*j) must equal hash(x).
- */
- combined = hashreal + 1000003 * hashimag;
- if (combined == -1)
- combined = -2;
- return combined;
+ long hashreal, hashimag, combined;
+ hashreal = _Py_HashDouble(v->cval.real);
+ if (hashreal == -1)
+ return -1;
+ hashimag = _Py_HashDouble(v->cval.imag);
+ if (hashimag == -1)
+ return -1;
+ /* Note: if the imaginary part is 0, hashimag is 0 now,
+ * so the following returns hashreal unchanged. This is
+ * important because numbers of different types that
+ * compare equal must have the same hash value, so that
+ * hash(x + 0*j) must equal hash(x).
+ */
+ combined = hashreal + 1000003 * hashimag;
+ if (combined == -1)
+ combined = -2;
+ return combined;
}
/* This macro may return! */
#define TO_COMPLEX(obj, c) \
- if (PyComplex_Check(obj)) \
- c = ((PyComplexObject *)(obj))->cval; \
- else if (to_complex(&(obj), &(c)) < 0) \
- return (obj)
+ if (PyComplex_Check(obj)) \
+ c = ((PyComplexObject *)(obj))->cval; \
+ else if (to_complex(&(obj), &(c)) < 0) \
+ return (obj)
static int
to_complex(PyObject **pobj, Py_complex *pc)
{
- PyObject *obj = *pobj;
-
- pc->real = pc->imag = 0.0;
- if (PyLong_Check(obj)) {
- pc->real = PyLong_AsDouble(obj);
- if (pc->real == -1.0 && PyErr_Occurred()) {
- *pobj = NULL;
- return -1;
- }
- return 0;
- }
- if (PyFloat_Check(obj)) {
- pc->real = PyFloat_AsDouble(obj);
- return 0;
- }
- Py_INCREF(Py_NotImplemented);
- *pobj = Py_NotImplemented;
- return -1;
+ PyObject *obj = *pobj;
+
+ pc->real = pc->imag = 0.0;
+ if (PyLong_Check(obj)) {
+ pc->real = PyLong_AsDouble(obj);
+ if (pc->real == -1.0 && PyErr_Occurred()) {
+ *pobj = NULL;
+ return -1;
+ }
+ return 0;
+ }
+ if (PyFloat_Check(obj)) {
+ pc->real = PyFloat_AsDouble(obj);
+ return 0;
+ }
+ Py_INCREF(Py_NotImplemented);
+ *pobj = Py_NotImplemented;
+ return -1;
}
-
+
static PyObject *
complex_add(PyObject *v, PyObject *w)
{
- Py_complex result;
- Py_complex a, b;
- TO_COMPLEX(v, a);
- TO_COMPLEX(w, b);
- PyFPE_START_PROTECT("complex_add", return 0)
- result = c_sum(a, b);
- PyFPE_END_PROTECT(result)
- return PyComplex_FromCComplex(result);
+ Py_complex result;
+ Py_complex a, b;
+ TO_COMPLEX(v, a);
+ TO_COMPLEX(w, b);
+ PyFPE_START_PROTECT("complex_add", return 0)
+ result = c_sum(a, b);
+ PyFPE_END_PROTECT(result)
+ return PyComplex_FromCComplex(result);
}
static PyObject *
complex_sub(PyObject *v, PyObject *w)
{
- Py_complex result;
- Py_complex a, b;
- TO_COMPLEX(v, a);
- TO_COMPLEX(w, b);
- PyFPE_START_PROTECT("complex_sub", return 0)
- result = c_diff(a, b);
- PyFPE_END_PROTECT(result)
- return PyComplex_FromCComplex(result);
+ Py_complex result;
+ Py_complex a, b;
+ TO_COMPLEX(v, a);
+ TO_COMPLEX(w, b);
+ PyFPE_START_PROTECT("complex_sub", return 0)
+ result = c_diff(a, b);
+ PyFPE_END_PROTECT(result)
+ return PyComplex_FromCComplex(result);
}
static PyObject *
complex_mul(PyObject *v, PyObject *w)
{
- Py_complex result;
- Py_complex a, b;
- TO_COMPLEX(v, a);
- TO_COMPLEX(w, b);
- PyFPE_START_PROTECT("complex_mul", return 0)
- result = c_prod(a, b);
- PyFPE_END_PROTECT(result)
- return PyComplex_FromCComplex(result);
+ Py_complex result;
+ Py_complex a, b;
+ TO_COMPLEX(v, a);
+ TO_COMPLEX(w, b);
+ PyFPE_START_PROTECT("complex_mul", return 0)
+ result = c_prod(a, b);
+ PyFPE_END_PROTECT(result)
+ return PyComplex_FromCComplex(result);
}
static PyObject *
complex_div(PyObject *v, PyObject *w)
{
- Py_complex quot;
- Py_complex a, b;
- TO_COMPLEX(v, a);
- TO_COMPLEX(w, b);
- PyFPE_START_PROTECT("complex_div", return 0)
- errno = 0;
- quot = c_quot(a, b);
- PyFPE_END_PROTECT(quot)
- if (errno == EDOM) {
- PyErr_SetString(PyExc_ZeroDivisionError, "complex division");
- return NULL;
- }
- return PyComplex_FromCComplex(quot);
+ Py_complex quot;
+ Py_complex a, b;
+ TO_COMPLEX(v, a);
+ TO_COMPLEX(w, b);
+ PyFPE_START_PROTECT("complex_div", return 0)
+ errno = 0;
+ quot = c_quot(a, b);
+ PyFPE_END_PROTECT(quot)
+ if (errno == EDOM) {
+ PyErr_SetString(PyExc_ZeroDivisionError, "complex division");
+ return NULL;
+ }
+ return PyComplex_FromCComplex(quot);
