diff options
author | Antoine Pitrou <solipsis@pitrou.net> | 2010-05-09 16:14:21 (GMT) |
---|---|---|
committer | Antoine Pitrou <solipsis@pitrou.net> | 2010-05-09 16:14:21 (GMT) |
commit | 7f14f0d8a0228c50d5b5de2acbfe9a64ebc6749a (patch) | |
tree | d25489e9531c01f1e9244012bbfaa929f382883e /Objects/complexobject.c | |
parent | b7d943625cf4353f6cb72df16252759f2dbd8e06 (diff) | |
download | cpython-7f14f0d8a0228c50d5b5de2acbfe9a64ebc6749a.zip cpython-7f14f0d8a0228c50d5b5de2acbfe9a64ebc6749a.tar.gz cpython-7f14f0d8a0228c50d5b5de2acbfe9a64ebc6749a.tar.bz2 |
Recorded merge of revisions 81032 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/branches/py3k
................
r81032 | antoine.pitrou | 2010-05-09 17:52:27 +0200 (dim., 09 mai 2010) | 9 lines
Recorded merge of revisions 81029 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk
........
r81029 | antoine.pitrou | 2010-05-09 16:46:46 +0200 (dim., 09 mai 2010) | 3 lines
Untabify C files. Will watch buildbots.
........
................
Diffstat (limited to 'Objects/complexobject.c')
-rw-r--r-- | Objects/complexobject.c | 1640 |
1 files changed, 820 insertions, 820 deletions
diff --git a/Objects/complexobject.c b/Objects/complexobject.c index 30d8b52..300398e 100644 --- a/Objects/complexobject.c +++ b/Objects/complexobject.c @@ -21,375 +21,375 @@ static Py_complex c_1 = {1., 0.}; Py_complex c_sum(Py_complex a, Py_complex b) { - Py_complex r; - r.real = a.real + b.real; - r.imag = a.imag + b.imag; - return r; + Py_complex r; + r.real = a.real + b.real; + r.imag = a.imag + b.imag; + return r; } Py_complex c_diff(Py_complex a, Py_complex b) { - Py_complex r; - r.real = a.real - b.real; - r.imag = a.imag - b.imag; - return r; + Py_complex r; + r.real = a.real - b.real; + r.imag = a.imag - b.imag; + return r; } Py_complex c_neg(Py_complex a) { - Py_complex r; - r.real = -a.real; - r.imag = -a.imag; - return r; + Py_complex r; + r.real = -a.real; + r.imag = -a.imag; + return r; } Py_complex c_prod(Py_complex a, Py_complex b) { - Py_complex r; - r.real = a.real*b.real - a.imag*b.imag; - r.imag = a.real*b.imag + a.imag*b.real; - return r; + Py_complex r; + r.real = a.real*b.real - a.imag*b.imag; + r.imag = a.real*b.imag + a.imag*b.real; + return r; } Py_complex c_quot(Py_complex a, Py_complex b) { - /****************************************************************** - This was the original algorithm. It's grossly prone to spurious - overflow and underflow errors. It also merrily divides by 0 despite - checking for that(!). The code still serves a doc purpose here, as - the algorithm following is a simple by-cases transformation of this - one: - - Py_complex r; - double d = b.real*b.real + b.imag*b.imag; - if (d == 0.) - errno = EDOM; - r.real = (a.real*b.real + a.imag*b.imag)/d; - r.imag = (a.imag*b.real - a.real*b.imag)/d; - return r; - ******************************************************************/ - - /* This algorithm is better, and is pretty obvious: first divide the - * numerators and denominator by whichever of {b.real, b.imag} has - * larger magnitude. The earliest reference I found was to CACM - * Algorithm 116 (Complex Division, Robert L. Smith, Stanford - * University). As usual, though, we're still ignoring all IEEE - * endcases. - */ - Py_complex r; /* the result */ - const double abs_breal = b.real < 0 ? -b.real : b.real; - const double abs_bimag = b.imag < 0 ? -b.imag : b.imag; - - if (abs_breal >= abs_bimag) { - /* divide tops and bottom by b.real */ - if (abs_breal == 0.0) { - errno = EDOM; - r.real = r.imag = 0.0; - } - else { - const double ratio = b.imag / b.real; - const double denom = b.real + b.imag * ratio; - r.real = (a.real + a.imag * ratio) / denom; - r.imag = (a.imag - a.real * ratio) / denom; - } - } - else { - /* divide tops and bottom by b.imag */ - const double ratio = b.real / b.imag; - const double denom = b.real * ratio + b.imag; - assert(b.imag != 0.0); - r.real = (a.real * ratio + a.imag) / denom; - r.imag = (a.imag * ratio - a.real) / denom; - } - return r; + /****************************************************************** + This was the original algorithm. It's grossly prone to spurious + overflow and underflow errors. It also merrily divides by 0 despite + checking for that(!). The code still serves a doc purpose here, as + the algorithm following is a simple by-cases transformation of this + one: + + Py_complex r; + double d = b.real*b.real + b.imag*b.imag; + if (d == 0.) + errno = EDOM; + r.real = (a.real*b.real + a.imag*b.imag)/d; + r.imag = (a.imag*b.real - a.real*b.imag)/d; + return r; + ******************************************************************/ + + /* This algorithm is better, and is pretty obvious: first divide the + * numerators and denominator by whichever of {b.real, b.imag} has + * larger magnitude. The earliest reference I found was to CACM + * Algorithm 116 (Complex Division, Robert L. Smith, Stanford + * University). As usual, though, we're still ignoring all IEEE + * endcases. + */ + Py_complex r; /* the result */ + const double abs_breal = b.real < 0 ? -b.real : b.real; + const double abs_bimag = b.imag < 0 ? -b.imag : b.imag; + + if (abs_breal >= abs_bimag) { + /* divide tops and bottom by b.real */ + if (abs_breal == 0.0) { + errno = EDOM; + r.real = r.imag = 0.0; + } + else { + const double ratio = b.imag / b.real; + const double denom = b.real + b.imag * ratio; + r.real = (a.real + a.imag * ratio) / denom; + r.imag = (a.imag - a.real * ratio) / denom; + } + } + else { + /* divide tops and bottom by b.imag */ + const double ratio = b.real / b.imag; + const double denom = b.real * ratio + b.imag; + assert(b.imag != 0.0); + r.real = (a.real * ratio + a.imag) / denom; + r.imag = (a.imag * ratio - a.real) / denom; + } + return r; } Py_complex c_pow(Py_complex a, Py_complex b) { - Py_complex r; - double vabs,len,at,phase; - if (b.real == 0. && b.imag == 0.) { - r.real = 1.; - r.imag = 0.; - } - else if (a.real == 0. && a.imag == 