summaryrefslogtreecommitdiffstats
path: root/Objects/floatobject.c
diff options
context:
space:
mode:
authorAntoine Pitrou <solipsis@pitrou.net>2010-05-09 15:52:27 (GMT)
committerAntoine Pitrou <solipsis@pitrou.net>2010-05-09 15:52:27 (GMT)
commitf95a1b3c53bdd678b64aa608d4375660033460c3 (patch)
treea8bee40b1b14e28ff5978ea519f3035a3c399912 /Objects/floatobject.c
parentbd250300191133d276a71b395b6428081bf825b8 (diff)
downloadcpython-f95a1b3c53bdd678b64aa608d4375660033460c3.zip
cpython-f95a1b3c53bdd678b64aa608d4375660033460c3.tar.gz
cpython-f95a1b3c53bdd678b64aa608d4375660033460c3.tar.bz2
Recorded merge of revisions 81029 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk ........ r81029 | antoine.pitrou | 2010-05-09 16:46:46 +0200 (dim., 09 mai 2010) | 3 lines Untabify C files. Will watch buildbots. ........
Diffstat (limited to 'Objects/floatobject.c')
-rw-r--r--Objects/floatobject.c3800
1 files changed, 1900 insertions, 1900 deletions
diff --git a/Objects/floatobject.c b/Objects/floatobject.c
index 238022b..9f94003 100644
--- a/Objects/floatobject.c
+++ b/Objects/floatobject.c
@@ -22,13 +22,13 @@ extern int finite(double);
#endif
/* Special free list -- see comments for same code in intobject.c. */
-#define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */
-#define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */
-#define N_FLOATOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))
+#define BLOCK_SIZE 1000 /* 1K less typical malloc overhead */
+#define BHEAD_SIZE 8 /* Enough for a 64-bit pointer */
+#define N_FLOATOBJECTS ((BLOCK_SIZE - BHEAD_SIZE) / sizeof(PyFloatObject))
struct _floatblock {
- struct _floatblock *next;
- PyFloatObject objects[N_FLOATOBJECTS];
+ struct _floatblock *next;
+ PyFloatObject objects[N_FLOATOBJECTS];
};
typedef struct _floatblock PyFloatBlock;
@@ -39,31 +39,31 @@ static PyFloatObject *free_list = NULL;
static PyFloatObject *
fill_free_list(void)
{
- PyFloatObject *p, *q;
- /* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */
- p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock));
- if (p == NULL)
- return (PyFloatObject *) PyErr_NoMemory();
- ((PyFloatBlock *)p)->next = block_list;
- block_list = (PyFloatBlock *)p;
- p = &((PyFloatBlock *)p)->objects[0];
- q = p + N_FLOATOBJECTS;
- while (--q > p)
- Py_TYPE(q) = (struct _typeobject *)(q-1);
- Py_TYPE(q) = NULL;
- return p + N_FLOATOBJECTS - 1;
+ PyFloatObject *p, *q;
+ /* XXX Float blocks escape the object heap. Use PyObject_MALLOC ??? */
+ p = (PyFloatObject *) PyMem_MALLOC(sizeof(PyFloatBlock));
+ if (p == NULL)
+ return (PyFloatObject *) PyErr_NoMemory();
+ ((PyFloatBlock *)p)->next = block_list;
+ block_list = (PyFloatBlock *)p;
+ p = &((PyFloatBlock *)p)->objects[0];
+ q = p + N_FLOATOBJECTS;
+ while (--q > p)
+ Py_TYPE(q) = (struct _typeobject *)(q-1);
+ Py_TYPE(q) = NULL;
+ return p + N_FLOATOBJECTS - 1;
}
double
PyFloat_GetMax(void)
{
- return DBL_MAX;
+ return DBL_MAX;
}
double
PyFloat_GetMin(void)
{
- return DBL_MIN;
+ return DBL_MIN;
}
static PyTypeObject FloatInfoType;
@@ -76,183 +76,183 @@ information about the precision and internal representation. Please study\n\
your system's :file:`float.h` for more information.");
static PyStructSequence_Field floatinfo_fields[] = {
- {"max", "DBL_MAX -- maximum representable finite float"},
- {"max_exp", "DBL_MAX_EXP -- maximum int e such that radix**(e-1) "
- "is representable"},
- {"max_10_exp", "DBL_MAX_10_EXP -- maximum int e such that 10**e "
- "is representable"},
- {"min", "DBL_MIN -- Minimum positive normalizer float"},
- {"min_exp", "DBL_MIN_EXP -- minimum int e such that radix**(e-1) "
- "is a normalized float"},
- {"min_10_exp", "DBL_MIN_10_EXP -- minimum int e such that 10**e is "
- "a normalized"},
- {"dig", "DBL_DIG -- digits"},
- {"mant_dig", "DBL_MANT_DIG -- mantissa digits"},
- {"epsilon", "DBL_EPSILON -- Difference between 1 and the next "
- "representable float"},
- {"radix", "FLT_RADIX -- radix of exponent"},
- {"rounds", "FLT_ROUNDS -- addition rounds"},
- {0}
+ {"max", "DBL_MAX -- maximum representable finite float"},
+ {"max_exp", "DBL_MAX_EXP -- maximum int e such that radix**(e-1) "
+ "is representable"},
+ {"max_10_exp", "DBL_MAX_10_EXP -- maximum int e such that 10**e "
+ "is representable"},
+ {"min", "DBL_MIN -- Minimum positive normalizer float"},
+ {"min_exp", "DBL_MIN_EXP -- minimum int e such that radix**(e-1) "
+ "is a normalized float"},
+ {"min_10_exp", "DBL_MIN_10_EXP -- minimum int e such that 10**e is "
+ "a normalized"},
+ {"dig", "DBL_DIG -- digits"},
+ {"mant_dig", "DBL_MANT_DIG -- mantissa digits"},
+ {"epsilon", "DBL_EPSILON -- Difference between 1 and the next "
+ "representable float"},
+ {"radix", "FLT_RADIX -- radix of exponent"},
+ {"rounds", "FLT_ROUNDS -- addition rounds"},
+ {0}
};
static PyStructSequence_Desc floatinfo_desc = {
- "sys.float_info", /* name */
- floatinfo__doc__, /* doc */
- floatinfo_fields, /* fields */
- 11
+ "sys.float_info", /* name */
+ floatinfo__doc__, /* doc */
+ floatinfo_fields, /* fields */
+ 11
};
PyObject *
PyFloat_GetInfo(void)
{
- PyObject* floatinfo;
- int pos = 0;
+ PyObject* floatinfo;
+ int pos = 0;
- floatinfo = PyStructSequence_New(&FloatInfoType);
- if (floatinfo == NULL) {
- return NULL;
- }
+ floatinfo = PyStructSequence_New(&FloatInfoType);
+ if (floatinfo == NULL) {
+ return NULL;
+ }
#define SetIntFlag(flag) \
- PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag))
+ PyStructSequence_SET_ITEM(floatinfo, pos++, PyLong_FromLong(flag))
#define SetDblFlag(flag) \
- PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))
-
- SetDblFlag(DBL_MAX);
- SetIntFlag(DBL_MAX_EXP);
- SetIntFlag(DBL_MAX_10_EXP);
- SetDblFlag(DBL_MIN);
- SetIntFlag(DBL_MIN_EXP);
- SetIntFlag(DBL_MIN_10_EXP);
- SetIntFlag(DBL_DIG);
- SetIntFlag(DBL_MANT_DIG);
- SetDblFlag(DBL_EPSILON);
- SetIntFlag(FLT_RADIX);
- SetIntFlag(FLT_ROUNDS);
+ PyStructSequence_SET_ITEM(floatinfo, pos++, PyFloat_FromDouble(flag))
+
+ SetDblFlag(DBL_MAX);
+ SetIntFlag(DBL_MAX_EXP);
+ SetIntFlag(DBL_MAX_10_EXP);
+ SetDblFlag(DBL_MIN);
+ SetIntFlag(DBL_MIN_EXP);
+ SetIntFlag(DBL_MIN_10_EXP);
+ SetIntFlag(DBL_DIG);
+ SetIntFlag(DBL_MANT_DIG);
+ SetDblFlag(DBL_EPSILON);
+ SetIntFlag(FLT_RADIX);
+ SetIntFlag(FLT_ROUNDS);
#undef SetIntFlag
#undef SetDblFlag
-
- if (PyErr_Occurred()) {
- Py_CLEAR(floatinfo);
- return NULL;
- }
- return floatinfo;
+
+ if (PyErr_Occurred()) {
+ Py_CLEAR(floatinfo);
+ return NULL;
+ }
+ return floatinfo;
}
PyObject *
PyFloat_FromDouble(double fval)
{
- register PyFloatObject *op;
- if (free_list == NULL) {
- if ((free_list = fill_free_list()) == NULL)
- return NULL;
- }
- /* Inline PyObject_New */
- op = free_list;
- free_list = (PyFloatObject *)Py_TYPE(op);
- PyObject_INIT(op, &PyFloat_Type);
- op->ob_fval = fval;
- return (PyObject *) op;
+ register PyFloatObject *op;
+ if (free_list == NULL) {
+ if ((free_list = fill_free_list()) == NULL)
+ return NULL;
+ }
+ /* Inline PyObject_New */
+ op = free_list;
+ free_list = (PyFloatObject *)Py_TYPE(op);
+ PyObject_INIT(op, &PyFloat_Type);
+ op->ob_fval = fval;
+ return (PyObject *) op;
}
PyObject *
PyFloat_FromString(PyObject *v)
{
- const char *s, *last, *end;
- double x;
- char buffer[256]; /* for errors */
- char *s_buffer = NULL;
- Py_ssize_t len;
- PyObject *result = NULL;
-
- if (PyUnicode_Check(v)) {
- s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v)+1);
- if (s_buffer == NULL)
- return PyErr_NoMemory();
- if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
- PyUnicode_GET_SIZE(v),
- s_buffer,
- NULL))
- goto error;
- s = s_buffer;
- len = strlen(s);
- }
- else if (PyObject_AsCharBuffer(v, &s, &len)) {
- PyErr_SetString(PyExc_TypeError,
- "float() argument must be a string or a number");
- return NULL;
- }
- last = s + len;
-
- while (Py_ISSPACE(*s))
- s++;
- /* We don't care about overflow or underflow. If the platform
- * supports them, infinities and signed zeroes (on underflow) are
- * fine. */
- x = PyOS_string_to_double(s, (char **)&end, NULL);
- if (x == -1.0 && PyErr_Occurred())
- goto error;
- while (Py_ISSPACE(*end))
- end++;
- if (end == last)
- result = PyFloat_FromDouble(x);
- else {
- PyOS_snprintf(buffer, sizeof(buffer),
- "invalid literal for float(): %.200s", s);
- PyErr_SetString(PyExc_ValueError, buffer);
- result = NULL;
- }
+ const char *s, *last, *end;
+ double x;
+ char buffer[256]; /* for errors */
+ char *s_buffer = NULL;
+ Py_ssize_t len;
+ PyObject *result = NULL;
+
+ if (PyUnicode_Check(v)) {
+ s_buffer = (char *)PyMem_MALLOC(PyUnicode_GET_SIZE(v)+1);
+ if (s_buffer == NULL)
+ return PyErr_NoMemory();
+ if (PyUnicode_EncodeDecimal(PyUnicode_AS_UNICODE(v),
+ PyUnicode_GET_SIZE(v),
+ s_buffer,
+ NULL))
+ goto error;
+ s = s_buffer;
+ len = strlen(s);
+ }