}
static PyObject *
complex_remainder(PyObject *v, PyObject *w)
{
- PyErr_SetString(PyExc_TypeError,
- "can't mod complex numbers.");
- return NULL;
+ PyErr_SetString(PyExc_TypeError,
+ "can't mod complex numbers.");
+ return NULL;
}
static PyObject *
complex_divmod(PyObject *v, PyObject *w)
{
- PyErr_SetString(PyExc_TypeError,
- "can't take floor or mod of complex number.");
- return NULL;
+ PyErr_SetString(PyExc_TypeError,
+ "can't take floor or mod of complex number.");
+ return NULL;
}
static PyObject *
complex_pow(PyObject *v, PyObject *w, PyObject *z)
{
- Py_complex p;
- Py_complex exponent;
- long int_exponent;
- Py_complex a, b;
- TO_COMPLEX(v, a);
- TO_COMPLEX(w, b);
-
- if (z != Py_None) {
- PyErr_SetString(PyExc_ValueError, "complex modulo");
- return NULL;
- }
- PyFPE_START_PROTECT("complex_pow", return 0)
- errno = 0;
- exponent = b;
- int_exponent = (long)exponent.real;
- if (exponent.imag == 0. && exponent.real == int_exponent)
- p = c_powi(a, int_exponent);
- else
- p = c_pow(a, exponent);
-
- PyFPE_END_PROTECT(p)
- Py_ADJUST_ERANGE2(p.real, p.imag);
- if (errno == EDOM) {
- PyErr_SetString(PyExc_ZeroDivisionError,
- "0.0 to a negative or complex power");
- return NULL;
- }
- else if (errno == ERANGE) {
- PyErr_SetString(PyExc_OverflowError,
- "complex exponentiation");
- return NULL;
- }
- return PyComplex_FromCComplex(p);
+ Py_complex p;
+ Py_complex exponent;
+ long int_exponent;
+ Py_complex a, b;
+ TO_COMPLEX(v, a);
+ TO_COMPLEX(w, b);
+
+ if (z != Py_None) {
+ PyErr_SetString(PyExc_ValueError, "complex modulo");
+ return NULL;
+ }
+ PyFPE_START_PROTECT("complex_pow", return 0)
+ errno = 0;
+ exponent = b;
+ int_exponent = (long)exponent.real;
+ if (exponent.imag == 0. && exponent.real == int_exponent)
+ p = c_powi(a, int_exponent);
+ else
+ p = c_pow(a, exponent);
+
+ PyFPE_END_PROTECT(p)
+ Py_ADJUST_ERANGE2(p.real, p.imag);
+ if (errno == EDOM) {
+ PyErr_SetString(PyExc_ZeroDivisionError,
+ "0.0 to a negative or complex power");
+ return NULL;
+ }
+ else if (errno == ERANGE) {
+ PyErr_SetString(PyExc_OverflowError,
+ "complex exponentiation");
+ return NULL;
+ }
+ return PyComplex_FromCComplex(p);
}
static PyObject *
complex_int_div(PyObject *v, PyObject *w)
{
- PyErr_SetString(PyExc_TypeError,
- "can't take floor of complex number.");
- return NULL;
+ PyErr_SetString(PyExc_TypeError,
+ "can't take floor of complex number.");
+ return NULL;
}
static PyObject *
complex_neg(PyComplexObject *v)
{
- Py_complex neg;
- neg.real = -v->cval.real;
- neg.imag = -v->cval.imag;
- return PyComplex_FromCComplex(neg);
+ Py_complex neg;
+ neg.real = -v->cval.real;
+ neg.imag = -v->cval.imag;
+ return PyComplex_FromCComplex(neg);
}
static PyObject *
complex_pos(PyComplexObject *v)
{
- if (PyComplex_CheckExact(v)) {
- Py_INCREF(v);
- return (PyObject *)v;
- }
- else
- return PyComplex_FromCComplex(v->cval);
+ if (PyComplex_CheckExact(v)) {
+ Py_INCREF(v);
+ return (PyObject *)v;
+ }
+ else
+ return PyComplex_FromCComplex(v->cval);
}
static PyObject *
complex_abs(PyComplexObject *v)
{
- double result;
-
- PyFPE_START_PROTECT("complex_abs", return 0)
- result = c_abs(v->cval);
- PyFPE_END_PROTECT(result)
-
- if (errno == ERANGE) {
- PyErr_SetString(PyExc_OverflowError,
- "absolute value too large");
- return NULL;
- }
- return PyFloat_FromDouble(result);
+ double result;
+
+ PyFPE_START_PROTECT("complex_abs", return 0)
+ result = c_abs(v->cval);
+ PyFPE_END_PROTECT(result)
+
+ if (errno == ERANGE) {
+ PyErr_SetString(PyExc_OverflowError,
+ "absolute value too large");
+ return NULL;
+ }
+ return PyFloat_FromDouble(result);
}
static int
complex_bool(PyComplexObject *v)
{
- return v->cval.real != 0.0 || v->cval.imag != 0.0;
+ return v->cval.real != 0.0 || v->cval.imag != 0.0;
}
static PyObject *
complex_richcompare(PyObject *v, PyObject *w, int op)
{
- PyObject *res;
- Py_complex i, j;
- TO_COMPLEX(v, i);
- TO_COMPLEX(w, j);
-
- if (op != Py_EQ && op != Py_NE) {
- /* XXX Should eventually return NotImplemented */
- PyErr_SetString(PyExc_TypeError,