0.) { - if (b.imag != 0. || b.real < 0.) - errno = EDOM; - r.real = 0.; - r.imag = 0.; - } - else { - vabs = hypot(a.real,a.imag); - len = pow(vabs,b.real); - at = atan2(a.imag, a.real); - phase = at*b.real; - if (b.imag != 0.0) { - len /= exp(at*b.imag); - phase += b.imag*log(vabs); - } - r.real = len*cos(phase); - r.imag = len*sin(phase); - } - return r; + Py_complex r; + double vabs,len,at,phase; + if (b.real == 0. && b.imag == 0.) { + r.real = 1.; + r.imag = 0.; + } + else if (a.real == 0. && a.imag == 0.) { + if (b.imag != 0. || b.real < 0.) + errno = EDOM; + r.real = 0.; + r.imag = 0.; + } + else { + vabs = hypot(a.real,a.imag); + len = pow(vabs,b.real); + at = atan2(a.imag, a.real); + phase = at*b.real; + if (b.imag != 0.0) { + len /= exp(at*b.imag); + phase += b.imag*log(vabs); + } + r.real = len*cos(phase); + r.imag = len*sin(phase); + } + return r; } static Py_complex c_powu(Py_complex x, long n) { - Py_complex r, p; - long mask = 1; - r = c_1; - p = x; - while (mask > 0 && n >= mask) { - if (n & mask) - r = c_prod(r,p); - mask <<= 1; - p = c_prod(p,p); - } - return r; + Py_complex r, p; + long mask = 1; + r = c_1; + p = x; + while (mask > 0 && n >= mask) { + if (n & mask) + r = c_prod(r,p); + mask <<= 1; + p = c_prod(p,p); + } + return r; } static Py_complex c_powi(Py_complex x, long n) { - Py_complex cn; - - if (n > 100 || n < -100) { - cn.real = (double) n; - cn.imag = 0.; - return c_pow(x,cn); - } - else if (n > 0) - return c_powu(x,n); - else - return c_quot(c_1,c_powu(x,-n)); + Py_complex cn; + + if (n > 100 || n < -100) { + cn.real = (double) n; + cn.imag = 0.; + return c_pow(x,cn); + } + else if (n > 0) + return c_powu(x,n); + else + return c_quot(c_1,c_powu(x,-n)); } double c_abs(Py_complex z) { - /* sets errno = ERANGE on overflow; otherwise errno = 0 */ - double result; - - if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { - /* C99 rules: if either the real or the imaginary part is an - infinity, return infinity, even if the other part is a - NaN. */ - if (Py_IS_INFINITY(z.real)) { - result = fabs(z.real); - errno = 0; - return result; - } - if (Py_IS_INFINITY(z.imag)) { - result = fabs(z.imag); - errno = 0; - return result; - } - /* either the real or imaginary part is a NaN, - and neither is infinite. Result should be NaN. */ - return Py_NAN; - } - result = hypot(z.real, z.imag); - if (!Py_IS_FINITE(result)) - errno = ERANGE; - else - errno = 0; - return result; + /* sets errno = ERANGE on overflow; otherwise errno = 0 */ + double result; + + if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { + /* C99 rules: if either the real or the imaginary part is an + infinity, return infinity, even if the other part is a + NaN. */ + if (Py_IS_INFINITY(z.real)) { + result = fabs(z.real); + errno = 0; + return result; + } + if (Py_IS_INFINITY(z.imag)) { + result = fabs(z.imag); + errno = 0; + return result; + } + /* either the real or imaginary part is a NaN, + and neither is infinite. Result should be NaN. */ + return Py_NAN; + } + result = hypot(z.real, z.imag); + if (!Py_IS_FINITE(result)) + errno = ERANGE; + else + errno = 0; + return result; } static PyObject * complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval) { - PyObject *op; + PyObject *op; - op = type->tp_alloc(type, 0); - if (op != NULL) - ((PyComplexObject *)op)->cval = cval; - return op; + op = type->tp_alloc(type, 0); + if (op != NULL) + ((PyComplexObject *)op)->cval = cval; + return op; } PyObject * PyComplex_FromCComplex(Py_complex cval) { - register PyComplexObject *op; - - /* Inline PyObject_New */ - op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject)); - if (op == NULL) - return PyErr_NoMemory(); - PyObject_INIT(op, &PyComplex_Type); - op->cval = cval; - return (PyObject *) op; + register PyComplexObject *op; + + /* Inline PyObject_New */ + op = (PyComplexObject *) PyObject_MALLOC(sizeof(PyComplexObject)); + if (op == NULL) + return PyErr_NoMemory(); + PyObject_INIT(op, &PyComplex_Type); + op->cval = cval; + return (PyObject *) op; } static PyObject * complex_subtype_from_doubles(PyTypeObject *type, double real, double imag) { - Py_complex c; - c.real = real; - c.imag = imag; - return complex_subtype_from_c_complex(type, c); + Py_complex c; + c.real = real; + c.imag = imag; + return complex_subtype_from_c_complex(type, c); } PyObject * PyComplex_FromDoubles(double real, double imag) { - Py_complex c; - c.real = real; - c.imag = imag; - return PyComplex_FromCComplex(c); + Py_complex c; + c.real = real; + c.imag = imag; + return PyComplex_FromCComplex(c); } double PyComplex_RealAsDouble(PyObject *op) { - if (PyComplex_Check(op)) { - return ((PyComplexObject *)op)->cval.real; - } - else { - return PyFloat_AsDouble(op); - } + if (PyComplex_Check(op)) { + return ((PyComplexObject *)op)->cval.real; + } + else { + return PyFloat_AsDouble(op); + } } double PyComplex_ImagAsDouble(PyObject *op) { - if (PyComplex_Check(op)) { - return ((PyComplexObject *)op)->cval.imag; - } - else { - return 0.0; - } + if (PyComplex_Check(op)) { + return ((PyComplexObject *)op)->cval.imag; + } + else { + return 0.0; + } } Py_complex PyComplex_AsCComplex(PyObject *op) { - Py_complex cv; - PyObject *newop = NULL; - static PyObject *complex_str = NULL; - - assert(op); - /* If op is already of type PyComplex_Type, return its value */ - if (PyComplex_Check(op)) { - return ((PyComplexObject *)op)->cval; - } - /* If not, use op's __complex__ method, if it exists */ - - /* return -1 on failure */ - cv.real = -1.; - cv.imag = 0.; - - if (complex_str == NULL) { - if (!