+ else if (PyObject_AsCharBuffer(v, &s, &len)) {
+ PyErr_SetString(PyExc_TypeError,
+ "float() argument must be a string or a number");
+ return NULL;
+ }
+ last = s + len;
+
+ while (Py_ISSPACE(*s))
+ s++;
+ /* We don't care about overflow or underflow. If the platform
+ * supports them, infinities and signed zeroes (on underflow) are
+ * fine. */
+ x = PyOS_string_to_double(s, (char **)&end, NULL);
+ if (x == -1.0 && PyErr_Occurred())
+ goto error;
+ while (Py_ISSPACE(*end))
+ end++;
+ if (end == last)
+ result = PyFloat_FromDouble(x);
+ else {
+ PyOS_snprintf(buffer, sizeof(buffer),
+ "invalid literal for float(): %.200s", s);
+ PyErr_SetString(PyExc_ValueError, buffer);
+ result = NULL;
+ }
error:
- if (s_buffer)
- PyMem_FREE(s_buffer);
- return result;
+ if (s_buffer)
+ PyMem_FREE(s_buffer);
+ return result;
}
static void
float_dealloc(PyFloatObject *op)
{
- if (PyFloat_CheckExact(op)) {
- Py_TYPE(op) = (struct _typeobject *)free_list;
- free_list = op;
- }
- else
- Py_TYPE(op)->tp_free((PyObject *)op);
+ if (PyFloat_CheckExact(op)) {
+ Py_TYPE(op) = (struct _typeobject *)free_list;
+ free_list = op;
+ }
+ else
+ Py_TYPE(op)->tp_free((PyObject *)op);
}
double
PyFloat_AsDouble(PyObject *op)
{
- PyNumberMethods *nb;
- PyFloatObject *fo;
- double val;
-
- if (op && PyFloat_Check(op))
- return PyFloat_AS_DOUBLE((PyFloatObject*) op);
-
- if (op == NULL) {
- PyErr_BadArgument();
- return -1;
- }
-
- if ((nb = Py_TYPE(op)->tp_as_number) == NULL || nb->nb_float == NULL) {
- PyErr_SetString(PyExc_TypeError, "a float is required");
- return -1;
- }
-
- fo = (PyFloatObject*) (*nb->nb_float) (op);
- if (fo == NULL)
- return -1;
- if (!PyFloat_Check(fo)) {
- PyErr_SetString(PyExc_TypeError,
- "nb_float should return float object");
- return -1;
- }
-
- val = PyFloat_AS_DOUBLE(fo);
- Py_DECREF(fo);
-
- return val;
+ PyNumberMethods *nb;
+ PyFloatObject *fo;
+ double val;
+
+ if (op && PyFloat_Check(op))
+ return PyFloat_AS_DOUBLE((PyFloatObject*) op);
+
+ if (op == NULL) {
+ PyErr_BadArgument();
+ return -1;
+ }
+
+ if ((nb = Py_TYPE(op)->tp_as_number) == NULL || nb->nb_float == NULL) {
+ PyErr_SetString(PyExc_TypeError, "a float is required");
+ return -1;
+ }
+
+ fo = (PyFloatObject*) (*nb->nb_float) (op);
+ if (fo == NULL)
+ return -1;
+ if (!PyFloat_Check(fo)) {
+ PyErr_SetString(PyExc_TypeError,
+ "nb_float should return float object");
+ return -1;
+ }
+
+ val = PyFloat_AS_DOUBLE(fo);
+ Py_DECREF(fo);
+
+ return val;
}
/* Macro and helper that convert PyObject obj to a C double and store
@@ -261,32 +261,32 @@ PyFloat_AsDouble(PyObject *op)
obj is not of float, int or long type, Py_NotImplemented is incref'ed,
stored in obj, and returned from the function invoking this macro.
*/
-#define CONVERT_TO_DOUBLE(obj, dbl) \
- if (PyFloat_Check(obj)) \
- dbl = PyFloat_AS_DOUBLE(obj); \
- else if (convert_to_double(&(obj), &(dbl)) < 0) \
- return obj;
+#define CONVERT_TO_DOUBLE(obj, dbl) \
+ if (PyFloat_Check(obj)) \
+ dbl = PyFloat_AS_DOUBLE(obj); \
+ else if (convert_to_double(&(obj), &(dbl)) < 0) \
+ return obj;
/* Methods */
static int
convert_to_double(PyObject **v, double *dbl)
{
- register PyObject *obj = *v;
-
- if (PyLong_Check(obj)) {
- *dbl = PyLong_AsDouble(obj);
- if (*dbl == -1.0 && PyErr_Occurred()) {
- *v = NULL;
- return -1;
- }
- }
- else {
- Py_INCREF(Py_NotImplemented);
- *v = Py_NotImplemented;
- return -1;
- }
- return 0;
+ register PyObject *obj = *v;
+
+ if (PyLong_Check(obj)) {
+ *dbl = PyLong_AsDouble(obj);
+ if (*dbl == -1.0 && PyErr_Occurred()) {
+ *v = NULL;
+ return -1;
+ }
+ }
+ else {
+ Py_INCREF(Py_NotImplemented);
+ *v = Py_NotImplemented;
+ return -1;
+ }
+ return 0;
}
static PyObject *
@@ -298,7 +298,7 @@ float_str_or_repr(PyFloatObject *v, int precision, char format_code)
Py_DTSF_ADD_DOT_0,
NULL);
if (!buf)
- return PyErr_NoMemory();
+ return PyErr_NoMemory();
result = PyUnicode_FromString(buf);
PyMem_Free(buf);
return result;
@@ -334,341 +334,341 @@ float_str(PyFloatObject *v)
static PyObject*
float_richcompare(PyObject *v, PyObject *w, int op)
{
- double i, j;
- int r = 0;
-
- assert(PyFloat_Check(v));
- i = PyFloat_AS_DOUBLE(v);
-
- /* Switch on the type of w. Set i and j to doubles to be compared,
- * and op to the richcomp to use.
- */
- if (PyFloat_Check(w))
- j = PyFloat_AS_DOUBLE(w);
-
- else if (!Py_IS_FINITE(i)) {
- if (PyLong_Check(w))
- /* If i is an infinity, its magnitude exceeds any
- * finite integer, so it doesn't matter which int we
- * compare i with. If i is a NaN, similarly.
- */
- j = 0.0;
- else
- goto Unimplemented;
- }
-
- else if (PyLong_Check(w)) {
- int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
- int wsign = _PyLong_Sign(w);
- size_t nbits;
- int exponent;
-
- if (vsign != wsign) {
- /* Magnitudes are irrelevant -- the signs alone
- * determine the outcome.
- */
- i = (double)vsign;
- j = (double)wsign;
- goto Compare;
- }
- /* The signs are the same. */
- /* Convert w to a double if it fits. In particular, 0 fits. */
- nbits = _PyLong_NumBits(w);
- if (nbits == (size_t)-1 && PyErr_Occurred()) {
- /* This long is so large that size_t isn't big enough
- * to hold the # of bits. Replace with little doubles
- * that give the same outcome -- w is so large that
- * its magnitude must exceed the magnitude of any
- * finite float.
- */
- PyErr_Clear();
- i = (double)vsign;
- assert(wsign != 0);
- j = wsign * 2.0;
- goto Compare;
- }
- if (nbits <= 48) {
- j = PyLong_AsDouble(w);
- /* It's impossible that <= 48 bits overflowed. */
- assert(j != -1.0 || ! PyErr_Occurred());
- goto Compare;
- }
- assert(wsign != 0); /* else nbits was 0 */
- assert(vsign != 0); /* if vsign were 0, then since wsign is
- * not 0, we would have taken the
- * vsign != wsign branch at the start */
- /* We want to work with non-negative numbers. */
- if (vsign < 0) {
- /* "Multiply both sides" by -1; this also swaps the
- * comparator.
- */
- i = -i;
- op = _Py_SwappedOp[op];
- }
- assert(i > 0.0);
- (void) frexp(i, &exponent);
- /* exponent is the # of bits in v before the radix point;
- * we know that nbits (the # of bits in w) > 48 at this point
- */
- if (exponent < 0 || (size_t)exponent < nbits) {
- i = 1.0;
- j = 2.0;
- goto Compare;
- }
- if ((size_t)exponent > nbits) {
- i = 2.0;
- j = 1.0;
- goto Compare;
- }
- /* v and w have the same number of bits before the radix
- * point. Construct two longs that have the same comparison
- * outcome.
- */
- {
- double fracpart;
- double intpart;
- PyObject *result = NULL;
- PyObject *one = NULL;
- PyObject *vv = NULL;
- PyObject *ww = w;
-
- if (wsign < 0) {
- ww = PyNumber_Negative(w);
- if (ww == NULL)
- goto Error;
- }
- else
- Py_INCREF(ww);
-
- fracpart = modf(i, &intpart);
- vv = PyLong_FromDouble(intpart);
- if (vv == NULL)
- goto Error;
-
- if (fracpart != 0.0) {
- /* Shift left, and or a 1 bit into vv
- * to represent the lost fraction.
- */
- PyObject *temp;
-
- one = PyLong_FromLong(1);
- if (one == NULL)
- goto Error;
-
- temp = PyNumber_Lshift(ww, one);
- if (temp == NULL)
- goto Error;
- Py_DECREF(ww);
- ww = temp;
-
- temp = PyNumber_Lshift(vv, one);
- if (temp == NULL)
- goto Error;
- Py_DECREF(vv);
- vv = temp;
-
- temp = PyNumber_Or(vv, one);
- if (temp == NULL)
- goto Error;
- Py_DECREF(vv);
- vv = temp;
- }
-
- r = PyObject_RichCompareBool(vv, ww, op);
- if (r < 0)
- goto Error;
- result = PyBool_FromLong(r);
- Error:
- Py_XDECREF(vv);
- Py_XDECREF(ww);
- Py_XDECREF(one);
- return result;
- }
- } /* else if (PyLong_Check(w)) */
-
- else /* w isn't float, int, or long */
- goto Unimplemented;
+ double i, j;
+ int r = 0;
+
+ assert(PyFloat_Check(v));
+ i = PyFloat_AS_DOUBLE(v);
+
+ /* Switch on the type of w. Set i and j to doubles to be compared,
+ * and op to the richcomp to use.
+ */
+ if (PyFloat_Check(w))
+ j = PyFloat_AS_DOUBLE(w);
+
+ else if (!Py_IS_FINITE(i)) {
+ if (PyLong_Check(w))
+ /* If i is an infinity, its magnitude exceeds any
+ * finite integer, so it doesn't matter which int we
+ * compare i with. If i is a NaN, similarly.
+ */
+ j = 0.0;
+ else
+ goto Unimplemented;
+ }
+
+ else if (PyLong_Check(w)) {
+ int vsign = i == 0.0 ? 0 : i < 0.0 ? -1 : 1;
+ int wsign = _PyLong_Sign(w);
+ size_t nbits;
+ int exponent;
+
+ if (vsign != wsign) {
+ /* Magnitudes are irrelevant -- the signs alone
+ * determine the outcome.
+ */
+ i = (double)vsign;
+ j = (double)wsign;
+ goto Compare;
+ }
+ /* The signs are the same. */
+ /* Convert w to a double if it fits. In particular, 0 fits. */
+ nbits = _PyLong_NumBits(w);
+ if (nbits == (size_t)-1 && PyErr_Occurred()) {
+ /* This long is so large that size_t isn't big enough
+ * to hold the # of bits. Replace with little doubles
+ * that give the same outcome -- w is so large that
+ * its magnitude must exceed the magnitude of any
+ * finite float.