- "no ordering relation is defined for complex numbers");
- return NULL;
- }
-
- if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ))
- res = Py_True;
- else
- res = Py_False;
-
- Py_INCREF(res);
- return res;
+ PyObject *res;
+ Py_complex i, j;
+ TO_COMPLEX(v, i);
+ TO_COMPLEX(w, j);
+
+ if (op != Py_EQ && op != Py_NE) {
+ /* XXX Should eventually return NotImplemented */
+ PyErr_SetString(PyExc_TypeError,
+ "no ordering relation is defined for complex numbers");
+ return NULL;
+ }
+
+ if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ))
+ res = Py_True;
+ else
+ res = Py_False;
+
+ Py_INCREF(res);
+ return res;
}
static PyObject *
complex_int(PyObject *v)
{
- PyErr_SetString(PyExc_TypeError,
- "can't convert complex to int");
- return NULL;
+ PyErr_SetString(PyExc_TypeError,
+ "can't convert complex to int");
+ return NULL;
}
static PyObject *
complex_float(PyObject *v)
{
- PyErr_SetString(PyExc_TypeError,
- "can't convert complex to float");
- return NULL;
+ PyErr_SetString(PyExc_TypeError,
+ "can't convert complex to float");
+ return NULL;
}
static PyObject *
complex_conjugate(PyObject *self)
{
- Py_complex c;
- c = ((PyComplexObject *)self)->cval;
- c.imag = -c.imag;
- return PyComplex_FromCComplex(c);
+ Py_complex c;
+ c = ((PyComplexObject *)self)->cval;
+ c.imag = -c.imag;
+ return PyComplex_FromCComplex(c);
}
PyDoc_STRVAR(complex_conjugate_doc,
@@ -677,8 +677,8 @@ PyDoc_STRVAR(complex_conjugate_doc,
static PyObject *
complex_getnewargs(PyComplexObject *v)
{
- Py_complex c = v->cval;
- return Py_BuildValue("(dd)", c.real, c.imag);
+ Py_complex c = v->cval;
+ return Py_BuildValue("(dd)", c.real, c.imag);
}
PyDoc_STRVAR(complex__format__doc,
@@ -692,7 +692,7 @@ complex__format__(PyObject* self, PyObject* args)
PyObject *format_spec;
if (!PyArg_ParseTuple(args, "U:__format__", &format_spec))
- return NULL;
+ return NULL;
return _PyComplex_FormatAdvanced(self,
PyUnicode_AS_UNICODE(format_spec),
PyUnicode_GET_SIZE(format_spec));
@@ -702,10 +702,10 @@ complex__format__(PyObject* self, PyObject* args)
static PyObject *
complex_is_finite(PyObject *self)
{
- Py_complex c;
- c = ((PyComplexObject *)self)->cval;
- return PyBool_FromLong((long)(Py_IS_FINITE(c.real) &&
- Py_IS_FINITE(c.imag)));
+ Py_complex c;
+ c = ((PyComplexObject *)self)->cval;
+ return PyBool_FromLong((long)(Py_IS_FINITE(c.real) &&
+ Py_IS_FINITE(c.imag)));
}
PyDoc_STRVAR(complex_is_finite_doc,
@@ -715,314 +715,314 @@ PyDoc_STRVAR(complex_is_finite_doc,
#endif
static PyMethodDef complex_methods[] = {
- {"conjugate", (PyCFunction)complex_conjugate, METH_NOARGS,
- complex_conjugate_doc},
+ {"conjugate", (PyCFunction)complex_conjugate, METH_NOARGS,
+ complex_conjugate_doc},
#if 0
- {"is_finite", (PyCFunction)complex_is_finite, METH_NOARGS,
- complex_is_finite_doc},
+ {"is_finite", (PyCFunction)complex_is_finite, METH_NOARGS,
+ complex_is_finite_doc},
#endif
- {"__getnewargs__", (PyCFunction)complex_getnewargs, METH_NOARGS},
- {"__format__", (PyCFunction)complex__format__,
- METH_VARARGS, complex__format__doc},
- {NULL, NULL} /* sentinel */
+ {"__getnewargs__", (PyCFunction)complex_getnewargs, METH_NOARGS},
+ {"__format__", (PyCFunction)complex__format__,
+ METH_VARARGS, complex__format__doc},
+ {NULL, NULL} /* sentinel */
};
static PyMemberDef complex_members[] = {
- {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
- "the real part of a complex number"},
- {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
- "the imaginary part of a complex number"},
- {0},
+ {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY,
+ "the real part of a complex number"},
+ {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY,
+ "the imaginary part of a complex number"},
+ {0},
};
static PyObject *
complex_subtype_from_string(PyTypeObject *type, PyObject *v)
{
- const char *s, *start;
- char *end;
- double x=0.0, y=0.0, z;
- int got_bracket=0;
- char s_buffer[256];
- Py_ssize_t len;
-
- if (PyUnicode_Check(v)) {
- if (PyUnicode_GET_SIZE(v) >= (Py_ssize_t)sizeof(s_buffer)) {