(complex_str = PyUnicode_FromString("__complex__"))) - return cv; - } - - { - PyObject *complexfunc; - complexfunc = _PyType_Lookup(op->ob_type, complex_str); - /* complexfunc is a borrowed reference */ - if (complexfunc) { - newop = PyObject_CallFunctionObjArgs(complexfunc, op, NULL); - if (!newop) - return cv; - } - } - - if (newop) { - if (!PyComplex_Check(newop)) { - PyErr_SetString(PyExc_TypeError, - "__complex__ should return a complex object"); - Py_DECREF(newop); - return cv; - } - cv = ((PyComplexObject *)newop)->cval; - Py_DECREF(newop); - return cv; - } - /* If neither of the above works, interpret op as a float giving the - real part of the result, and fill in the imaginary part as 0. */ - else { - /* PyFloat_AsDouble will return -1 on failure */ - cv.real = PyFloat_AsDouble(op); - return cv; - } + Py_complex cv; + PyObject *newop = NULL; + static PyObject *complex_str = NULL; + + assert(op); + /* If op is already of type PyComplex_Type, return its value */ + if (PyComplex_Check(op)) { + return ((PyComplexObject *)op)->cval; + } + /* If not, use op's __complex__ method, if it exists */ + + /* return -1 on failure */ + cv.real = -1.; + cv.imag = 0.; + + if (complex_str == NULL) { + if (!(complex_str = PyUnicode_FromString("__complex__"))) + return cv; + } + + { + PyObject *complexfunc; + complexfunc = _PyType_Lookup(op->ob_type, complex_str); + /* complexfunc is a borrowed reference */ + if (complexfunc) { + newop = PyObject_CallFunctionObjArgs(complexfunc, op, NULL); + if (!newop) + return cv; + } + } + + if (newop) { + if (!PyComplex_Check(newop)) { + PyErr_SetString(PyExc_TypeError, + "__complex__ should return a complex object"); + Py_DECREF(newop); + return cv; + } + cv = ((PyComplexObject *)newop)->cval; + Py_DECREF(newop); + return cv; + } + /* If neither of the above works, interpret op as a float giving the + real part of the result, and fill in the imaginary part as 0. */ + else { + /* PyFloat_AsDouble will return -1 on failure */ + cv.real = PyFloat_AsDouble(op); + return cv; + } } static void complex_dealloc(PyObject *op) { - op->ob_type->tp_free(op); + op->ob_type->tp_free(op); } static PyObject * complex_format(PyComplexObject *v, int precision, char format_code) { - PyObject *result = NULL; - Py_ssize_t len; - - /* If these are non-NULL, they'll need to be freed. */ - char *pre = NULL; - char *im = NULL; - char *buf = NULL; - - /* These do not need to be freed. re is either an alias - for pre or a pointer to a constant. lead and tail - are pointers to constants. */ - char *re = NULL; - char *lead = ""; - char *tail = ""; - - if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) { - re = ""; - im = PyOS_double_to_string(v->cval.imag, format_code, - precision, 0, NULL); - if (!im) { - PyErr_NoMemory(); - goto done; - } - } else { - /* Format imaginary part with sign, real part without */ - pre = PyOS_double_to_string(v->cval.real, format_code, - precision, 0, NULL); - if (!pre) { - PyErr_NoMemory(); - goto done; - } - re = pre; - - im = PyOS_double_to_string(v->cval.imag, format_code, - precision, Py_DTSF_SIGN, NULL); - if (!im) { - PyErr_NoMemory(); - goto done; - } - lead = "("; - tail = ")"; - } - /* Alloc the final buffer. Add one for the "j" in the format string, - and one for the trailing zero. */ - len = strlen(lead) + strlen(re) + strlen(im) + strlen(tail) + 2; - buf = PyMem_Malloc(len); - if (!buf) { - PyErr_NoMemory(); - goto done; - } - PyOS_snprintf(buf, len, "%s%s%sj%s", lead, re, im, tail); - result = PyUnicode_FromString(buf); + PyObject *result = NULL; + Py_ssize_t len; + + /* If these are non-NULL, they'll need to be freed. */ + char *pre = NULL; + char *im = NULL; + char *buf = NULL; + + /* These do not need to be freed. re is either an alias + for pre or a pointer to a constant. lead and tail + are pointers to constants. */ + char *re = NULL; + char *lead = ""; + char *tail = ""; + + if (v->cval.real == 0. && copysign(1.0, v->cval.real)==1.0) { + re = ""; + im = PyOS_double_to_string(v->cval.imag, format_code, + precision, 0, NULL); + if (!im) { + PyErr_NoMemory(); + goto done; + } + } else { + /* Format imaginary part with sign, real part without */ + pre = PyOS_double_to_string(v->cval.real, format_code, + precision, 0, NULL); + if (!pre) { + PyErr_NoMemory(); + goto done; + } + re = pre; + + im = PyOS_double_to_string(v->cval.imag, format_code, + precision, Py_DTSF_SIGN, NULL); + if (!im) { + PyErr_NoMemory(); + goto done; + } + lead = "("; + tail = ")"; + } + /* Alloc the final buffer. Add one for the "j" in the format string, + and one for the trailing zero. */ + len = strlen(lead) + strlen(re) + strlen(im) + strlen(tail) + 2; + buf = PyMem_Malloc(len); + if (!buf) { + PyErr_NoMemory(); + goto done; + } + PyOS_snprintf(buf, len, "%s%s%sj%s", lead, re, im, tail); + result = PyUnicode_FromString(buf); done: - PyMem_Free(im); - PyMem_Free(pre); - PyMem_Free(buf); + PyMem_Free(im); + PyMem_Free(pre); + PyMem_Free(buf); - return result; + return result; } static PyObject * @@ -407,266 +407,266 @@ complex_str(PyComplexObject *v) static long complex_hash(PyComplexObject *v) { - long hashreal, hashimag, combined; - hashreal = _Py_HashDouble(v->cval.real); - if (hashreal == -1) - return -1; - hashimag = _Py_HashDouble(v->cval.imag); - if (hashimag == -1) - return -1; - /* Note: if the imaginary part is 0, hashimag is 0 now, - * so the following returns hashreal unchanged. This is - * important because numbers of different types that - * compare equal must have the same hash value, so that - * hash(x + 0*j) must equal hash(x). - */ - combined = hashreal + 1000003 * hashimag; - if (combined == -1) - combined = -2; - return combined; + long hashreal, hashimag, combined; + hashreal = _Py_HashDouble(v->cval.real); + if (hashreal == -1) + return -1; + hashimag = _Py_HashDouble(v->cval.imag); + if (hashimag == -1) + return -1; + /* Note: if the imaginary part is 0, hashimag is 0 now, + * so the following returns hashreal unchanged. This is + * important because numbers of different types that + * compare equal must have the same hash value, so that + * hash(x + 0*j) must equal hash(x). + */ + combined = hashreal + 1000003 * hashimag; + if (combined == -1) + combined = -2; + return combined; } /* This macro may return! */ #define TO_COMPLEX(obj, c) \ - if (PyComplex_Check(obj)) \ - c = ((PyComplexObject *)(obj))->cval; \ - else if (to_complex(&(obj), &(c)) < 0) \ - return (obj) + if (PyComplex_Check(obj)) \ + c = ((PyComplexObject *)(obj))->cval; \ + else if (to_complex(&(obj), &(c)) < 0) \ + return (obj) static int to_complex(PyObject **pobj, Py_complex *pc) { - PyObject *obj = *pobj; - - pc->real = pc->imag = 0.0; - if (PyLong_Check(obj)) { - pc->real = PyLong_AsDouble(obj); - if (pc->real == -1.0 && PyErr_Occurred()) { - *pobj = NULL; - return -1; - } - return 0; - } - if (PyFloat_Check(obj)) { - pc->real = PyFloat_AsDouble(obj); - return 0; - } - Py_INCREF(Py_NotImplemented); - *pobj = Py_NotImplemented; - return -1; + PyObject *obj = *pobj; + + pc->real = pc->imag = 0.0; + if (PyLong_Check(obj)) { + pc->real = PyLong_AsDouble(obj); + if (pc->real == -1.0 && PyErr_Occurred()) { + *pobj = NULL; + return -1; + } + return 0; + } + if (PyFloat_Check(obj)) { + pc->real = PyFloat_AsDouble(obj); + return 0; + } + Py_INCREF(Py_NotImplemented); + *pobj = Py_NotImplemented; + return -1; } - + static PyObject * complex_add(PyObject *v, PyObject *w) { - Py_complex result; - Py_complex a, b; - TO_COMPLEX(v, a); - TO_COMPLEX(w, b); - PyFPE_START_PROTECT("complex_add", return 0) - result = c_sum(a, b); - PyFPE_END_PROTECT(result) - return PyComplex_FromCComplex(result); + Py_complex result; + Py_complex a, b; + TO_COMPLEX(v, a); + TO_COMPLEX(w, b); + PyFPE_START_PROTECT("complex_add", return 0) + result = c_sum(a, b); + PyFPE_END_PROTECT(result) + return PyComplex_FromCComplex(result); } static PyObject * complex_sub(PyObject *v, PyObject *w) { - Py_complex result; - Py_complex a, b; - TO_COMPLEX(v, a); - TO_COMPLEX(w, b); - PyFPE_START_PROTECT("complex_sub", return 0) - result = c_diff(a, b); - PyFPE_END_PROTECT(result) - return PyComplex_FromCComplex(result); + Py_complex result; + Py_complex a, b; + TO_COMPLEX(v, a); + TO_COMPLEX(w, b); + PyFPE_START_PROTECT("complex_sub", return 0) + result = c_diff(a, b); + PyFPE_END_PROTECT(result) + return PyComplex_FromCComplex(result); } static PyObject * complex_mul(PyObject *v, PyObject *w) { - Py_complex result; - Py_complex a, b; - TO_COMPLEX(v, a); - TO_COMPLEX(w, b); - PyFPE_START_PROTECT("complex_mul", return 0) - result = c_prod(a, b); - PyFPE_END_PROTECT(result) - return PyComplex_FromCComplex(result); + Py_complex result; + Py_complex a, b; + TO_COMPLEX(v, a); + TO_COMPLEX(w, b); + PyFPE_START_PROTECT("complex_mul", return 0) + result = c_prod(a, b); + PyFPE_END_PROTECT(result) + return PyComplex_FromCComplex(result); } static PyObject * complex_div(PyObject *v, PyObject *w) { - Py_complex quot; - Py_complex a, b; - TO_COMPLEX(v, a); - TO_COMPLEX(w, b); - PyFPE_START_PROTECT("complex_div", return 0) - errno = 0; - quot = c_quot(a, b); - PyFPE_END_PROTECT(quot) - if (errno == EDOM) { - PyErr_SetString(PyExc_ZeroDivisionError, "complex division"); - return NULL; - } - return PyComplex_FromCComplex(quot); + Py_complex quot; + Py_complex a, b; + TO_COMPLEX(v, a); + TO_COMPLEX(w, b); + PyFPE_START_PROTECT("complex_div", return 0) + errno = 0; + quot = c_quot(a, b); + PyFPE_END_PROTECT(quot) + if (errno == EDOM) { + PyErr_SetString(PyExc_ZeroDivisionError, "complex division"); + return NULL; + } + return PyComplex_FromCComplex(quot); } static PyObject * complex_remainder(PyObject *v, PyObject *w) { - PyErr_SetString(PyExc_TypeError, - "can't mod complex numbers."); - return NULL; + PyErr_SetString(PyExc_TypeError, + "can't mod complex numbers."); + return NULL; } static PyObject * complex_divmod(PyObject *v, PyObject *w) { - PyErr_SetString(PyExc_TypeError, - "can't take floor or mod of complex number."); - return NULL; + PyErr_SetString(PyExc_TypeError, + "can't take floor or mod of complex number."); + return NULL; } static PyObject * complex_pow(PyObject *v, PyObject *w, PyObject *z) { - Py_complex p; - Py_complex exponent; - long int_exponent; - Py_complex a, b; - TO_COMPLEX(v, a); - TO_COMPLEX(w, b); - - if (z != Py_None) { - PyErr_SetString(PyExc_ValueError, "complex modulo"); - return NULL; - } - PyFPE_START_PROTECT("complex_pow", return 0) - errno = 0; - exponent = b; - int_exponent = (long)exponent.real; - if (exponent.imag == 0. && exponent.real == int_exponent) - p = c_powi(a, int_exponent); - else - p = c_pow(a, exponent); - - PyFPE_END_PROTECT(p) - Py_ADJUST_ERANGE2(p.real, p.imag); - if (errno == EDOM) { - PyErr_SetString(PyExc_ZeroDivisionError, - "0.0 to a negative or complex power"); - return NULL; - } - else if (errno == ERANGE) { - PyErr_SetString(PyExc_OverflowError, - "complex exponentiation"); - return NULL; - } - return PyComplex_FromCComplex(p); + Py_complex p; + Py_complex exponent; + long int_exponent; + Py_complex a, b; + TO_COMPLEX(v, a); + TO_COMPLEX(w, b); + + if (z != Py_None) { + PyErr_SetString(PyExc_ValueError, "complex modulo"); + return NULL; + } + PyFPE_START_PROTECT("complex_pow", return 0) + errno = 0; + exponent = b; + int_exponent = (long)exponent.real; + if (exponent.imag == 0. && exponent.real == int_exponent) + p = c_powi(a, int_exponent); + else + p = c_pow(a, exponent); + + PyFPE_END_PROTECT(p) + Py_ADJUST_ERANGE2(p.real, p.imag); + if (errno == EDOM) { + PyErr_SetString(PyExc_ZeroDivisionError, + "0.0 to a negative or complex power"); + return NULL; + } + else if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, + "complex exponentiation"); + return NULL; + } + return PyComplex_FromCComplex(p); } static PyObject * complex_int_div(PyObject *v, PyObject *w) { - PyErr_SetString(PyExc_TypeError, - "can't take floor of complex number."); - return NULL; + PyErr_SetString(PyExc_TypeError, + "can't take floor of complex number."); + return NULL; } static PyObject * complex_neg(PyComplexObject *v) { - Py_complex neg; - neg.real = -v->cval.real; - neg.imag = -v->cval.imag; - return PyComplex_FromCComplex(neg); + Py_complex neg; + neg.real = -v->cval.real; + neg.imag = -v->cval.imag; + return PyComplex_FromCComplex(neg); } static PyObject * complex_pos(PyComplexObject *v) { - if (PyComplex_CheckExact(v)) { - Py_INCREF(v); - return (PyObject *)v; - } - else - return PyComplex_FromCComplex(v->cval); + if (PyComplex_CheckExact(v)) { + Py_INCREF(v); + return (PyObject *)v; + } + else + return PyComplex_FromCComplex(v->cval); } static PyObject * complex_abs(PyComplexObject *v) { - double result; - - PyFPE_START_PROTECT("complex_abs", return 0) - result = c_abs(v->cval); - PyFPE_END_PROTECT(result) - - if (errno == ERANGE) { - PyErr_SetString(PyExc_OverflowError, - "absolute value too large"); - return NULL; - } - return PyFloat_FromDouble(result); + double result; + + PyFPE_START_PROTECT("complex_abs", return 0) + result = c_abs(v->cval); + PyFPE_END_PROTECT(result) + + if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, + "absolute value too large"); + return NULL; + } + return PyFloat_FromDouble(result); } static int complex_bool(PyComplexObject *v) { - return v->cval.real != 0.0 || v->cval.imag != 0.0; + return v->cval.real != 0.0 || v->cval.imag != 0.0; } static PyObject * complex_richcompare(PyObject *v, PyObject *w, int op) { - PyObject *res; - Py_complex i, j; - TO_COMPLEX(v, i); - TO_COMPLEX(w, j); - - if (op != Py_EQ && op != Py_NE) { - /* XXX Should eventually return NotImplemented */ - PyErr_SetString(PyExc_TypeError, - "no ordering relation is defined for complex numbers"); - return NULL; - } - - if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ)) - res = Py_True; - else - res = Py_False; - - Py_INCREF(res); - return res; + PyObject *res; + Py_complex i, j; + TO_COMPLEX(v, i); + TO_COMPLEX(w, j); + + if (op != Py_EQ && op != Py_NE) { + /* XXX Should eventually return NotImplemented */ + PyErr_SetString(PyExc_TypeError, + "no ordering relation is defined for complex numbers"); + return NULL; + } + + if ((i.real == j.real && i.imag == j.imag) == (op == Py_EQ)) + res = Py_True; + else + res = Py_False; + + Py_INCREF(res); + return res; } static PyObject * complex_int(PyObject *v) { - PyErr_SetString(PyExc_TypeError, - "can't convert complex to int"); - return NULL; + PyErr_SetString(PyExc_TypeError, + "can't convert complex to int"); + return NULL; } static PyObject * complex_float(PyObject *v) { - PyErr_SetString(PyExc_TypeError, - "can't convert complex to float"); - return NULL; + PyErr_SetString(PyExc_TypeError, + "can't convert complex to float"); + return NULL; } static PyObject * complex_conjugate(PyObject *self) { - Py_complex c; - c = ((PyComplexObject *)self)->cval; - c.imag = -c.imag; - return PyComplex_FromCComplex(c); + Py_complex c; + c = ((PyComplexObject *)self)->cval; + c.imag = -c.imag; + return PyComplex_FromCComplex(c); } PyDoc_STRVAR(complex_conjugate_doc, @@ -677,8 +677,8 @@ PyDoc_STRVAR(complex_conjugate_doc, static PyObject * complex_getnewargs(PyComplexObject *v) { - Py_complex c = v->cval; - return Py_BuildValue("(dd)", c.real, c.imag); + Py_complex c = v->cval; + return Py_BuildValue("(dd)", c.real, c.imag); } PyDoc_STRVAR(complex__format__doc, @@ -692,7 +692,7 @@ complex__format__(PyObject* self, PyObject* args) PyObject *format_spec; if (!PyArg_ParseTuple(args, "U:__format__", &format_spec)) - return NULL; + return NULL; return _PyComplex_FormatAdvanced(self, PyUnicode_AS_UNICODE(format_spec), PyUnicode_GET_SIZE(format_spec)); @@ -702,10 +702,10 @@ complex__format__(PyObject* self, PyObject* args) static PyObject * complex_is_finite(PyObject *self) { - Py_complex c; - c = ((PyComplexObject *)self)->cval; - return PyBool_FromLong((long)(Py_IS_FINITE(c.real) && - Py_IS_FINITE(c.imag))); + Py_complex c; + c = ((PyComplexObject *)self)->cval; + return PyBool_FromLong((long)(Py_IS_FINITE(c.real) && + Py_IS_FINITE(c.imag))); } PyDoc_STRVAR(complex_is_finite_doc, @@ -715,314 +715,314 @@ PyDoc_STRVAR(complex_is_finite_doc, #endif static PyMethodDef complex_methods[] = { - {"conjugate", (PyCFunction)complex_conjugate, METH_NOARGS, - complex_conjugate_doc}, + {"conjugate", (PyCFunction)complex_conjugate, METH_NOARGS, + complex_conjugate_doc}, #if 0 - {"is_finite", (PyCFunction)complex_is_finite, METH_NOARGS, - complex_is_finite_doc}, + {"is_finite", (PyCFunction)complex_is_finite, METH_NOARGS, + complex_is_finite_doc}, #endif - {"__getnewargs__", (PyCFunction)complex_getnewargs, METH_NOARGS}, - {"__format__", (PyCFunction)complex__format__, - METH_VARARGS, complex__format__doc}, - {NULL, NULL} /* sentinel */ + {"__getnewargs__", (PyCFunction)complex_getnewargs, METH_NOARGS}, + {"__format__", (PyCFunction)complex__format__, + METH_VARARGS, complex__format__doc}, + {NULL, NULL} /* sentinel */ }; static PyMemberDef complex_members[] = { - {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY, - "the real part of a complex number"}, - {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY, - "the imaginary part of a complex number"}, - {0}, + {"real", T_DOUBLE, offsetof(PyComplexObject, cval.real), READONLY, + "the real part of a complex number"}, + {"imag", T_DOUBLE, offsetof(PyComplexObject, cval.imag), READONLY, + "the imaginary part of a complex number"}, + {0}, }; static PyObject * complex_subtype_from_string(PyTypeObject *type, PyObject *v) { - const char *s, *start; - char *end; - double x=0.0, y=0.0, z; - int got_bracket=0; - char s_buffer[256]; - Py_ssize_t len; - - if (PyUnicode_Check(v)) { - if (PyUnicode_GET_SIZE(v) >= (Py_ssize_t)sizeof(s_buffer)) { - PyErr_SetString(PyExc_ValueError, - "complex() literal too large to convert"); - return NULL; - } - if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v), - PyUnicode_GET_SIZE(v), - s_buffer, - NULL)) - return NULL; - s = s_buffer; - len = strlen(s); - } - else if (PyObject_AsCharBuffer(v, &s, &len)) { - PyErr_SetString(PyExc_TypeError, - "complex() arg is not a string"); - return NULL; - } - - /* position on first nonblank */ - start = s; - while (Py_ISSPACE(*s)) - s++; - if (*s == '(') { - /* Skip over possible bracket from repr(). */ - got_bracket = 1; - s++; - while (Py_ISSPACE(*s)) - s++; - } - - /* a valid complex string