+ */
+ PyErr_Clear();
+ i = (double)vsign;
+ assert(wsign != 0);
+ j = wsign * 2.0;
+ goto Compare;
+ }
+ if (nbits <= 48) {
+ j = PyLong_AsDouble(w);
+ /* It's impossible that <= 48 bits overflowed. */
+ assert(j != -1.0 || ! PyErr_Occurred());
+ goto Compare;
+ }
+ assert(wsign != 0); /* else nbits was 0 */
+ assert(vsign != 0); /* if vsign were 0, then since wsign is
+ * not 0, we would have taken the
+ * vsign != wsign branch at the start */
+ /* We want to work with non-negative numbers. */
+ if (vsign < 0) {
+ /* "Multiply both sides" by -1; this also swaps the
+ * comparator.
+ */
+ i = -i;
+ op = _Py_SwappedOp[op];
+ }
+ assert(i > 0.0);
+ (void) frexp(i, &exponent);
+ /* exponent is the # of bits in v before the radix point;
+ * we know that nbits (the # of bits in w) > 48 at this point
+ */
+ if (exponent < 0 || (size_t)exponent < nbits) {
+ i = 1.0;
+ j = 2.0;
+ goto Compare;
+ }
+ if ((size_t)exponent > nbits) {
+ i = 2.0;
+ j = 1.0;
+ goto Compare;
+ }
+ /* v and w have the same number of bits before the radix
+ * point. Construct two longs that have the same comparison
+ * outcome.
+ */
+ {
+ double fracpart;
+ double intpart;
+ PyObject *result = NULL;
+ PyObject *one = NULL;
+ PyObject *vv = NULL;
+ PyObject *ww = w;
+
+ if (wsign < 0) {
+ ww = PyNumber_Negative(w);
+ if (ww == NULL)
+ goto Error;
+ }
+ else
+ Py_INCREF(ww);
+
+ fracpart = modf(i, &intpart);
+ vv = PyLong_FromDouble(intpart);
+ if (vv == NULL)
+ goto Error;
+
+ if (fracpart != 0.0) {
+ /* Shift left, and or a 1 bit into vv
+ * to represent the lost fraction.
+ */
+ PyObject *temp;
+
+ one = PyLong_FromLong(1);
+ if (one == NULL)
+ goto Error;
+
+ temp = PyNumber_Lshift(ww, one);
+ if (temp == NULL)
+ goto Error;
+ Py_DECREF(ww);
+ ww = temp;
+
+ temp = PyNumber_Lshift(vv, one);
+ if (temp == NULL)
+ goto Error;
+ Py_DECREF(vv);
+ vv = temp;
+
+ temp = PyNumber_Or(vv, one);
+ if (temp == NULL)
+ goto Error;
+ Py_DECREF(vv);
+ vv = temp;
+ }
+
+ r = PyObject_RichCompareBool(vv, ww, op);
+ if (r < 0)
+ goto Error;
+ result = PyBool_FromLong(r);
+ Error:
+ Py_XDECREF(vv);
+ Py_XDECREF(ww);
+ Py_XDECREF(one);
+ return result;
+ }
+ } /* else if (PyLong_Check(w)) */
+
+ else /* w isn't float, int, or long */
+ goto Unimplemented;
Compare:
- PyFPE_START_PROTECT("richcompare", return NULL)
- switch (op) {
- case Py_EQ:
- r = i == j;
- break;
- case Py_NE:
- r = i != j;
- break;
- case Py_LE:
- r = i <= j;
- break;
- case Py_GE:
- r = i >= j;
- break;
- case Py_LT:
- r = i < j;
- break;
- case Py_GT:
- r = i > j;
- break;
- }
- PyFPE_END_PROTECT(r)
- return PyBool_FromLong(r);
+ PyFPE_START_PROTECT("richcompare", return NULL)
+ switch (op) {
+ case Py_EQ:
+ r = i == j;
+ break;
+ case Py_NE:
+ r = i != j;
+ break;
+ case Py_LE:
+ r = i <= j;
+ break;
+ case Py_GE:
+ r = i >= j;
+ break;
+ case Py_LT:
+ r = i < j;
+ break;
+ case Py_GT:
+ r = i > j;
+ break;
+ }
+ PyFPE_END_PROTECT(r)
+ return PyBool_FromLong(r);
Unimplemented:
- Py_INCREF(Py_NotImplemented);
- return Py_NotImplemented;
+ Py_INCREF(Py_NotImplemented);
+ return Py_NotImplemented;
}
static long
float_hash(PyFloatObject *v)
{
- return _Py_HashDouble(v->ob_fval);
+ return _Py_HashDouble(v->ob_fval);
}
static PyObject *
float_add(PyObject *v, PyObject *w)
{
- double a,b;
- CONVERT_TO_DOUBLE(v, a);
- CONVERT_TO_DOUBLE(w, b);
- PyFPE_START_PROTECT("add", return 0)
- a = a + b;
- PyFPE_END_PROTECT(a)
- return PyFloat_FromDouble(a);
+ double a,b;
+ CONVERT_TO_DOUBLE(v, a);
+ CONVERT_TO_DOUBLE(w, b);
+ PyFPE_START_PROTECT("add", return 0)
+ a = a + b;
+ PyFPE_END_PROTECT(a)
+ return PyFloat_FromDouble(a);
}
static PyObject *
float_sub(PyObject *v, PyObject *w)
{
- double a,b;
- CONVERT_TO_DOUBLE(v, a);
- CONVERT_TO_DOUBLE(w, b);
- PyFPE_START_PROTECT("subtract", return 0)
- a = a - b;
- PyFPE_END_PROTECT(a)
- return PyFloat_FromDouble(a);
+ double a,b;
+ CONVERT_TO_DOUBLE(v, a);
+ CONVERT_TO_DOUBLE(w, b);
+ PyFPE_START_PROTECT("subtract", return 0)
+ a = a - b;
+ PyFPE_END_PROTECT(a)
+ return PyFloat_FromDouble(a);
}
static PyObject *
float_mul(PyObject *v, PyObject *w)
{
- double a,b;
- CONVERT_TO_DOUBLE(v, a);
- CONVERT_TO_DOUBLE(w, b);
- PyFPE_START_PROTECT("multiply", return 0)
- a = a * b;
- PyFPE_END_PROTECT(a)
- return PyFloat_FromDouble(a);
+ double a,b;
+ CONVERT_TO_DOUBLE(v, a);
+ CONVERT_TO_DOUBLE(w, b);
+ PyFPE_START_PROTECT("multiply", return 0)
+ a = a * b;
+ PyFPE_END_PROTECT(a)
+ return PyFloat_FromDouble(a);
}
static PyObject *
float_div(PyObject *v, PyObject *w)
{
- double a,b;
- CONVERT_TO_DOUBLE(v, a);
- CONVERT_TO_DOUBLE(w, b);
+ double a,b;
+ CONVERT_TO_DOUBLE(v, a);
+ CONVERT_TO_DOUBLE(w, b);
#ifdef Py_NAN
- if (b == 0.0) {
- PyErr_SetString(PyExc_ZeroDivisionError,
- "float division by zero");
- return NULL;
- }
+ if (b == 0.0) {
+ PyErr_SetString(PyExc_ZeroDivisionError,
+ "float division by zero");
+ return NULL;
+ }
#endif
- PyFPE_START_PROTECT("divide", return 0)
- a = a / b;
- PyFPE_END_PROTECT(a)
- return PyFloat_FromDouble(a);
+ PyFPE_START_PROTECT("divide", return 0)
+ a = a / b;
+ PyFPE_END_PROTECT(a)
+ return PyFloat_FromDouble(a);
}
static PyObject *
float_rem(PyObject *v, PyObject *w)
{
- double vx, wx;
- double mod;
- CONVERT_TO_DOUBLE(v, vx);
- CONVERT_TO_DOUBLE(w, wx);
+ double vx, wx;
+ double mod;
+ CONVERT_TO_DOUBLE(v, vx);
+ CONVERT_TO_DOUBLE(w, wx);
#ifdef Py_NAN
- if (wx == 0.0) {
- PyErr_SetString(PyExc_ZeroDivisionError,
- "float modulo");
- return NULL;
- }
+ if (wx == 0.0) {
+ PyErr_SetString(PyExc_ZeroDivisionError,
+ "float modulo");
+ return NULL;
+ }
#endif
- PyFPE_START_PROTECT("modulo", return 0)
- mod = fmod(vx, wx);
- /* note: checking mod*wx < 0 is incorrect -- underflows to
- 0 if wx < sqrt(smallest nonzero double) */
- if (mod && ((wx < 0) != (mod < 0))) {
- mod += wx;
- }
- PyFPE_END_PROTECT(mod)
- return PyFloat_FromDouble(mod);
+ PyFPE_START_PROTECT("modulo", return 0)
+ mod = fmod(vx, wx);
+ /* note: checking mod*wx < 0 is incorrect -- underflows to
+ 0 if wx < sqrt(smallest nonzero double) */
+ if (mod && ((wx < 0) != (mod < 0))) {
+ mod += wx;
+ }
+ PyFPE_END_PROTECT(mod)
+ return PyFloat_FromDouble(mod);
}
static PyObject *
float_divmod(PyObject *v, PyObject *w)
{
- double vx, wx;
- double div, mod, floordiv;
- CONVERT_TO_DOUBLE(v, vx);
- CONVERT_TO_DOUBLE(w, wx);
- if (wx == 0.0) {
- PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
- return NULL;
- }
- PyFPE_START_PROTECT("divmod", return 0)
- mod = fmod(vx, wx);
- /* fmod is typically exact, so vx-mod is *mathematically* an
- exact multiple of wx. But this is fp arithmetic, and fp
- vx - mod is an approximation; the result is that div may
- not be an exact integral value after the division, although
- it will always be very close to one.
- */
- div = (vx - mod) / wx;
- if (mod) {
- /* ensure the remainder has the same sign as the denominator */
- if ((wx < 0) != (mod < 0)) {
- mod += wx;
- div -= 1.0;
- }
- }
- else {
- /* the remainder is zero, and in the presence of signed zeroes
- fmod returns different results across platforms; ensure
- it has the same sign as the denominator; we'd like to do
- "mod = wx * 0.0", but that may get optimized away */
- mod *= mod; /* hide "mod = +0" from optimizer */
- if (wx < 0.0)
- mod = -mod;
- }
- /* snap quotient to nearest integral value */
- if (div) {
- floordiv = floor(div);
- if (div - floordiv > 0.5)
- floordiv += 1.0;
- }
- else {
- /* div is zero - get the same sign as the true quotient */
- div *= div; /* hide "div = +0" from optimizers */
- floordiv = div * vx / wx; /* zero w/ sign of vx/wx */
- }
- PyFPE_END_PROTECT(floordiv)
- return Py_BuildValue("(dd)", floordiv, mod);
+ double vx, wx;
+ double div, mod, floordiv;
+ CONVERT_TO_DOUBLE(v, vx);
+ CONVERT_TO_DOUBLE(w, wx);
+ if (wx == 0.0) {
+ PyErr_SetString(PyExc_ZeroDivisionError, "float divmod()");
+ return NULL;
+ }
+ PyFPE_START_PROTECT("divmod", return 0)
+ mod = fmod(vx, wx);
+ /* fmod is typically exact, so vx-mod is *mathematically* an
+ exact multiple of wx. But this is fp arithmetic, and fp
+ vx - mod is an approximation; the result is that div may
+ not be an exact integral value after the division, although
+ it will always be very close to one.