- PyErr_SetString(PyExc_ValueError,
- "complex() literal too large to convert");
- return NULL;
- }
- if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
- PyUnicode_GET_SIZE(v),
- s_buffer,
- NULL))
- return NULL;
- s = s_buffer;
- len = strlen(s);
- }
- else if (PyObject_AsCharBuffer(v, &s, &len)) {
- PyErr_SetString(PyExc_TypeError,
- "complex() arg is not a string");
- return NULL;
- }
-
- /* position on first nonblank */
- start = s;
- while (Py_ISSPACE(*s))
- s++;
- if (*s == '(') {
- /* Skip over possible bracket from repr(). */
- got_bracket = 1;
- s++;
- while (Py_ISSPACE(*s))
- s++;
- }
-
- /* a valid complex string usually takes one of the three forms:
-
- <float> - real part only
- <float>j - imaginary part only
- <float><signed-float>j - real and imaginary parts
-
- where <float> represents any numeric string that's accepted by the
- float constructor (including 'nan', 'inf', 'infinity', etc.), and
- <signed-float> is any string of the form <float> whose first
- character is '+' or '-'.
-
- For backwards compatibility, the extra forms
-
- <float><sign>j
- <sign>j
- j
-
- are also accepted, though support for these forms may be removed from
- a future version of Python.
- */
-
- /* first look for forms starting with <float> */
- z = PyOS_string_to_double(s, &end, NULL);
- if (z == -1.0 && PyErr_Occurred()) {
- if (PyErr_ExceptionMatches(PyExc_ValueError))
- PyErr_Clear();
- else
- return NULL;
- }
- if (end != s) {
- /* all 4 forms starting with <float> land here */
- s = end;
- if (*s == '+' || *s == '-') {
- /* <float><signed-float>j | <float><sign>j */
- x = z;
- y = PyOS_string_to_double(s, &end, NULL);
- if (y == -1.0 && PyErr_Occurred()) {
- if (PyErr_ExceptionMatches(PyExc_ValueError))
- PyErr_Clear();
- else
- return NULL;
- }
- if (end != s)
- /* <float><signed-float>j */
- s = end;
- else {
- /* <float><sign>j */
- y = *s == '+' ? 1.0 : -1.0;
- s++;
- }
- if (!(*s == 'j' || *s == 'J'))
- goto parse_error;
- s++;
- }
- else if (*s == 'j' || *s == 'J') {
- /* <float>j */
- s++;
- y = z;
- }
- else
- /* <float> */
- x = z;
- }
- else {
- /* not starting with <float>; must be <sign>j or j */
- if (*s == '+' || *s == '-') {
- /* <sign>j */
- y = *s == '+' ? 1.0 : -1.0;
- s++;
- }
- else
- /* j */
- y = 1.0;
- if (!(*s == 'j' || *s == 'J'))
- goto parse_error;
- s++;
- }
-
- /* trailing whitespace and closing bracket */
- while (Py_ISSPACE(*s))
- s++;
- if (got_bracket) {
- /* if there was an opening parenthesis, then the corresponding
- closing parenthesis should be right here */
- if (*s != ')')
- goto parse_error;
- s++;
- while (Py_ISSPACE(*s))
- s++;
- }
-
- /* we should now be at the end of the string */
- if (s-start != len)
- goto parse_error;
-
- return complex_subtype_from_doubles(type, x, y);
+ const char *s, *start;
+ char *end;
+ double x=0.0, y=0.0, z;
+ int got_bracket=0;
+ char s_buffer[256];
+ Py_ssize_t len;
+
+ if (PyUnicode_Check(v)) {
+ if (PyUnicode_GET_SIZE(v) >= (Py_ssize_t)sizeof(s_buffer)) {
+ PyErr_SetString(PyExc_ValueError,
+ "complex() literal too large to convert");
+ return NULL;
+ }
+ if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
+ PyUnicode_GET_SIZE(v),
+ s_buffer,
+ NULL))
+ return NULL;
+ s = s_buffer;
+ len = strlen(s);
+ }
+ else if (PyObject_AsCharBuffer(v, &s, &len)) {
+ PyErr_SetString(PyExc_TypeError,
+ "complex() arg is not a string");
+ return NULL;
+ }
+
+ /* position on first nonblank */
+ start = s;
+ while (Py_ISSPACE(*s))
+ s++;
+ if (*s == '(') {
+ /* Skip over possible bracket from repr(). */
+ got_bracket = 1;
+ s++;
+ while (Py_ISSPACE(*s))
+ s++;
+ }
+
+ /* a valid complex string usually takes one of the three forms:
+
+ <float> - real part only
+ <float>j - imaginary part only
+ <float><signed-float>j - real and imaginary parts
+
+ where <float> represents any numeric string that's accepted by the
+ float constructor (including 'nan', 'inf', 'infinity', etc.), and
+ <signed-float> is any string of the form <float> whose first
+ character is '+' or '-'.