usually takes one of the three forms: - - <float> - real part only - <float>j - imaginary part only - <float><signed-float>j - real and imaginary parts - - where <float> represents any numeric string that's accepted by the - float constructor (including 'nan', 'inf', 'infinity', etc.), and - <signed-float> is any string of the form <float> whose first - character is '+' or '-'. - - For backwards compatibility, the extra forms - - <float><sign>j - <sign>j - j - - are also accepted, though support for these forms may be removed from - a future version of Python. - */ - - /* first look for forms starting with <float> */ - z = PyOS_string_to_double(s, &end, NULL); - if (z == -1.0 && PyErr_Occurred()) { - if (PyErr_ExceptionMatches(PyExc_ValueError)) - PyErr_Clear(); - else - return NULL; - } - if (end != s) { - /* all 4 forms starting with <float> land here */ - s = end; - if (*s == '+' || *s == '-') { - /* <float><signed-float>j | <float><sign>j */ - x = z; - y = PyOS_string_to_double(s, &end, NULL); - if (y == -1.0 && PyErr_Occurred()) { - if (PyErr_ExceptionMatches(PyExc_ValueError)) - PyErr_Clear(); - else - return NULL; - } - if (end != s) - /* <float><signed-float>j */ - s = end; - else { - /* <float><sign>j */ - y = *s == '+' ? 1.0 : -1.0; - s++; - } - if (!(*s == 'j' || *s == 'J')) - goto parse_error; - s++; - } - else if (*s == 'j' || *s == 'J') { - /* <float>j */ - s++; - y = z; - } - else - /* <float> */ - x = z; - } - else { - /* not starting with <float>; must be <sign>j or j */ - if (*s == '+' || *s == '-') { - /* <sign>j */ - y = *s == '+' ? 1.0 : -1.0; - s++; - } - else - /* j */ - y = 1.0; - if (!(*s == 'j' || *s == 'J')) - goto parse_error; - s++; - } - - /* trailing whitespace and closing bracket */ - while (Py_ISSPACE(*s)) - s++; - if (got_bracket) { - /* if there was an opening parenthesis, then the corresponding - closing parenthesis should be right here */ - if (*s != ')') - goto parse_error; - s++; - while (Py_ISSPACE(*s)) - s++; - } - - /* we should now be at the end of the string */ - if (s-start != len) - goto parse_error; - - return complex_subtype_from_doubles(type, x, y); + const char *s, *start; + char *end; + double x=0.0, y=0.0, z; + int got_bracket=0; + char s_buffer[256]; + Py_ssize_t len; + + if (PyUnicode_Check(v)) { + if (PyUnicode_GET_SIZE(v) >= (Py_ssize_t)sizeof(s_buffer)) { + PyErr_SetString(PyExc_ValueError, + "complex() literal too large to convert"); + return NULL; + } + if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v), + PyUnicode_GET_SIZE(v), + s_buffer, + NULL)) + return NULL; + s = s_buffer; + len = strlen(s); + } + else if (PyObject_AsCharBuffer(v, &s, &len)) { + PyErr_SetString(PyExc_TypeError, + "complex() arg is not a string"); + return NULL; + } + + /* position on first nonblank */ + start = s; + while (Py_ISSPACE(*s)) + s++; + if (*s == '(') { + /* Skip over possible bracket from repr(). */ + got_bracket = 1; + s++; + while (Py_ISSPACE(*s)) + s++; + } + + /* a valid complex string usually takes one of the three forms: + + <float> - real part only + <float>j - imaginary part only + <float><signed-float>j - real and imaginary parts + + where <float> represents any numeric string that's accepted by the + float constructor (including 'nan', 'inf', 'infinity', etc.), and + <signed-float> is any string of the form <float> whose first + character is '+' or '-'. + + For backwards compatibility, the extra forms + + <float><sign>j + <sign>j + j + + are also accepted, though support for these forms may be removed from + a future version of Python. + */ + + /* first look for forms starting with <float> */ + z = PyOS_string_to_double(s, &end, NULL); + if (z == -1.0 && PyErr_Occurred()) { + if (PyErr_ExceptionMatches(PyExc_ValueError)) + PyErr_Clear(); + else + return NULL; + } + if (end != s) { + /* all 4 forms starting with <float> land here */ + s = end; + if (*s == '+' || *s == '-') { + /* <float><signed-float>j | <float><sign>j */ + x = z; + y = PyOS_string_to_double(s, &end, NULL); + if (y == -1.0 && PyErr_Occurred()) { + if (PyErr_ExceptionMatches(PyExc_ValueError)) + PyErr_Clear(); + else + return NULL; + } + if (end != s) + /* <float><signed-float>j */ + s = end; + else { + /* <float><sign>j */ + y = *s == '+' ? 1.0 : -1.0; + s++; + } + if (!(*s == 'j' || *s == 'J')) + goto parse_error; + s++; + } + else if (*s == 'j' || *s == 'J') { + /* <float>j */ + s++; + y = z; + } + else + /* <float> */ + x = z; + } + else { + /* not starting with <float>; must be <sign>j or j */ + if (*s == '+' || *s == '-') { + /* <sign>j */ + y = *s == '+' ? 1.0 : -1.0; + s++; + } + else + /* j */ + y = 1.0; + if (!(*s == 'j' || *s == 'J')) + goto parse_error; + s++; + } + + /* trailing whitespace and closing bracket */ + while (Py_ISSPACE(*s)) + s++; + if (got_bracket) { + /* if there was an opening parenthesis, then the corresponding + closing parenthesis should be right here */ + if (*s != ')') + goto parse_error; + s++; + while (Py_ISSPACE(*s)) + s++; + } + + /* we should now be at the end of the string */ + if (s-start != len) + goto parse_error; + + return complex_subtype_from_doubles(type, x, y); parse_error: - PyErr_SetString(PyExc_ValueError, - "complex() arg is a malformed string"); - return NULL; + PyErr_SetString(PyExc_ValueError, + "complex() arg is a malformed string"); + return NULL; } static PyObject * complex_new(PyTypeObject *type, PyObject *args, PyObject *kwds) { - PyObject *r, *i, *tmp, *f; - PyNumberMethods *nbr, *nbi = NULL; - Py_complex cr, ci; - int own_r = 0; - int cr_is_complex = 0; - int ci_is_complex = 0; - static PyObject *complexstr; - static char *kwlist[] = {"real", "imag", 0}; - - r = Py_False; - i = NULL; - if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist, - &r, &i)) - return NULL; - - /* Special-case for a single argument when type(arg) is complex. */ - if (PyComplex_CheckExact(r) && i == NULL && - type == &PyComplex_Type) { - /* Note that we can't know whether it's safe