+ */
+ div = (vx - mod) / wx;
+ if (mod) {
+ /* ensure the remainder has the same sign as the denominator */
+ if ((wx < 0) != (mod < 0)) {
+ mod += wx;
+ div -= 1.0;
+ }
+ }
+ else {
+ /* the remainder is zero, and in the presence of signed zeroes
+ fmod returns different results across platforms; ensure
+ it has the same sign as the denominator; we'd like to do
+ "mod = wx * 0.0", but that may get optimized away */
+ mod *= mod; /* hide "mod = +0" from optimizer */
+ if (wx < 0.0)
+ mod = -mod;
+ }
+ /* snap quotient to nearest integral value */
+ if (div) {
+ floordiv = floor(div);
+ if (div - floordiv > 0.5)
+ floordiv += 1.0;
+ }
+ else {
+ /* div is zero - get the same sign as the true quotient */
+ div *= div; /* hide "div = +0" from optimizers */
+ floordiv = div * vx / wx; /* zero w/ sign of vx/wx */
+ }
+ PyFPE_END_PROTECT(floordiv)
+ return Py_BuildValue("(dd)", floordiv, mod);
}
static PyObject *
float_floor_div(PyObject *v, PyObject *w)
{
- PyObject *t, *r;
-
- t = float_divmod(v, w);
- if (t == NULL || t == Py_NotImplemented)
- return t;
- assert(PyTuple_CheckExact(t));
- r = PyTuple_GET_ITEM(t, 0);
- Py_INCREF(r);
- Py_DECREF(t);
- return r;
+ PyObject *t, *r;
+
+ t = float_divmod(v, w);
+ if (t == NULL || t == Py_NotImplemented)
+ return t;
+ assert(PyTuple_CheckExact(t));
+ r = PyTuple_GET_ITEM(t, 0);
+ Py_INCREF(r);
+ Py_DECREF(t);
+ return r;
}
/* determine whether x is an odd integer or not; assumes that
@@ -678,123 +678,123 @@ float_floor_div(PyObject *v, PyObject *w)
static PyObject *
float_pow(PyObject *v, PyObject *w, PyObject *z)
{
- double iv, iw, ix;
- int negate_result = 0;
-
- if ((PyObject *)z != Py_None) {
- PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
- "allowed unless all arguments are integers");
- return NULL;
- }
-
- CONVERT_TO_DOUBLE(v, iv);
- CONVERT_TO_DOUBLE(w, iw);
-
- /* Sort out special cases here instead of relying on pow() */
- if (iw == 0) { /* v**0 is 1, even 0**0 */
- return PyFloat_FromDouble(1.0);
- }
- if (Py_IS_NAN(iv)) { /* nan**w = nan, unless w == 0 */
- return PyFloat_FromDouble(iv);
- }
- if (Py_IS_NAN(iw)) { /* v**nan = nan, unless v == 1; 1**nan = 1 */
- return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw);
- }
- if (Py_IS_INFINITY(iw)) {
- /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if
- * abs(v) > 1 (including case where v infinite)
- *
- * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if
- * abs(v) > 1 (including case where v infinite)
- */
- iv = fabs(iv);
- if (iv == 1.0)
- return PyFloat_FromDouble(1.0);
- else if ((iw > 0.0) == (iv > 1.0))
- return PyFloat_FromDouble(fabs(iw)); /* return inf */
- else
- return PyFloat_FromDouble(0.0);
- }
- if (Py_IS_INFINITY(iv)) {
- /* (+-inf)**w is: inf for w positive, 0 for w negative; in
- * both cases, we need to add the appropriate sign if w is
- * an odd integer.
- */
- int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
- if (iw > 0.0)
- return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv));
- else
- return PyFloat_FromDouble(iw_is_odd ?
- copysign(0.0, iv) : 0.0);
- }
- if (iv == 0.0) { /* 0**w is: 0 for w positive, 1 for w zero
- (already dealt with above), and an error
- if w is negative. */
- int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
- if (iw < 0.0) {
- PyErr_SetString(PyExc_ZeroDivisionError,
- "0.0 cannot be raised to a "
- "negative power");
- return NULL;
- }
- /* use correct sign if iw is odd */
- return PyFloat_FromDouble(iw_is_odd ? iv : 0.0);
- }
-
- if (iv < 0.0) {
- /* Whether this is an error is a mess, and bumps into libm
- * bugs so we have to figure it out ourselves.
- */
- if (iw != floor(iw)) {
- /* Negative numbers raised to fractional powers
- * become complex.
- */
- return PyComplex_Type.tp_as_number->nb_power(v, w, z);
- }
- /* iw is an exact integer, albeit perhaps a very large
- * one. Replace iv by its absolute value and remember
- * to negate the pow result if iw is odd.
- */
- iv = -iv;
- negate_result = DOUBLE_IS_ODD_INTEGER(iw);
- }
-
- if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */
- /* (-1) ** large_integer also ends up here. Here's an
- * extract from the comments for the previous
- * implementation explaining why this special case is
- * necessary:
- *
- * -1 raised to an exact integer should never be exceptional.
- * Alas, some libms (chiefly glibc as of early 2003) return
- * NaN and set EDOM on pow(-1, large_int) if the int doesn't
- * happen to be representable in a *C* integer. That's a
- * bug.
- */
- return PyFloat_FromDouble(negate_result ? -1.0 : 1.0);
- }
-
- /* Now iv and iw are finite, iw is nonzero, and iv is
- * positive and not equal to 1.0. We finally allow
- * the platform pow to step in and do the rest.
- */
- errno = 0;
- PyFPE_START_PROTECT("pow", return NULL)
- ix = pow(iv, iw);
- PyFPE_END_PROTECT(ix)
- Py_ADJUST_ERANGE1(ix);
- if (negate_result)
- ix = -ix;
-
- if (errno != 0) {
- /* We don't expect any errno value other than ERANGE, but
- * the range of libm bugs appears unbounded.
- */
- PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
- PyExc_ValueError);
- return NULL;
- }
- return PyFloat_FromDouble(ix);
+ double iv, iw, ix;
+ int negate_result = 0;
+
+ if ((PyObject *)z != Py_None) {
+ PyErr_SetString(PyExc_TypeError, "pow() 3rd argument not "
+ "allowed unless all arguments are integers");
+ return NULL;
+ }
+
+ CONVERT_TO_DOUBLE(v, iv);
+ CONVERT_TO_DOUBLE(w, iw);
+
+ /* Sort out special cases here instead of relying on pow() */
+ if (iw == 0) { /* v**0 is 1, even 0**0 */
+ return PyFloat_FromDouble(1.0);
+ }
+ if (Py_IS_NAN(iv)) { /* nan**w = nan, unless w == 0 */
+ return PyFloat_FromDouble(iv);
+ }
+ if (Py_IS_NAN(iw)) { /* v**nan = nan, unless v == 1; 1**nan = 1 */
+ return PyFloat_FromDouble(iv == 1.0 ? 1.0 : iw);
+ }
+ if (Py_IS_INFINITY(iw)) {
+ /* v**inf is: 0.0 if abs(v) < 1; 1.0 if abs(v) == 1; inf if
+ * abs(v) > 1 (including case where v infinite)
+ *
+ * v**-inf is: inf if abs(v) < 1; 1.0 if abs(v) == 1; 0.0 if
+ * abs(v) > 1 (including case where v infinite)
+ */
+ iv = fabs(iv);
+ if (iv == 1.0)
+ return PyFloat_FromDouble(1.0);
+ else if ((iw > 0.0) == (iv > 1.0))
+ return PyFloat_FromDouble(fabs(iw)); /* return inf */
+ else
+ return PyFloat_FromDouble(0.0);
+ }
+ if (Py_IS_INFINITY(iv)) {
+ /* (+-inf)**w is: inf for w positive, 0 for w negative; in
+ * both cases, we need to add the appropriate sign if w is
+ * an odd integer.
+ */
+ int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
+ if (iw > 0.0)
+ return PyFloat_FromDouble(iw_is_odd ? iv : fabs(iv));
+ else
+ return PyFloat_FromDouble(iw_is_odd ?
+ copysign(0.0, iv) : 0.0);
+ }
+ if (iv == 0.0) { /* 0**w is: 0 for w positive, 1 for w zero
+ (already dealt with above), and an error
+ if w is negative. */
+ int iw_is_odd = DOUBLE_IS_ODD_INTEGER(iw);
+ if (iw < 0.0) {
+ PyErr_SetString(PyExc_ZeroDivisionError,
+ "0.0 cannot be raised to a "
+ "negative power");
+ return NULL;
+ }
+ /* use correct sign if iw is odd */
+ return PyFloat_FromDouble(iw_is_odd ? iv : 0.0);
+ }
+
+ if (iv < 0.0) {
+ /* Whether this is an error is a mess, and bumps into libm
+ * bugs so we have to figure it out ourselves.
+ */
+ if (iw != floor(iw)) {
+ /* Negative numbers raised to fractional powers
+ * become complex.
+ */
+ return PyComplex_Type.tp_as_number->nb_power(v, w, z);
+ }
+ /* iw is an exact integer, albeit perhaps a very large
+ * one. Replace iv by its absolute value and remember
+ * to negate the pow result if iw is odd.
+ */
+ iv = -iv;
+ negate_result = DOUBLE_IS_ODD_INTEGER(iw);
+ }
+
+ if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */
+ /* (-1) ** large_integer also ends up here. Here's an
+ * extract from the comments for the previous
+ * implementation explaining why this special case is
+ * necessary:
+ *
+ * -1 raised to an exact integer should never be exceptional.
+ * Alas, some libms (chiefly glibc as of early 2003) return
+ * NaN and set EDOM on pow(-1, large_int) if the int doesn't
+ * happen to be representable in a *C* integer. That's a
+ * bug.
+ */
+ return PyFloat_FromDouble(negate_result ? -1.0 : 1.0);
+ }
+
+ /* Now iv and iw are finite, iw is nonzero, and iv is
+ * positive and not equal to 1.0. We finally allow
+ * the platform pow to step in and do the rest.
+ */
+ errno = 0;
+ PyFPE_START_PROTECT("pow", return NULL)
+ ix = pow(iv, iw);
+ PyFPE_END_PROTECT(ix)
+ Py_ADJUST_ERANGE1(ix);
+ if (negate_result)
+ ix = -ix;
+
+ if (errno != 0) {
+ /* We don't expect any errno value other than ERANGE, but
+ * the range of libm bugs appears unbounded.