+
+ For backwards compatibility, the extra forms
+
+ <float><sign>j
+ <sign>j
+ j
+
+ are also accepted, though support for these forms may be removed from
+ a future version of Python.
+ */
+
+ /* first look for forms starting with <float> */
+ z = PyOS_string_to_double(s, &end, NULL);
+ if (z == -1.0 && PyErr_Occurred()) {
+ if (PyErr_ExceptionMatches(PyExc_ValueError))
+ PyErr_Clear();
+ else
+ return NULL;
+ }
+ if (end != s) {
+ /* all 4 forms starting with <float> land here */
+ s = end;
+ if (*s == '+' || *s == '-') {
+ /* <float><signed-float>j | <float><sign>j */
+ x = z;
+ y = PyOS_string_to_double(s, &end, NULL);
+ if (y == -1.0 && PyErr_Occurred()) {
+ if (PyErr_ExceptionMatches(PyExc_ValueError))
+ PyErr_Clear();
+ else
+ return NULL;
+ }
+ if (end != s)
+ /* <float><signed-float>j */
+ s = end;
+ else {
+ /* <float><sign>j */
+ y = *s == '+' ? 1.0 : -1.0;
+ s++;
+ }
+ if (!(*s == 'j' || *s == 'J'))
+ goto parse_error;
+ s++;
+ }
+ else if (*s == 'j' || *s == 'J') {
+ /* <float>j */
+ s++;
+ y = z;
+ }
+ else
+ /* <float> */
+ x = z;
+ }
+ else {
+ /* not starting with <float>; must be <sign>j or j */
+ if (*s == '+' || *s == '-') {
+ /* <sign>j */
+ y = *s == '+' ? 1.0 : -1.0;
+ s++;
+ }
+ else
+ /* j */
+ y = 1.0;
+ if (!(*s == 'j' || *s == 'J'))
+ goto parse_error;
+ s++;
+ }
+
+ /* trailing whitespace and closing bracket */
+ while (Py_ISSPACE(*s))
+ s++;
+ if (got_bracket) {
+ /* if there was an opening parenthesis, then the corresponding
+ closing parenthesis should be right here */
+ if (*s != ')')
+ goto parse_error;
+ s++;
+ while (Py_ISSPACE(*s))
+ s++;
+ }
+
+ /* we should now be at the end of the string */
+ if (s-start != len)
+ goto parse_error;
+
+ return complex_subtype_from_doubles(type, x, y);
parse_error:
- PyErr_SetString(PyExc_ValueError,
- "complex() arg is a malformed string");
- return NULL;
+ PyErr_SetString(PyExc_ValueError,
+ "complex() arg is a malformed string");
+ return NULL;
}
static PyObject *
complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
- PyObject *r, *i, *tmp, *f;
- PyNumberMethods *nbr, *nbi = NULL;
- Py_complex cr, ci;
- int own_r = 0;
- int cr_is_complex = 0;
- int ci_is_complex = 0;
- static PyObject *complexstr;
- static char *kwlist[] = {"real", "imag", 0};
-
- r = Py_False;
- i = NULL;
- if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist,
- &r, &i))
- return NULL;
-
- /* Special-case for a single argument when type(arg) is complex. */
- if (PyComplex_CheckExact(r) && i == NULL &&
- type == &PyComplex_Type) {
- /* Note that we can't know whether it's safe to return
- a complex *subclass* instance as-is, hence the restriction
- to exact complexes here. If either the input or the
- output is a complex subclass, it will be handled below
- as a non-orthogonal vector. */
- Py_INCREF(r);
- return r;
- }
- if (PyUnicode_Check(r)) {
- if (i != NULL) {