to return - a complex *subclass* instance as-is, hence the restriction - to exact complexes here. If either the input or the - output is a complex subclass, it will be handled below - as a non-orthogonal vector. */ - Py_INCREF(r); - return r; - } - if (PyUnicode_Check(r)) { - if (i != NULL) { - PyErr_SetString(PyExc_TypeError, - "complex() can't take second arg" - " if first is a string"); - return NULL; - } - return complex_subtype_from_string(type, r); - } - if (i != NULL && PyUnicode_Check(i)) { - PyErr_SetString(PyExc_TypeError, - "complex() second arg can't be a string"); - return NULL; - } - - /* XXX Hack to support classes with __complex__ method */ - if (complexstr == NULL) { - complexstr = PyUnicode_InternFromString("__complex__"); - if (complexstr == NULL) - return NULL; - } - f = PyObject_GetAttr(r, complexstr); - if (f == NULL) - PyErr_Clear(); - else { - PyObject *args = PyTuple_New(0); - if (args == NULL) - return NULL; - r = PyEval_CallObject(f, args); - Py_DECREF(args); - Py_DECREF(f); - if (r == NULL) - return NULL; - own_r = 1; - } - nbr = r->ob_type->tp_as_number; - if (i != NULL) - nbi = i->ob_type->tp_as_number; - if (nbr == NULL || nbr->nb_float == NULL || - ((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) { - PyErr_SetString(PyExc_TypeError, - "complex() argument must be a string or a number"); - if (own_r) { - Py_DECREF(r); - } - return NULL; - } - - /* If we get this far, then the "real" and "imag" parts should - both be treated as numbers, and the constructor should return a - complex number equal to (real + imag*1j). - - Note that we do NOT assume the input to already be in canonical - form; the "real" and "imag" parts might themselves be complex - numbers, which slightly complicates the code below. */ - if (PyComplex_Check(r)) { - /* Note that if r is of a complex subtype, we're only - retaining its real & imag parts here, and the return - value is (properly) of the builtin complex type. */ - cr = ((PyComplexObject*)r)->cval; - cr_is_complex = 1; - if (own_r) { - Py_DECREF(r); - } - } - else { - /* The "real" part really is entirely real, and contributes - nothing in the imaginary direction. - Just treat it as a double. */ - tmp = PyNumber_Float(r); - if (own_r) { - /* r was a newly created complex number, rather - than the original "real" argument. */ - Py_DECREF(r); - } - if (tmp == NULL) - return NULL; - if (!PyFloat_Check(tmp)) { - PyErr_SetString(PyExc_TypeError, - "float(r) didn't return a float"); - Py_DECREF(tmp); - return NULL; - } - cr.real = PyFloat_AsDouble(tmp); - cr.imag = 0.0; /* Shut up compiler warning */ - Py_DECREF(tmp); - } - if (i == NULL) { - ci.real = 0.0; - } - else if (PyComplex_Check(i)) { - ci = ((PyComplexObject*)i)->cval; - ci_is_complex = 1; - } else { - /* The "imag" part really is entirely imaginary, and - contributes nothing in the real direction. - Just treat it as a double. */ - tmp = (*nbi->nb_float)(i); - if (tmp == NULL) - return NULL; - ci.real = PyFloat_AsDouble(tmp); - Py_DECREF(tmp); - } - /* If the input was in canonical form, then the "real" and "imag" - parts are real numbers, so that ci.imag and cr.imag are zero. - We need this correction in case they were not real numbers. */ - - if (ci_is_complex) { - cr.real -= ci.imag; - } - if (cr_is_complex) { - ci.real += cr.imag; - } - return complex_subtype_from_doubles(type, cr.real, ci.real); + PyObject *r, *i, *tmp, *f; + PyNumberMethods *nbr, *nbi = NULL; + Py_complex cr, ci; + int own_r = 0; + int cr_is_complex = 0; + int ci_is_complex = 0; + static PyObject *complexstr; + static char *kwlist[] = {"real", "imag", 0}; + + r = Py_False; + i = NULL; + if (!PyArg_ParseTupleAndKeywords(args, kwds, "|OO:complex", kwlist, + &r, &i)) + return NULL; + + /* Special-case for a single argument when type(arg) is complex. */ + if (PyComplex_CheckExact(r) && i == NULL && + type == &PyComplex_Type) { + /* Note that we can't know whether it's safe to return + a complex *subclass* instance as-is, hence the restriction + to exact complexes here. If either the input or the + output is a complex subclass, it will be handled below + as a non-orthogonal vector. */ + Py_INCREF(r); + return r; + } + if (PyUnicode_Check(r)) { + if (i != NULL) { + PyErr_SetString(PyExc_TypeError, + "complex() can't take second arg" + " if first is a string"); + return NULL; + } + return complex_subtype_from_string(type, r); + } + if (i != NULL && PyUnicode_Check(i)) { + PyErr_SetString(PyExc_TypeError, + "complex() second arg can't be a string"); + return NULL; + } + + /* XXX Hack to support classes with __complex__ method */ + if (complexstr == NULL) { + complexstr = PyUnicode_InternFromString("__complex__"); + if (complexstr == NULL) + return NULL; + } + f = PyObject_GetAttr(r, complexstr); + if (f == NULL) + PyErr_Clear(); + else { + PyObject *args = PyTuple_New(0); + if (args == NULL) + return NULL; + r = PyEval_CallObject(f, args); + Py_DECREF(args); + Py_DECREF(f); + if (r == NULL) + return NULL; + own_r = 1; + } + nbr = r->ob_type->tp_as_number; + if (i != NULL) + nbi = i->ob_type->tp_as_number; + if (nbr == NULL || nbr->nb_float == NULL || + ((i != NULL) && (nbi == NULL || nbi->nb_float == NULL))) { + PyErr_SetString(PyExc_TypeError, + "complex() argument must be a string or a number"); + if (own_r) { + Py_DECREF(r); + } + return NULL; + } + + /* If we get this far, then the "real" and "imag" parts should + both be treated as numbers, and the constructor should return a + complex number equal to (real + imag*1j). + + Note that we do NOT assume the input to already be in canonical + form; the "real" and "imag" parts might themselves be complex + numbers, which slightly complicates the code below. */ + if (PyComplex_Check(r)) { + /* Note that if r is of a complex subtype, we're only + retaining its real & imag parts here, and the return + value is (properly) of the builtin complex type. */ + cr = ((PyComplexObject*)r)->cval; + cr_is_complex = 1; + if (own_r) { + Py_DECREF(r); + } + } + else { + /* The "real" part really is entirely real, and contributes + nothing in the imaginary direction. + Just treat it as a double. */ + tmp = PyNumber_Float(r); + if (own_r) { + /* r was a newly created complex number, rather + than the original "real" argument. */ + Py_DECREF(r); + } + if (tmp == NULL) + return NULL; + if (!PyFloat_Check(tmp)) { + PyErr_SetString(PyExc_TypeError, + "float(r) didn't return a float"); + Py_DECREF(tmp); + return NULL; + } + cr.real = PyFloat_AsDouble(tmp); + cr.imag = 0.0; /* Shut up compiler warning */ + Py_DECREF(tmp); + } + if (i == NULL) { + ci.real = 0.0; + } + else if (PyComplex_Check(i)) { + ci = ((PyComplexObject*)i)->cval; + ci_is_complex = 1; + } else { + /* The "imag" part really is entirely imaginary, and + contributes nothing in the real direction. + Just treat it as a double. */ + tmp = (*nbi->nb_float)(i); + if (tmp == NULL) + return NULL; + ci.real = PyFloat_AsDouble(tmp); + Py_DECREF(tmp); + } + /* If the input was in canonical form, then the "real" and "imag" + parts are real numbers, so that ci.imag and cr.imag are zero. + We need this correction in case they were not real numbers. */ + + if (ci_is_complex) { + cr.real -= ci.imag; + } + if (cr_is_complex) { + ci.real += cr.imag; + } + return complex_subtype_from_doubles(type, cr.real, ci.real); } PyDoc_STRVAR(complex_doc, @@ -1032,81 +1032,81 @@ PyDoc_STRVAR(complex_doc, "This is equivalent to (real + imag*1j) where imag defaults to 0."); static PyNumberMethods complex_as_number = { - (binaryfunc)complex_add, /* nb_add */ - (binaryfunc)complex_sub, /* nb_subtract */ - (binaryfunc)complex_mul, /* nb_multiply */ - (binaryfunc)complex_remainder, /* nb_remainder */ - (binaryfunc)complex_divmod, /* nb_divmod */ - (ternaryfunc)complex_pow, /* nb_power */ - (unaryfunc)complex_neg, /* nb_negative */ - (unaryfunc)complex_pos, /* nb_positive */ - (unaryfunc)complex_abs, /* nb_absolute */ - (inquiry)complex_bool, /* nb_bool */ - 0, /* nb_invert */ - 0, /* nb_lshift */ - 0, /* nb_rshift */ - 0, /* nb_and */ - 0, /* nb_xor */ - 0, /* nb_or */ - complex_int, /* nb_int */ - 0, /* nb_reserved */ - complex_float, /* nb_float */ - 0, /* nb_inplace_add */ - 0, /* nb_inplace_subtract */ - 0, /* nb_inplace_multiply*/ - 0, /* nb_inplace_remainder */ - 0, /* nb_inplace_power */ - 0, /* nb_inplace_lshift */ - 0, /* nb_inplace_rshift */ - 0, /* nb_inplace_and */ - 0, /* nb_inplace_xor */ - 0, /* nb_inplace_or */ - (binaryfunc)complex_int_div, /* nb_floor_divide */ - (binaryfunc)complex_div, /* nb_true_divide */ - 0, /* nb_inplace_floor_divide */ - 0, /* nb_inplace_true_divide */ + (binaryfunc)complex_add, /* nb_add */ + (binaryfunc)complex_sub, /* nb_subtract */ + (binaryfunc)complex_mul, /* nb_multiply */ + (binaryfunc)complex_remainder, /* nb_remainder */ + (binaryfunc)complex_divmod, /* nb_divmod */ + (ternaryfunc)complex_pow, /* nb_power */ + (unaryfunc)complex_neg, /* nb_negative */ + (unaryfunc)complex_pos, /* nb_positive */ + (unaryfunc)complex_abs, /* nb_absolute */ + (inquiry)complex_bool, /* nb_bool */ + 0, /* nb_invert */ + 0, /* nb_lshift */ + 0, /* nb_rshift */ + 0, /* nb_and */ + 0, /* nb_xor */ + 0, /* nb_or */ + complex_int, /* nb_int */ + 0, /* nb_reserved */ + complex_float, /* nb_float */ + 0, /* nb_inplace_add */ + 0, /* nb_inplace_subtract */ + 0, /* nb_inplace_multiply*/ + 0, /* nb_inplace_remainder */ + 0, /* nb_inplace_power */ + 0, /* nb_inplace_lshift */ + 0, /* nb_inplace_rshift */ + 0, /* nb_inplace_and */ + 0, /* nb_inplace_xor */ + 0, /* nb_inplace_or */ + (binaryfunc)complex_int_div, /* nb_floor_divide */ + (binaryfunc)complex_div, /* nb_true_divide */ + 0, /* nb_inplace_floor_divide */ + 0, /* nb_inplace_true_divide */ }; PyTypeObject PyComplex_Type = { - PyVarObject_HEAD_INIT(&PyType_Type, 0) - "complex", - sizeof(PyComplexObject), - 0, - complex_dealloc, /* tp_dealloc */ - 0, /* tp_print */ - 0, /* tp_getattr */ - 0, /* tp_setattr */ - 0, /* tp_reserved */ - (reprfunc)complex_repr, /* tp_repr */ - &complex_as_number, /* tp_as_number */ - 0, /* tp_as_sequence */ - 0, /* tp_as_mapping */ - (hashfunc)complex_hash, /* tp_hash */ - 0, /* tp_call */ - (reprfunc)complex_str, /* tp_str */ - PyObject_GenericGetAttr, /* tp_getattro */ - 0, /* tp_setattro */ - 0, /* tp_as_buffer */ - Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ - complex_doc, /* tp_doc */ - 0, /* tp_traverse */ - 0, /* tp_clear */ - complex_richcompare, /* tp_richcompare */ - 0, /* tp_weaklistoffset */ - 0, /* tp_iter */ - 0, /* tp_iternext */ - complex_methods, /* tp_methods */ - complex_members, /* tp_members */ - 0, /* tp_getset */ - 0, /* tp_base */ - 0, /* tp_dict */ - 0, /* tp_descr_get */ - 0, /* tp_descr_set */ - 0, /* tp_dictoffset */ - 0, /* tp_init */ - PyType_GenericAlloc, /* tp_alloc */ - complex_new, /* tp_new */ - PyObject_Del, /* tp_free */ + PyVarObject_HEAD_INIT(&PyType_Type, 0) + "complex", + sizeof(PyComplexObject), + 0, + complex_dealloc, /* tp_dealloc */ + 0, /* tp_print */ + 0, /* tp_getattr */ + 0, /* tp_setattr */ + 0, /* tp_reserved */ + (reprfunc)complex_repr, /* tp_repr */ + &complex_as_number, /* tp_as_number */ + 0, /* tp_as_sequence */ + 0, /* tp_as_mapping */ + (hashfunc)complex_hash, /* tp_hash */ + 0, /* tp_call */ + (reprfunc)complex_str, /* tp_str */ + PyObject_GenericGetAttr, /* tp_getattro */ + 0, /* tp_setattro */ + 0, /* tp_as_buffer */ + Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */ + complex_doc, /* tp_doc */ + 0, /* tp_traverse */ + 0, /* tp_clear */ + complex_richcompare, /* tp_richcompare */ + 0, /* tp_weaklistoffset */ + 0, /* tp_iter */ + 0, /* tp_iternext */ + complex_methods, /* tp_methods */ + complex_members, /* tp_members */ + 0, /* tp_getset */ + 0, /* tp_base */ + 0, /* tp_dict */ + 0, /* tp_descr_get */ + 0, /* tp_descr_set */ + 0, /* tp_dictoffset */ + 0, /* tp_init */ + PyType_GenericAlloc, /* tp_alloc */ + complex_new, /* tp_new */ + PyObject_Del, /* tp_free */ }; #endif |