+ */
+ PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
+ PyExc_ValueError);
+ return NULL;
+ }
+ return PyFloat_FromDouble(ix);
}
#undef DOUBLE_IS_ODD_INTEGER
@@ -802,97 +802,97 @@ float_pow(PyObject *v, PyObject *w, PyObject *z)
static PyObject *
float_neg(PyFloatObject *v)
{
- return PyFloat_FromDouble(-v->ob_fval);
+ return PyFloat_FromDouble(-v->ob_fval);
}
static PyObject *
float_abs(PyFloatObject *v)
{
- return PyFloat_FromDouble(fabs(v->ob_fval));
+ return PyFloat_FromDouble(fabs(v->ob_fval));
}
static int
float_bool(PyFloatObject *v)
{
- return v->ob_fval != 0.0;
+ return v->ob_fval != 0.0;
}
static PyObject *
float_is_integer(PyObject *v)
{
- double x = PyFloat_AsDouble(v);
- PyObject *o;
-
- if (x == -1.0 && PyErr_Occurred())
- return NULL;
- if (!Py_IS_FINITE(x))
- Py_RETURN_FALSE;
- errno = 0;
- PyFPE_START_PROTECT("is_integer", return NULL)
- o = (floor(x) == x) ? Py_True : Py_False;
- PyFPE_END_PROTECT(x)
- if (errno != 0) {
- PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
- PyExc_ValueError);
- return NULL;
- }
- Py_INCREF(o);
- return o;
+ double x = PyFloat_AsDouble(v);
+ PyObject *o;
+
+ if (x == -1.0 && PyErr_Occurred())
+ return NULL;
+ if (!Py_IS_FINITE(x))
+ Py_RETURN_FALSE;
+ errno = 0;
+ PyFPE_START_PROTECT("is_integer", return NULL)
+ o = (floor(x) == x) ? Py_True : Py_False;
+ PyFPE_END_PROTECT(x)
+ if (errno != 0) {
+ PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError :
+ PyExc_ValueError);
+ return NULL;
+ }
+ Py_INCREF(o);
+ return o;
}
#if 0
static PyObject *
float_is_inf(PyObject *v)
{
- double x = PyFloat_AsDouble(v);
- if (x == -1.0 && PyErr_Occurred())
- return NULL;
- return PyBool_FromLong((long)Py_IS_INFINITY(x));
+ double x = PyFloat_AsDouble(v);
+ if (x == -1.0 && PyErr_Occurred())
+ return NULL;
+ return PyBool_FromLong((long)Py_IS_INFINITY(x));
}
static PyObject *
float_is_nan(PyObject *v)
{
- double x = PyFloat_AsDouble(v);
- if (x == -1.0 && PyErr_Occurred())
- return NULL;
- return PyBool_FromLong((long)Py_IS_NAN(x));
+ double x = PyFloat_AsDouble(v);
+ if (x == -1.0 && PyErr_Occurred())
+ return NULL;
+ return PyBool_FromLong((long)Py_IS_NAN(x));
}
static PyObject *
float_is_finite(PyObject *v)
{
- double x = PyFloat_AsDouble(v);
- if (x == -1.0 && PyErr_Occurred())
- return NULL;
- return PyBool_FromLong((long)Py_IS_FINITE(x));
+ double x = PyFloat_AsDouble(v);
+ if (x == -1.0 && PyErr_Occurred())
+ return NULL;
+ return PyBool_FromLong((long)Py_IS_FINITE(x));
}
#endif
static PyObject *
float_trunc(PyObject *v)
{
- double x = PyFloat_AsDouble(v);
- double wholepart; /* integral portion of x, rounded toward 0 */
-
- (void)modf(x, &wholepart);
- /* Try to get out cheap if this fits in a Python int. The attempt
- * to cast to long must be protected, as C doesn't define what
- * happens if the double is too big to fit in a long. Some rare
- * systems raise an exception then (RISCOS was mentioned as one,
- * and someone using a non-default option on Sun also bumped into
- * that). Note that checking for >= and <= LONG_{MIN,MAX} would
- * still be vulnerable: if a long has more bits of precision than
- * a double, casting MIN/MAX to double may yield an approximation,
- * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would
- * yield true from the C expression wholepart<=LONG_MAX, despite
- * that wholepart is actually greater than LONG_MAX.
- */
- if (LONG_MIN < wholepart && wholepart < LONG_MAX) {
- const long aslong = (long)wholepart;
- return PyLong_FromLong(aslong);
- }
- return PyLong_FromDouble(wholepart);
+ double x = PyFloat_AsDouble(v);
+ double wholepart; /* integral portion of x, rounded toward 0 */
+
+ (void)modf(x, &wholepart);
+ /* Try to get out cheap if this fits in a Python int. The attempt
+ * to cast to long must be protected, as C doesn't define what
+ * happens if the double is too big to fit in a long. Some rare
+ * systems raise an exception then (RISCOS was mentioned as one,
+ * and someone using a non-default option on Sun also bumped into
+ * that). Note that checking for >= and <= LONG_{MIN,MAX} would
+ * still be vulnerable: if a long has more bits of precision than
+ * a double, casting MIN/MAX to double may yield an approximation,
+ * and if that's rounded up, then, e.g., wholepart=LONG_MAX+1 would
+ * yield true from the C expression wholepart<=LONG_MAX, despite
+ * that wholepart is actually greater than LONG_MAX.
+ */
+ if (LONG_MIN < wholepart && wholepart < LONG_MAX) {
+ const long aslong = (long)wholepart;
+ return PyLong_FromLong(aslong);
+ }
+ return PyLong_FromDouble(wholepart);
}
/* double_round: rounds a finite double to the closest multiple of
@@ -907,49 +907,49 @@ float_trunc(PyObject *v)
static PyObject *
double_round(double x, int ndigits) {
- double rounded;
- Py_ssize_t buflen, mybuflen=100;
- char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
- int decpt, sign;
- PyObject *result = NULL;
-
- /* round to a decimal string */
- buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end);
- if (buf == NULL) {
- PyErr_NoMemory();
- return NULL;
- }
-
- /* Get new buffer if shortbuf is too small. Space needed <= buf_end -
- buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
- buflen = buf_end - buf;
- if (buflen + 8 > mybuflen) {
- mybuflen = buflen+8;
- mybuf = (char *)PyMem_Malloc(mybuflen);
- if (mybuf == NULL) {
- PyErr_NoMemory();
- goto exit;
- }
- }
- /* copy buf to mybuf, adding exponent, sign and leading 0 */
- PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
- buf, decpt - (int)buflen);
-
- /* and convert the resulting string back to a double */
- errno = 0;
- rounded = _Py_dg_strtod(mybuf, NULL);
- if (errno == ERANGE && fabs(rounded) >= 1.)
- PyErr_SetString(PyExc_OverflowError,
- "rounded value too large to represent");
- else
- result = PyFloat_FromDouble(rounded);
-
- /* done computing value; now clean up */
- if (mybuf != shortbuf)
- PyMem_Free(mybuf);
+ double rounded;
+ Py_ssize_t buflen, mybuflen=100;
+ char *buf, *buf_end, shortbuf[100], *mybuf=shortbuf;
+ int decpt, sign;
+ PyObject *result = NULL;
+
+ /* round to a decimal string */
+ buf = _Py_dg_dtoa(x, 3, ndigits, &decpt, &sign, &buf_end);
+ if (buf == NULL) {
+ PyErr_NoMemory();
+ return NULL;
+ }
+
+ /* Get new buffer if shortbuf is too small. Space needed <= buf_end -
+ buf + 8: (1 extra for '0', 1 for sign, 5 for exp, 1 for '\0'). */
+ buflen = buf_end - buf;
+ if (buflen + 8 > mybuflen) {
+ mybuflen = buflen+8;
+ mybuf = (char *)PyMem_Malloc(mybuflen);
+ if (mybuf == NULL) {
+ PyErr_NoMemory();
+ goto exit;
+ }
+ }
+ /* copy buf to mybuf, adding exponent, sign and leading 0 */
+ PyOS_snprintf(mybuf, mybuflen, "%s0%se%d", (sign ? "-" : ""),
+ buf, decpt - (int)buflen);
+
+ /* and convert the resulting string back to a double */
+ errno = 0;
+ rounded = _Py_dg_strtod(mybuf, NULL);
+ if (errno == ERANGE && fabs(rounded) >= 1.)
+ PyErr_SetString(PyExc_OverflowError,
+ "rounded value too large to represent");
+ else
+ result = PyFloat_FromDouble(rounded);
+
+ /* done computing value; now clean up */
+ if (mybuf != shortbuf)
+ PyMem_Free(mybuf);
exit:
- _Py_dg_freedtoa(buf);
- return result;
+ _Py_dg_freedtoa(buf);
+ return result;
}
#else /* PY_NO_SHORT_FLOAT_REPR */
@@ -959,47 +959,47 @@ double_round(double x, int ndigits) {
static PyObject *
double_round(double x, int ndigits) {
- double pow1, pow2, y, z;
- if (ndigits >= 0) {
- if (ndigits > 22) {
- /* pow1 and pow2 are each safe from overflow, but
- pow1*pow2 ~= pow(10.0, ndigits) might overflow */
- pow1 = pow(10.0, (double)(ndigits-22));
- pow2 = 1e22;
- }
- else {
- pow1 = pow(10.0, (double)ndigits);
- pow2 = 1.0;
- }
- y = (x*pow1)*pow2;
- /* if y overflows, then rounded value is exactly x */
- if (!Py_IS_FINITE(y))
- return PyFloat_FromDouble(x);
- }
- else {
- pow1 = pow(10.0, (double)-ndigits);
- pow2 = 1.0; /* unused; silences a gcc compiler warning */
- y = x / pow1;
- }
-
- z = round(y);
- if (fabs(y-z) == 0.5)
- /* halfway between two integers; use round-half-even */
- z = 2.0*round(y/2.0);
-
- if (ndigits >= 0)
- z = (z / pow2) / pow1;
- else
- z *= pow1;
-
- /* if computation resulted in overflow, raise OverflowError */
- if (!Py_IS_FINITE(z)) {
- PyErr_SetString(PyExc_OverflowError,
- "overflow occurred during round");
- return NULL;
- }
-
- return PyFloat_FromDouble(z);
+ double pow1, pow2, y, z;
+ if (ndigits >= 0) {
+ if (ndigits > 22) {
+ /* pow1 and pow2 are each safe from overflow, but
+ pow1*pow2 ~= pow(10.0, ndigits) might overflow */
+ pow1 = pow(10.0, (double)(ndigits-22));
+ pow2 = 1e22;
+ }
+ else {
+ pow1 = pow(10.0, (double)ndigits);
+ pow2 = 1.0;
+ }
+ y = (x*pow1)*pow2;
+ /* if y overflows, then rounded value is exactly x */
+ if (!Py_IS_FINITE(y))
+ return PyFloat_FromDouble(x);
+ }
+ else {
+ pow1 = pow(10.0, (double)-ndigits);
+ pow2 = 1.0; /* unused; silences a gcc compiler warning */
+ y = x / pow1;
+ }
+
+ z = round(y);
+ if (fabs(y-z) == 0.5)
+ /* halfway between two integers; use round-half-even */
+ z = 2.0*round(y/2.0);
+
+ if (ndigits >= 0)
+ z = (z / pow2) / pow1;
+ else
+ z *= pow1;
+
+ /* if computation resulted in overflow, raise OverflowError */
+ if (!Py_IS_FINITE(z)) {
+ PyErr_SetString(PyExc_OverflowError,
+ "overflow occurred during round");
+ return NULL;
+ }
+
+ return PyFloat_FromDouble(z);
}
#endif /* PY_NO_SHORT_FLOAT_REPR */
@@ -1009,45 +1009,45 @@ double_round(double x, int ndigits) {
static PyObject *
float_round(PyObject *v, PyObject *args)
{
- double x, rounded;
- PyObject *o_ndigits = NULL;
- Py_ssize_t ndigits;
-
- x = PyFloat_AsDouble(v);
- if (!PyArg_ParseTuple(args, "|O", &o_ndigits))
- return NULL;
- if (o_ndigits == NULL) {
- /* single-argument round: round to nearest integer */
- rounded = round(x);
- if (fabs(x-rounded) == 0.5)
- /* halfway case: round to even */
- rounded = 2.0*round(x/2.0);
- return PyLong_FromDouble(rounded);
- }
-
- /* interpret second argument as a Py_ssize_t; clips on overflow */
- ndigits = PyNumber_AsSsize_t(o_ndigits, NULL);
- if (ndigits == -1 && PyErr_Occurred())
- return NULL;
-
- /* nans and infinities round to themselves */