- PyErr_SetString(PyExc_TypeError,
- "complex() can't take second arg"
- " if first is a string");
- return NULL;
- }
- return complex_subtype_from_string(type, r);
- }
- if (i != NULL && PyUnicode_Check(i)) {
- PyErr_SetString(PyExc_TypeError,
- "complex() second arg can't be a string");
- return NULL;
- }
-
- /* XXX Hack to support classes with __complex__ method */
- if (complexstr == NULL) {
- complexstr = PyUnicode_InternFromString("__complex__");
- if (complexstr == NULL)
- return NULL;
- }
- f = PyObject_GetAttr(r, complexstr);
- if (f == NULL)
- PyErr_Clear();
- else {
- PyObject *args = PyTuple_New(0);
- if (args == NULL)
- return NULL;
- r = PyEval_CallObject(f, args);
- Py_DECREF(args);
- Py_DECREF(f);
- if (r == NULL)
- return NULL;
- own_r = 1;
- }
- nbr = r->ob_type->tp_as_number;
- if (i != NULL)
- nbi = i->ob_type->tp_as_number;
- if (nbr == NULL || nbr->nb_float == NULL ||
- ((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) {
- PyErr_SetString(PyExc_TypeError,
- "complex() argument must be a string or a number");
- if (own_r) {
- Py_DECREF(r);
- }
- return NULL;
- }
-
- /* If we get this far, then the "real" and "imag" parts should
- both be treated as numbers, and the constructor should return a
- complex number equal to (real + imag*1j).
-
- Note that we do NOT assume the input to already be in canonical
- form; the "real" and "imag" parts might themselves be complex
- numbers, which slightly complicates the code below. */
- if (PyComplex_Check(r)) {
- /* Note that if r is of a complex subtype, we're only
- retaining its real & imag parts here, and the return
- value is (properly) of the builtin complex type. */
- cr = ((PyComplexObject*)r)->cval;
- cr_is_complex = 1;
- if (own_r) {
- Py_DECREF(r);
- }
- }
- else {
- /* The "real" part really is entirely real, and contributes
- nothing in the imaginary direction.
- Just treat it as a double. */
- tmp = PyNumber_Float(r);
- if (own_r) {
- /* r was a newly created complex number, rather
- than the original "real" argument. */
- Py_DECREF(r);
- }
- if (tmp == NULL)
- return NULL;
- if (!PyFloat_Check(tmp)) {
- PyErr_SetString(PyExc_TypeError,
- "float(r) didn't return a float");
- Py_DECREF(tmp);
- return NULL;
- }
- cr.real = PyFloat_AsDouble(tmp);
- cr.imag = 0.0; /* Shut up compiler warning */
- Py_DECREF(tmp);
- }
- if (i == NULL) {
- ci.real = 0.0;
- }
- else if (PyComplex_Check(i)) {
- ci = ((PyComplexObject*)i)->cval;
- ci_is_complex = 1;
- } else {
- /* The "imag" part really is entirely imaginary, and
- contributes nothing in the real direction.
- Just treat it as a double. */
- tmp = (*nbi->nb_float)(i);
- if (tmp == NULL)
- return NULL;
- ci.real = PyFloat_AsDouble(tmp);
- Py_DECREF(tmp);
- }
- /* If the input was in canonical form, then the "real" and "imag"
- parts are real numbers, so that ci.imag and cr.imag are zero.
- We need this correction in case they were not real numbers. */
-
- if (ci_is_complex) {
- cr.real -= ci.imag;
- }
- if (cr_is_complex) {
- ci.real += cr.imag;
- }
- return complex_subtype_from_doubles(type, cr.real, ci.real);
+ PyObject *r, *i, *tmp, *f;
+ PyNumberMethods *nbr, *nbi = NULL;
+ Py_complex cr, ci;
+ int own_r = 0;
+ int cr_is_complex = 0;
+ int ci_is_complex = 0;
+ static PyObject *complexstr;
+ static char *kwlist[] = {"real", "imag", 0};
+
+ r = Py_False;
+ i = NULL;
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist,
+ &r, &i))
+ return NULL;
+
+ /* Special-case for a single argument when type(arg) is complex. */
+ if (PyComplex_CheckExact(r) && i == NULL &&
+ type == &PyComplex_Type) {
+ /* Note that we can't know whether it's safe to return
+ a complex *subclass* instance as-is, hence the restriction
+ to exact complexes here. If either the input or the
+ output is a complex subclass, it will be handled below
+ as a non-orthogonal vector. */
+ Py_INCREF(r);
+ return r;
+ }
+ if (PyUnicode_Check(r)) {
+ if (i != NULL) {
+ PyErr_SetString(PyExc_TypeError,
+ "complex() can't take second arg"
+ " if first is a string");
+ return NULL;
+ }
+ return complex_subtype_from_string(type, r);
+ }
+ if (i != NULL && PyUnicode_Check(i)) {
+ PyErr_SetString(PyExc_TypeError,
+ "complex() second arg can't be a string");
+ return NULL;
+ }
+
+ /* XXX Hack to support classes with __complex__ method */
+ if (complexstr == NULL) {
+ complexstr = PyUnicode_InternFromString("__complex__");
+ if (complexstr == NULL)
+ return NULL;
+ }
+ f = PyObject_GetAttr(r, complexstr);
+ if (f == NULL)
+ PyErr_Clear();
+ else {
+ PyObject *args = PyTuple_New(0);
+ if (args == NULL)
+ return NULL;
+ r = PyEval_CallObject(f, args);
+ Py_DECREF(args);
+ Py_DECREF(f);
+ if (r == NULL)
+ return NULL;
+ own_r = 1;
+ }
+ nbr = r->ob_type->tp_as_number;
+ if (i != NULL)
+ nbi = i->ob_type->tp_as_number;
+ if (nbr == NULL || nbr->nb_float == NULL ||
+ ((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) {
+ PyErr_SetString(PyExc_TypeError,
+ "complex() argument must be a string or a number");
+ if (own_r) {
+ Py_DECREF(r);
+ }
+ return NULL;
+ }
+
+ /* If we get this far, then the "real" and "imag" parts should
+ both be treated as numbers, and the constructor should return a
+ complex number equal to (real + imag*1j).
+
+ Note that we do NOT assume the input to already be in canonical
+ form; the "real" and "imag" parts might themselves be complex
+ numbers, which slightly complicates the code below. */
+ if (PyComplex_Check(r)) {
+ /* Note that if r is of a complex subtype, we're only
+ retaining its real & imag parts here, and the return
+ value is (properly) of the builtin complex type. */
+ cr = ((PyComplexObject*)r)->cval;
+ cr_is_complex = 1;
+ if (own_r) {
+ Py_DECREF(r);
+ }
+ }
+ else {
+ /* The "real" part really is entirely real, and contributes
+ nothing in the imaginary direction.
+ Just treat it as a double. */
+ tmp = PyNumber_Float(r);
+ if (own_r) {
+ /* r was a newly created complex number, rather
+ than the original "real" argument. */
+ Py_DECREF(r);
+ }
+ if (tmp == NULL)
+ return NULL;
+ if (!PyFloat_Check(tmp)) {
+ PyErr_SetString(PyExc_TypeError,
+ "float(r) didn't return a float");
+ Py_DECREF(tmp);
+ return NULL;
+ }
+ cr.real = PyFloat_AsDouble(tmp);
+ cr.imag = 0.0; /* Shut up compiler warning */
+ Py_DECREF(tmp);
+ }
+ if (i == NULL) {
+ ci.real = 0.0;
+ }
+ else if (PyComplex_Check(i)) {
+ ci = ((PyComplexObject*)i)->cval;
+ ci_is_complex = 1;
+ } else {
+ /* The "imag" part really is entirely imaginary, and
+ contributes nothing in the real direction.
+ Just treat it as a double. */
+ tmp = (*nbi->nb_float)(i);
+ if (tmp == NULL)
+ return NULL;
+ ci.real = PyFloat_AsDouble(tmp);
+ Py_DECREF(tmp);
+ }
+ /* If the input was in canonical form, then the "real" and "imag"
+ parts are real numbers, so that ci.imag and cr.imag are zero.