- if (!Py_IS_FINITE(x))
- return PyFloat_FromDouble(x);
-
- /* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x
- always rounds to itself. For ndigits < NDIGITS_MIN, x always
- rounds to +-0.0. Here 0.30103 is an upper bound for log10(2). */
+ double x, rounded;
+ PyObject *o_ndigits = NULL;
+ Py_ssize_t ndigits;
+
+ x = PyFloat_AsDouble(v);
+ if (!PyArg_ParseTuple(args, "|O", &o_ndigits))
+ return NULL;
+ if (o_ndigits == NULL) {
+ /* single-argument round: round to nearest integer */
+ rounded = round(x);
+ if (fabs(x-rounded) == 0.5)
+ /* halfway case: round to even */
+ rounded = 2.0*round(x/2.0);
+ return PyLong_FromDouble(rounded);
+ }
+
+ /* interpret second argument as a Py_ssize_t; clips on overflow */
+ ndigits = PyNumber_AsSsize_t(o_ndigits, NULL);
+ if (ndigits == -1 && PyErr_Occurred())
+ return NULL;
+
+ /* nans and infinities round to themselves */
+ if (!Py_IS_FINITE(x))
+ return PyFloat_FromDouble(x);
+
+ /* Deal with extreme values for ndigits. For ndigits > NDIGITS_MAX, x
+ always rounds to itself. For ndigits < NDIGITS_MIN, x always
+ rounds to +-0.0. Here 0.30103 is an upper bound for log10(2). */
#define NDIGITS_MAX ((int)((DBL_MANT_DIG-DBL_MIN_EXP) * 0.30103))
#define NDIGITS_MIN (-(int)((DBL_MAX_EXP + 1) * 0.30103))
- if (ndigits > NDIGITS_MAX)
- /* return x */
- return PyFloat_FromDouble(x);
- else if (ndigits < NDIGITS_MIN)
- /* return 0.0, but with sign of x */
- return PyFloat_FromDouble(0.0*x);
- else
- /* finite x, and ndigits is not unreasonably large */
- return double_round(x, (int)ndigits);
+ if (ndigits > NDIGITS_MAX)
+ /* return x */
+ return PyFloat_FromDouble(x);
+ else if (ndigits < NDIGITS_MIN)
+ /* return 0.0, but with sign of x */
+ return PyFloat_FromDouble(0.0*x);
+ else
+ /* finite x, and ndigits is not unreasonably large */
+ return double_round(x, (int)ndigits);
#undef NDIGITS_MAX
#undef NDIGITS_MIN
}
@@ -1055,11 +1055,11 @@ float_round(PyObject *v, PyObject *args)
static PyObject *
float_float(PyObject *v)
{
- if (PyFloat_CheckExact(v))
- Py_INCREF(v);
- else
- v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
- return v;
+ if (PyFloat_CheckExact(v))
+ Py_INCREF(v);
+ else
+ v = PyFloat_FromDouble(((PyFloatObject *)v)->ob_fval);
+ return v;
}
/* turn ASCII hex characters into integer values and vice versa */
@@ -1067,73 +1067,73 @@ float_float(PyObject *v)
static char
char_from_hex(int x)
{
- assert(0 <= x && x < 16);
- return "0123456789abcdef"[x];
+ assert(0 <= x && x < 16);
+ return "0123456789abcdef"[x];
}
static int
hex_from_char(char c) {
- int x;
- switch(c) {
- case '0':
- x = 0;
- break;
- case '1':
- x = 1;
- break;
- case '2':
- x = 2;
- break;
- case '3':
- x = 3;
- break;
- case '4':
- x = 4;
- break;
- case '5':
- x = 5;
- break;
- case '6':
- x = 6;
- break;
- case '7':
- x = 7;
- break;
- case '8':
- x = 8;
- break;
- case '9':
- x = 9;
- break;
- case 'a':
- case 'A':
- x = 10;
- break;
- case 'b':
- case 'B':
- x = 11;
- break;
- case 'c':
- case 'C':
- x = 12;
- break;
- case 'd':
- case 'D':
- x = 13;
- break;
- case 'e':
- case 'E':
- x = 14;
- break;
- case 'f':
- case 'F':
- x = 15;
- break;
- default:
- x = -1;
- break;
- }
- return x;
+ int x;
+ switch(c) {
+ case '0':
+ x = 0;
+ break;
+ case '1':
+ x = 1;
+ break;
+ case '2':
+ x = 2;
+ break;
+ case '3':
+ x = 3;
+ break;
+ case '4':
+ x = 4;
+ break;
+ case '5':
+ x = 5;
+ break;
+ case '6':
+ x = 6;
+ break;
+ case '7':
+ x = 7;
+ break;
+ case '8':
+ x = 8;
+ break;
+ case '9':
+ x = 9;
+ break;
+ case 'a':
+ case 'A':
+ x = 10;
+ break;
+ case 'b':
+ case 'B':
+ x = 11;
+ break;
+ case 'c':
+ case 'C':
+ x = 12;
+ break;
+ case 'd':
+ case 'D':
+ x = 13;
+ break;
+ case 'e':
+ case 'E':
+ x = 14;
+ break;
+ case 'f':
+ case 'F':
+ x = 15;
+ break;
+ default:
+ x = -1;
+ break;
+ }
+ return x;
}
/* convert a float to a hexadecimal string */
@@ -1145,54 +1145,54 @@ hex_from_char(char c) {
static PyObject *
float_hex(PyObject *v)
{
- double x, m;
- int e, shift, i, si, esign;
- /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the
- trailing NUL byte. */
- char s[(TOHEX_NBITS-1)/4+3];
-
- CONVERT_TO_DOUBLE(v, x);
-
- if (Py_IS_NAN(x) || Py_IS_INFINITY(x))
- return float_str((PyFloatObject *)v);
-
- if (x == 0.0) {
- if(copysign(1.0, x) == -1.0)
- return PyUnicode_FromString("-0x0.0p+0");
- else
- return PyUnicode_FromString("0x0.0p+0");
- }
-
- m = frexp(fabs(x), &e);
- shift = 1 - MAX(DBL_MIN_EXP - e, 0);
- m = ldexp(m, shift);
- e -= shift;
-
- si = 0;
- s[si] = char_from_hex((int)m);
- si++;
- m -= (int)m;
- s[si] = '.';
- si++;
- for (i=0; i < (TOHEX_NBITS-1)/4; i++) {
- m *= 16.0;
- s[si] = char_from_hex((int)m);
- si++;
- m -= (int)m;
- }
- s[si] = '\0';
-
- if (e < 0) {
- esign = (int)'-';
- e = -e;
- }
- else
- esign = (int)'+';
-
- if (x < 0.0)
- return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e);
- else
- return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e);
+ double x, m;
+ int e, shift, i, si, esign;
+ /* Space for 1+(TOHEX_NBITS-1)/4 digits, a decimal point, and the
+ trailing NUL byte. */
+ char s[(TOHEX_NBITS-1)/4+3];
+
+ CONVERT_TO_DOUBLE(v, x);
+
+ if (Py_IS_NAN(x) || Py_IS_INFINITY(x))
+ return float_str((PyFloatObject *)v);
+
+ if (x == 0.0) {
+ if(copysign(1.0, x) == -1.0)
+ return PyUnicode_FromString("-0x0.0p+0");
+ else
+ return PyUnicode_FromString("0x0.0p+0");
+ }
+
+ m = frexp(fabs(x), &e);
+ shift = 1 - MAX(DBL_MIN_EXP - e, 0);
+ m = ldexp(m, shift);
+ e -= shift;
+
+ si = 0;
+ s[si] = char_from_hex((int)m);
+ si++;
+ m -= (int)m;
+ s[si] = '.';
+ si++;
+ for (i=0; i < (TOHEX_NBITS-1)/4; i++) {
+ m *= 16.0;
+ s[si] = char_from_hex((int)m);
+ si++;
+ m -= (int)m;
+ }
+ s[si] = '\0';
+
+ if (e < 0) {
+ esign = (int)'-';
+ e = -e;
+ }
+ else
+ esign = (int)'+';
+
+ if (x < 0.0)
+ return PyUnicode_FromFormat("-0x%sp%c%d", s, esign, e);
+ else
+ return PyUnicode_FromFormat("0x%sp%c%d", s, esign, e);
}
PyDoc_STRVAR(float_hex_doc,
@@ -1209,242 +1209,242 @@ Return a hexadecimal representation of a floating-point number.\n\
static PyObject *
float_fromhex(PyObject *cls, PyObject *arg)
{
- PyObject *result_as_float, *result;
- double x;
- long exp, top_exp, lsb, key_digit;
- char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;
- int half_eps, digit, round_up, negate=0;
- Py_ssize_t length, ndigits, fdigits, i;
-
- /*
- * For the sake of simplicity and correctness, we impose an artificial
- * limit on ndigits, the total number of hex digits in the coefficient
- * The limit is chosen to ensure that, writing exp for the exponent,
- *
- * (1) if exp > LONG_MAX/2 then the value of the hex string is
- * guaranteed to overflow (provided it's nonzero)
- *
- * (2) if exp < LONG_MIN/2 then the value of the hex string is
- * guaranteed to underflow to 0.
- *
- * (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of
- * overflow in the calculation of exp and top_exp below.
- *
- * More specifically, ndigits is assumed to satisfy the following
- * inequalities:
- *
- * 4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2
- * 4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP
- *
- * If either of these inequalities is not satisfied, a ValueError is
- * raised. Otherwise, write x for the value of the hex string, and
- * assume x is nonzero. Then
- *
- * 2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits).
- *
- * Now if exp > LONG_MAX/2 then:
- *
- * exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP)
- * = DBL_MAX_EXP
- *
- * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C
- * double, so overflows. If exp < LONG_MIN/2, then
- *
- * exp + 4*ndigits <= LONG_MIN/2 - 1 + (
- * DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2)
- * = DBL_MIN_EXP - DBL_MANT_DIG - 1
- *
- * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0
- * when converted to a C double.
- *
- * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both
- * exp+4*ndigits and exp-4*ndigits are within the range of a long.
- */
-
- s = _PyUnicode_AsStringAndSize(arg, &length);
- if (s == NULL)
- return NULL;
- s_end = s + length;
-
- /********************
- * Parse the string *
- ********************/
-
- /* leading whitespace */
- while (Py_ISSPACE(*s))
- s++;
-
- /* infinities and nans */
- x = _Py_parse_inf_or_nan(s, &coeff_end);
- if (coeff_end != s) {
- s = coeff_end;
- goto finished;
- }
-
- /* optional sign */
- if (*s == '-') {
- s++;
- negate = 1;
- }
- else if (*s == '+')
- s++;
-
- /* [0x] */
- s_store = s;
- if (*s == '0') {
- s++;
- if (*s == 'x' || *s == 'X')
- s++;
- else
- s = s_store;
- }
-
- /* coefficient: <integer> [. <fraction>] */
- coeff_start = s;
- while (hex_from_char(*s) >= 0)
- s++;
- s_store = s;
- if (*s == '.') {
- s++;
- while (hex_from_char(*s) >= 0)
- s++;
- coeff_end = s-1;
- }
- else
- coeff_end = s;
-
- /* ndigits = total # of hex digits; fdigits = # after point */
- ndigits = coeff_end - coeff_start;
- fdigits = coeff_end - s_store;
- if (ndigits == 0)
- goto parse_error;
- if (ndigits > MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,
- LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)
- goto insane_length_error;
-
- /* [p <exponent>] */
- if (*s == 'p' || *s == 'P') {
- s++;
- exp_start = s;
- if (*s == '-' || *s == '+')
- s++;
- if (!('0' <= *s && *s <= '9'))
- goto parse_error;
- s++;
- while ('0' <= *s && *s <= '9')
- s++;
- exp = strtol(exp_start, NULL, 10);
- }
- else
- exp = 0;
+ PyObject *result_as_float, *result;
+ double x;
+ long exp, top_exp, lsb, key_digit;
+ char *s, *coeff_start, *s_store, *coeff_end, *exp_start, *s_end;
+ int half_eps, digit, round_up, negate=0;
+ Py_ssize_t length, ndigits, fdigits, i;
+
+ /*
+ * For the sake of simplicity and correctness, we impose an artificial
+ * limit on ndigits, the total number of hex digits in the coefficient
+ * The limit is chosen to ensure that, writing exp for the exponent,
+ *
+ * (1) if exp > LONG_MAX/2 then the value of the hex string is
+ * guaranteed to overflow (provided it's nonzero)
+ *
+ * (2) if exp < LONG_MIN/2 then the value of the hex string is
+ * guaranteed to underflow to 0.