+ We need this correction in case they were not real numbers. */
+
+ if (ci_is_complex) {
+ cr.real -= ci.imag;
+ }
+ if (cr_is_complex) {
+ ci.real += cr.imag;
+ }
+ return complex_subtype_from_doubles(type, cr.real, ci.real);
}
PyDoc_STRVAR(complex_doc,
@@ -1032,81 +1032,81 @@ PyDoc_STRVAR(complex_doc,
"This is equivalent to (real + imag*1j) where imag defaults to 0.");
static PyNumberMethods complex_as_number = {
- (binaryfunc)complex_add, /* nb_add */
- (binaryfunc)complex_sub, /* nb_subtract */
- (binaryfunc)complex_mul, /* nb_multiply */
- (binaryfunc)complex_remainder, /* nb_remainder */
- (binaryfunc)complex_divmod, /* nb_divmod */
- (ternaryfunc)complex_pow, /* nb_power */
- (unaryfunc)complex_neg, /* nb_negative */
- (unaryfunc)complex_pos, /* nb_positive */
- (unaryfunc)complex_abs, /* nb_absolute */
- (inquiry)complex_bool, /* nb_bool */
- 0, /* nb_invert */
- 0, /* nb_lshift */
- 0, /* nb_rshift */
- 0, /* nb_and */
- 0, /* nb_xor */
- 0, /* nb_or */
- complex_int, /* nb_int */
- 0, /* nb_reserved */
- complex_float, /* nb_float */
- 0, /* nb_inplace_add */
- 0, /* nb_inplace_subtract */
- 0, /* nb_inplace_multiply*/
- 0, /* nb_inplace_remainder */
- 0, /* nb_inplace_power */
- 0, /* nb_inplace_lshift */
- 0, /* nb_inplace_rshift */
- 0, /* nb_inplace_and */
- 0, /* nb_inplace_xor */
- 0, /* nb_inplace_or */
- (binaryfunc)complex_int_div, /* nb_floor_divide */
- (binaryfunc)complex_div, /* nb_true_divide */
- 0, /* nb_inplace_floor_divide */
- 0, /* nb_inplace_true_divide */
+ (binaryfunc)complex_add, /* nb_add */
+ (binaryfunc)complex_sub, /* nb_subtract */
+ (binaryfunc)complex_mul, /* nb_multiply */
+ (binaryfunc)complex_remainder, /* nb_remainder */
+ (binaryfunc)complex_divmod, /* nb_divmod */
+ (ternaryfunc)complex_pow, /* nb_power */
+ (unaryfunc)complex_neg, /* nb_negative */
+ (unaryfunc)complex_pos, /* nb_positive */
+ (unaryfunc)complex_abs, /* nb_absolute */
+ (inquiry)complex_bool, /* nb_bool */
+ 0, /* nb_invert */
+ 0, /* nb_lshift */
+ 0, /* nb_rshift */
+ 0, /* nb_and */
+ 0, /* nb_xor */
+ 0, /* nb_or */
+ complex_int, /* nb_int */
+ 0, /* nb_reserved */
+ complex_float, /* nb_float */
+ 0, /* nb_inplace_add */
+ 0, /* nb_inplace_subtract */
+ 0, /* nb_inplace_multiply*/
+ 0, /* nb_inplace_remainder */
+ 0, /* nb_inplace_power */
+ 0, /* nb_inplace_lshift */
+ 0, /* nb_inplace_rshift */
+ 0, /* nb_inplace_and */
+ 0, /* nb_inplace_xor */
+ 0, /* nb_inplace_or */
+ (binaryfunc)complex_int_div, /* nb_floor_divide */
+ (binaryfunc)complex_div, /* nb_true_divide */
+ 0, /* nb_inplace_floor_divide */
+ 0, /* nb_inplace_true_divide */
};
PyTypeObject PyComplex_Type = {
- PyVarObject_HEAD_INIT(&PyType_Type, 0)
- "complex",
- sizeof(PyComplexObject),
- 0,
- complex_dealloc, /* tp_dealloc */
- 0, /* tp_print */
- 0, /* tp_getattr */
- 0, /* tp_setattr */
- 0, /* tp_reserved */
- (reprfunc)complex_repr, /* tp_repr */
- &complex_as_number, /* tp_as_number */
- 0, /* tp_as_sequence */
- 0, /* tp_as_mapping */
- (hashfunc)complex_hash, /* tp_hash */
- 0, /* tp_call */
- (reprfunc)complex_str, /* tp_str */
- PyObject_GenericGetAttr, /* tp_getattro */
- 0, /* tp_setattro */
- 0, /* tp_as_buffer */
- Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
- complex_doc, /* tp_doc */
- 0, /* tp_traverse */
- 0, /* tp_clear */
- complex_richcompare, /* tp_richcompare */
- 0, /* tp_weaklistoffset */
- 0, /* tp_iter */
- 0, /* tp_iternext */
- complex_methods, /* tp_methods */
- complex_members, /* tp_members */
- 0, /* tp_getset */
- 0, /* tp_base */
- 0, /* tp_dict */
- 0, /* tp_descr_get */
- 0, /* tp_descr_set */
- 0, /* tp_dictoffset */
- 0, /* tp_init */
- PyType_GenericAlloc, /* tp_alloc */
- complex_new, /* tp_new */
- PyObject_Del, /* tp_free */
+ PyVarObject_HEAD_INIT(&PyType_Type, 0)
+ "complex",
+ sizeof(PyComplexObject),
+ 0,
+ complex_dealloc, /* tp_dealloc */
+ 0, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_reserved */
+ (reprfunc)complex_repr, /* tp_repr */
+ &complex_as_number, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ (hashfunc)complex_hash, /* tp_hash */
+ 0, /* tp_call */
+ (reprfunc)complex_str, /* tp_str */
+ PyObject_GenericGetAttr, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
+ complex_doc, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ complex_richcompare, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ complex_methods, /* tp_methods */
+ complex_members, /* tp_members */
+ 0, /* tp_getset */
+ 0, /* tp_base */
+ 0, /* tp_dict */
+ 0, /* tp_descr_get */
+ 0, /* tp_descr_set */
+ 0, /* tp_dictoffset */
+ 0, /* tp_init */
+ PyType_GenericAlloc, /* tp_alloc */
+ complex_new, /* tp_new */
+ PyObject_Del, /* tp_free */
};
#endif