+ *
+ * (3) if LONG_MIN/2 <= exp <= LONG_MAX/2 then there's no danger of
+ * overflow in the calculation of exp and top_exp below.
+ *
+ * More specifically, ndigits is assumed to satisfy the following
+ * inequalities:
+ *
+ * 4*ndigits <= DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2
+ * 4*ndigits <= LONG_MAX/2 + 1 - DBL_MAX_EXP
+ *
+ * If either of these inequalities is not satisfied, a ValueError is
+ * raised. Otherwise, write x for the value of the hex string, and
+ * assume x is nonzero. Then
+ *
+ * 2**(exp-4*ndigits) <= |x| < 2**(exp+4*ndigits).
+ *
+ * Now if exp > LONG_MAX/2 then:
+ *
+ * exp - 4*ndigits >= LONG_MAX/2 + 1 - (LONG_MAX/2 + 1 - DBL_MAX_EXP)
+ * = DBL_MAX_EXP
+ *
+ * so |x| >= 2**DBL_MAX_EXP, which is too large to be stored in C
+ * double, so overflows. If exp < LONG_MIN/2, then
+ *
+ * exp + 4*ndigits <= LONG_MIN/2 - 1 + (
+ * DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2)
+ * = DBL_MIN_EXP - DBL_MANT_DIG - 1
+ *
+ * and so |x| < 2**(DBL_MIN_EXP-DBL_MANT_DIG-1), hence underflows to 0
+ * when converted to a C double.
+ *
+ * It's easy to show that if LONG_MIN/2 <= exp <= LONG_MAX/2 then both
+ * exp+4*ndigits and exp-4*ndigits are within the range of a long.
+ */
+
+ s = _PyUnicode_AsStringAndSize(arg, &length);
+ if (s == NULL)
+ return NULL;
+ s_end = s + length;
+
+ /********************
+ * Parse the string *
+ ********************/
+
+ /* leading whitespace */
+ while (Py_ISSPACE(*s))
+ s++;
+
+ /* infinities and nans */
+ x = _Py_parse_inf_or_nan(s, &coeff_end);
+ if (coeff_end != s) {
+ s = coeff_end;
+ goto finished;
+ }
+
+ /* optional sign */
+ if (*s == '-') {
+ s++;
+ negate = 1;
+ }
+ else if (*s == '+')
+ s++;
+
+ /* [0x] */
+ s_store = s;
+ if (*s == '0') {
+ s++;
+ if (*s == 'x' || *s == 'X')
+ s++;
+ else
+ s = s_store;
+ }
+
+ /* coefficient: <integer> [. <fraction>] */
+ coeff_start = s;
+ while (hex_from_char(*s) >= 0)
+ s++;
+ s_store = s;
+ if (*s == '.') {
+ s++;
+ while (hex_from_char(*s) >= 0)
+ s++;
+ coeff_end = s-1;
+ }
+ else
+ coeff_end = s;
+
+ /* ndigits = total # of hex digits; fdigits = # after point */
+ ndigits = coeff_end - coeff_start;
+ fdigits = coeff_end - s_store;
+ if (ndigits == 0)
+ goto parse_error;
+ if (ndigits > MIN(DBL_MIN_EXP - DBL_MANT_DIG - LONG_MIN/2,
+ LONG_MAX/2 + 1 - DBL_MAX_EXP)/4)
+ goto insane_length_error;
+
+ /* [p <exponent>] */
+ if (*s == 'p' || *s == 'P') {
+ s++;
+ exp_start = s;
+ if (*s == '-' || *s == '+')
+ s++;
+ if (!('0' <= *s && *s <= '9'))
+ goto parse_error;
+ s++;
+ while ('0' <= *s && *s <= '9')
+ s++;
+ exp = strtol(exp_start, NULL, 10);
+ }
+ else
+ exp = 0;
/* for 0 <= j < ndigits, HEX_DIGIT(j) gives the jth most significant digit */
-#define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ? \
- coeff_end-(j) : \
- coeff_end-1-(j)))
-
- /*******************************************
- * Compute rounded value of the hex string *
- *******************************************/
-
- /* Discard leading zeros, and catch extreme overflow and underflow */
- while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0)
- ndigits--;
- if (ndigits == 0 || exp < LONG_MIN/2) {
- x = 0.0;
- goto finished;
- }
- if (exp > LONG_MAX/2)
- goto overflow_error;
-
- /* Adjust exponent for fractional part. */
- exp = exp - 4*((long)fdigits);
-
- /* top_exp = 1 more than exponent of most sig. bit of coefficient */
- top_exp = exp + 4*((long)ndigits - 1);
- for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2)
- top_exp++;
-
- /* catch almost all nonextreme cases of overflow and underflow here */
- if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) {
- x = 0.0;
- goto finished;
- }
- if (top_exp > DBL_MAX_EXP)
- goto overflow_error;
-
- /* lsb = exponent of least significant bit of the *rounded* value.
- This is top_exp - DBL_MANT_DIG unless result is subnormal. */
- lsb = MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;
-
- x = 0.0;
- if (exp >= lsb) {
- /* no rounding required */
- for (i = ndigits-1; i >= 0; i--)
- x = 16.0*x + HEX_DIGIT(i);
- x = ldexp(x, (int)(exp));
- goto finished;
- }
- /* rounding required. key_digit is the index of the hex digit
- containing the first bit to be rounded away. */
- half_eps = 1 << (int)((lsb - exp - 1) % 4);
- key_digit = (lsb - exp - 1) / 4;
- for (i = ndigits-1; i > key_digit; i--)
- x = 16.0*x + HEX_DIGIT(i);
- digit = HEX_DIGIT(key_digit);
- x = 16.0*x + (double)(digit & (16-2*half_eps));
-
- /* round-half-even: round up if bit lsb-1 is 1 and at least one of
- bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */
- if ((digit & half_eps) != 0) {
- round_up = 0;
- if ((digit & (3*half_eps-1)) != 0 ||
- (half_eps == 8 && (HEX_DIGIT(key_digit+1) & 1) != 0))
- round_up = 1;
- else
- for (i = key_digit-1; i >= 0; i--)
- if (HEX_DIGIT(i) != 0) {
- round_up = 1;
- break;
- }
- if (round_up == 1) {
- x += 2*half_eps;
- if (top_exp == DBL_MAX_EXP &&
- x == ldexp((double)(2*half_eps), DBL_MANT_DIG))
- /* overflow corner case: pre-rounded value <
- 2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */
- goto overflow_error;
- }
- }
- x = ldexp(x, (int)(exp+4*key_digit));
+#define HEX_DIGIT(j) hex_from_char(*((j) < fdigits ? \
+ coeff_end-(j) : \
+ coeff_end-1-(j)))
+
+ /*******************************************
+ * Compute rounded value of the hex string *
+ *******************************************/
+
+ /* Discard leading zeros, and catch extreme overflow and underflow */
+ while (ndigits > 0 && HEX_DIGIT(ndigits-1) == 0)
+ ndigits--;
+ if (ndigits == 0 || exp < LONG_MIN/2) {
+ x = 0.0;
+ goto finished;
+ }
+ if (exp > LONG_MAX/2)
+ goto overflow_error;
+
+ /* Adjust exponent for fractional part. */
+ exp = exp - 4*((long)fdigits);
+
+ /* top_exp = 1 more than exponent of most sig. bit of coefficient */
+ top_exp = exp + 4*((long)ndigits - 1);
+ for (digit = HEX_DIGIT(ndigits-1); digit != 0; digit /= 2)
+ top_exp++;
+
+ /* catch almost all nonextreme cases of overflow and underflow here */
+ if (top_exp < DBL_MIN_EXP - DBL_MANT_DIG) {
+ x = 0.0;
+ goto finished;
+ }
+ if (top_exp > DBL_MAX_EXP)
+ goto overflow_error;
+
+ /* lsb = exponent of least significant bit of the *rounded* value.
+ This is top_exp - DBL_MANT_DIG unless result is subnormal. */
+ lsb = MAX(top_exp, (long)DBL_MIN_EXP) - DBL_MANT_DIG;
+
+ x = 0.0;
+ if (exp >= lsb) {
+ /* no rounding required */
+ for (i = ndigits-1; i >= 0; i--)
+ x = 16.0*x + HEX_DIGIT(i);
+ x = ldexp(x, (int)(exp));
+ goto finished;
+ }
+ /* rounding required. key_digit is the index of the hex digit
+ containing the first bit to be rounded away. */
+ half_eps = 1 << (int)((lsb - exp - 1) % 4);
+ key_digit = (lsb - exp - 1) / 4;
+ for (i = ndigits-1; i > key_digit; i--)
+ x = 16.0*x + HEX_DIGIT(i);
+ digit = HEX_DIGIT(key_digit);
+ x = 16.0*x + (double)(digit & (16-2*half_eps));
+
+ /* round-half-even: round up if bit lsb-1 is 1 and at least one of
+ bits lsb, lsb-2, lsb-3, lsb-4, ... is 1. */
+ if ((digit & half_eps) != 0) {
+ round_up = 0;
+ if ((digit & (3*half_eps-1)) != 0 ||
+ (half_eps == 8 && (HEX_DIGIT(key_digit+1) & 1) != 0))
+ round_up = 1;
+ else
+ for (i = key_digit-1; i >= 0; i--)
+ if (HEX_DIGIT(i) != 0) {
+ round_up = 1;
+ break;
+ }
+ if (round_up == 1) {
+ x += 2*half_eps;
+ if (top_exp == DBL_MAX_EXP &&
+ x == ldexp((double)(2*half_eps), DBL_MANT_DIG))
+ /* overflow corner case: pre-rounded value <
+ 2**DBL_MAX_EXP; rounded=2**DBL_MAX_EXP. */
+ goto overflow_error;
+ }
+ }
+ x = ldexp(x, (int)(exp+4*key_digit));
finished:
- /* optional trailing whitespace leading to the end of the string */
- while (Py_ISSPACE(*s))
- s++;
- if (s != s_end)
- goto parse_error;
- result_as_float = Py_BuildValue("(d)", negate ? -x : x);
- if (result_as_float == NULL)
- return NULL;
- result = PyObject_CallObject(cls, result_as_float);
- Py_DECREF(result_as_float);
- return result;
+ /* optional trailing whitespace leading to the end of the string */
+ while (Py_ISSPACE(*s))
+ s++;
+ if (s != s_end)
+ goto parse_error;
+ result_as_float = Py_BuildValue("(d)", negate ? -x : x);
+ if (result_as_float == NULL)
+ return NULL;
+ result = PyObject_CallObject(cls, result_as_float);
+ Py_DECREF(result_as_float);
+ return result;
overflow_error:
- PyErr_SetString(PyExc_OverflowError,
- "hexadecimal value too large to represent as a float");
- return NULL;
+ PyErr_SetString(PyExc_OverflowError,
+ "hexadecimal value too large to represent as a float");
+ return NULL;
parse_error:
- PyErr_SetString(PyExc_ValueError,
- "invalid hexadecimal floating-point string");
- return NULL;
+ PyErr_SetString(PyExc_ValueError,
+ "invalid hexadecimal floating-point string");
+ return NULL;
insane_length_error:
- PyErr_SetString(PyExc_ValueError,
- "hexadecimal string too long to convert");
- return NULL;
+ PyErr_SetString(PyExc_ValueError,
+ "hexadecimal string too long to convert");
+ return NULL;
}
PyDoc_STRVAR(float_fromhex_doc,
@@ -1460,79 +1460,79 @@ Create a floating-point number from a hexadecimal string.\n\
static PyObject *
float_as_integer_ratio(PyObject *v, PyObject *unused)
{
- double self;
- double float_part;
- int exponent;
- int i;
-
- PyObject *prev;
- PyObject *py_exponent = NULL;
- PyObject *numerator = NULL;
- PyObject *denominator = NULL;
- PyObject *result_pair = NULL;
- PyNumberMethods *long_methods = PyLong_Type.tp_as_number;
+ double self;
+ double float_part;
+ int exponent;
+ int i;
+
+ PyObject *prev;
+ PyObject *py_exponent = NULL;
+ PyObject *numerator = NULL;
+ PyObject *denominator = NULL;
+ PyObject *result_pair = NULL;
+ PyNumberMethods *long_methods = PyLong_Type.tp_as_number;
#define INPLACE_UPDATE(obj, call) \
- prev = obj; \
- obj = call; \
- Py_DECREF(prev); \
+ prev = obj; \
+ obj = call; \
+ Py_DECREF(prev); \
- CONVERT_TO_DOUBLE(v, self);
+ CONVERT_TO_DOUBLE(v, self);
- if (Py_IS_INFINITY(self)) {
- PyErr_SetString(PyExc_OverflowError,
- "Cannot pass infinity to float.as_integer_ratio.");
- return NULL;
- }
+ if (Py_IS_INFINITY(self)) {
+ PyErr_SetString(PyExc_OverflowError,
+ "Cannot pass infinity to float.as_integer_ratio.");
+ return NULL;
+ }
#ifdef Py_NAN
- if (Py_IS_NAN(self)) {
- PyErr_SetString(PyExc_ValueError,
- "Cannot pass NaN to float.as_integer_ratio.");
- return NULL;
- }
+ if (Py_IS_NAN(self)) {
+ PyErr_SetString(PyExc_ValueError,
+ "Cannot pass NaN to float.as_integer_ratio.");
+ return NULL;
+ }
#endif
- PyFPE_START_PROTECT("as_integer_ratio", goto error);
- float_part = frexp(self, &exponent); /* self == float_part * 2**exponent exactly */
- PyFPE_END_PROTECT(float_part);
-
- for (i=0; i<300 && float_part != floor(float_part) ; i++) {
- float_part *= 2.0;
- exponent--;
- }
- /* self == float_part * 2**exponent exactly and float_part is integral.
- If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part
- to be truncated by PyLong_FromDouble(). */
-
- numerator = PyLong_FromDouble(float_part);
- if (numerator == NULL) goto error;
-
- /* fold in 2**exponent */
- denominator = PyLong_FromLong(1);
- py_exponent = PyLong_FromLong(labs((long)exponent));
- if (py_exponent == NULL) goto error;
- INPLACE_UPDATE(py_exponent,
- long_methods->nb_lshift(denominator, py_exponent));
- if (py_exponent == NULL) goto error;
- if (exponent > 0) {
- INPLACE_UPDATE(numerator,
- long_methods->nb_multiply(numerator, py_exponent));
- if (numerator == NULL) goto error;
- }
- else {
- Py_DECREF(denominator);
- denominator = py_exponent;
- py_exponent = NULL;
- }
-
- result_pair = PyTuple_Pack(2, numerator, denominator);
+ PyFPE_START_PROTECT("as_integer_ratio", goto error);
+ float_part = frexp(self, &exponent); /* self == float_part * 2**exponent exactly */
+ PyFPE_END_PROTECT(float_part);
+
+ for (i=0; i<300 && float_part != floor(float_part) ; i++) {
+ float_part *= 2.0;
+ exponent--;
+ }
+ /* self == float_part * 2**exponent exactly and float_part is integral.
+ If FLT_RADIX != 2, the 300 steps may leave a tiny fractional part
+ to be truncated by PyLong_FromDouble(). */
+
+ numerator = PyLong_FromDouble(float_part);
+ if (numerator == NULL) goto error;
+
+ /* fold in 2**exponent */
+ denominator = PyLong_FromLong(1);
+ py_exponent = PyLong_FromLong(labs((long)exponent));
+ if (py_exponent == NULL) goto error;
+ INPLACE_UPDATE(py_exponent,
+ long_methods->nb_lshift(denominator, py_exponent));
+ if (py_exponent == NULL) goto error;
+ if (exponent > 0) {
+ INPLACE_UPDATE(numerator,
+ long_methods->nb_multiply(numerator, py_exponent));
+ if (numerator == NULL) goto error;
+ }
+ else {
+ Py_DECREF(denominator);
+ denominator = py_exponent;
+ py_exponent = NULL;
+ }
+
+ result_pair = PyTuple_Pack(2, numerator, denominator);
#undef INPLACE_UPDATE
error:
- Py_XDECREF(py_exponent);
- Py_XDECREF(denominator);
- Py_XDECREF(numerator);
- return result_pair;
+ Py_XDECREF(py_exponent);
+ Py_XDECREF(denominator);
+ Py_XDECREF(numerator);
+ return result_pair;
}
PyDoc_STRVAR(float_as_integer_ratio_doc,
@@ -1556,18 +1556,18 @@ float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds);
static PyObject *
float_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
- PyObject *x = Py_False; /* Integer zero */
- static char *kwlist[] = {"x", 0};
-
- if (type != &PyFloat_Type)
- return float_subtype_new(type, args, kwds); /* Wimp out */
- if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x))
- return NULL;
- /* If it's a string, but not a string subclass, use
- PyFloat_FromString. */
- if (PyUnicode_CheckExact(x))
- return PyFloat_FromString(x);
- return PyNumber_Float(x);
+ PyObject *x = Py_False; /* Integer zero */
+ static char *kwlist[] = {"x", 0};
+
+ if (type != &PyFloat_Type)
+ return float_subtype_new(type, args, kwds); /* Wimp out */
+ if (!PyArg_ParseTupleAndKeywords(args, kwds, "|O:float", kwlist, &x))
+ return NULL;
+ /* If it's a string, but not a string subclass, use
+ PyFloat_FromString. */
+ if (PyUnicode_CheckExact(x))
+ return PyFloat_FromString(x);
+ return PyNumber_Float(x);
}
/* Wimpy, slow approach to tp_new calls for subtypes of float:
@@ -1578,33 +1578,33 @@ float_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
static PyObject *
float_subtype_new(PyTypeObject *type, PyObject *args, PyObject *kwds)
{
- PyObject *tmp, *newobj;
-
- assert(PyType_IsSubtype(type, &PyFloat_Type));
- tmp = float_new(&PyFloat_Type, args, kwds);
- if (tmp == NULL)
- return NULL;
- assert(PyFloat_CheckExact(tmp));
- newobj = type->tp_alloc(type, 0);
- if (newobj == NULL) {
- Py_DECREF(tmp);
- return NULL;
- }
- ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
- Py_DECREF(tmp);
- return newobj;
+ PyObject *tmp, *newobj;
+
+ assert(PyType_IsSubtype(type, &PyFloat_Type));
+ tmp = float_new(&PyFloat_Type, args, kwds);
+ if (tmp == NULL)
+ return NULL;
+ assert(PyFloat_CheckExact(tmp));
+ newobj = type->tp_alloc(type, 0);
+ if (newobj == NULL) {
+ Py_DECREF(tmp);
+ return NULL;
+ }
+ ((PyFloatObject *)newobj)->ob_fval = ((PyFloatObject *)tmp)->ob_fval;
+ Py_DECREF(tmp);
+ return newobj;
}
static PyObject *
float_getnewargs(PyFloatObject *v)
{
- return Py_BuildValue("(d)", v->ob_fval);
+ return Py_BuildValue("(d)", v->ob_fval);
}
/* this is for the benefit of the pack/unpack routines below */
typedef enum {
- unknown_format, ieee_big_endian_format, ieee_little_endian_format
+ unknown_format, ieee_big_endian_format, ieee_little_endian_format
} float_format_type;
static float_format_type double_format, float_format;
@@ -1613,42 +1613,42 @@ static float_format_type detected_double_format, detected_float_format;
static PyObject *
float_getformat(PyTypeObject *v, PyObject* arg)
{
- char* s;
- float_format_type r;
-
- if (!PyUnicode_Check(arg)) {
- PyErr_Format(PyExc_TypeError,
- "__getformat__() argument must be string, not %.500s",
- Py_TYPE(arg)->tp_name);
- return NULL;
- }
- s = _PyUnicode_AsString(arg);
- if (s == NULL)
- return NULL;
- if (strcmp(s, "double") == 0) {
- r = double_format;
- }
- else if (strcmp(s, "float") == 0) {
- r = float_format;
- }
- else {
- PyErr_SetString(PyExc_ValueError,
- "__getformat__() argument 1 must be "
- "'double' or 'float'");
- return NULL;
- }
-
- switch (r) {
- case unknown_format:
- return PyUnicode_FromString("unknown");
- case ieee_little_endian_format:
- return PyUnicode_FromString("IEEE, little-endian");
- case ieee_big_endian_format:
- return PyUnicode_FromString("IEEE, big-endian");
- default:
- Py_FatalError("insane float_format or double_format");
- return NULL;
- }
+ char* s;
+ float_format_type r;
+
+ if (!PyUnicode_Check(arg)) {
+ PyErr_Format(PyExc_TypeError,
+ "__getformat__() argument must be string, not %.500s",
+ Py_TYPE(arg)->tp_name);
+ return NULL;
+ }
+ s = _PyUnicode_AsString(arg);
+ if (s == NULL)
+ return NULL;
+ if (strcmp(s, "double") == 0) {
+ r = double_format;
+ }
+ else if (strcmp(s, "float") == 0) {
+ r = float_format;
+ }
+ else {
+ PyErr_SetString(PyExc_ValueError,
+ "__getformat__() argument 1 must be "
+ "'double' or 'float'");
+ return NULL;
+ }
+
+ switch (r) {
+ case unknown_format:
+ return PyUnicode_FromString("unknown");
+ case ieee_little_endian_format:
+ return PyUnicode_FromString("IEEE, little-endian");
+ case ieee_big_endian_format:
+ return PyUnicode_FromString("IEEE, big-endian");
+ default:
+ Py_FatalError("insane float_format or double_format");
+ return NULL;
+ }
}
PyDoc_STRVAR(float_getformat_doc,
@@ -1664,57 +1664,57 @@ PyDoc_STRVAR(float_getformat_doc,
static PyObject *
float_setformat(PyTypeObject *v, PyObject* args)
{
- char* typestr;
- char* format;
- float_format_type f;
- float_format_type detected;
- float_format_type *p;
-
- if (!PyArg_ParseTuple(args, "ss:__setformat__", &typestr, &format))
- return NULL;
-
- if (strcmp(typestr, "double") == 0) {
- p = &double_format;
- detected = detected_double_format;
- }
- else if (strcmp(typestr, "float") == 0) {
- p = &float_format;
- detected = detected_float_format;
- }
- else {
- PyErr_SetString(PyExc_ValueError,
- "__setformat__() argument 1 must "
- "be 'double' or 'float'");
- return NULL;
- }
-
- if (strcmp(format, "unknown") == 0) {
- f = unknown_format;
- }
- else if (strcmp(format, "IEEE, little-endian") == 0) {
- f = ieee_little_endian_format;
- }
- else if (strcmp(format, "IEEE, big-endian") == 0) {
- f = ieee_big_endian_format;
- }
- else {
- PyErr_SetString(PyExc_ValueError,
- "__setformat__() argument 2 must be "
- "'unknown', 'IEEE, little-endian' or "
- "'IEEE, big-endian'");
- return NULL;
-
- }
-
- if (f != unknown_format && f != detected) {
- PyErr_Format(PyExc_ValueError,
- "can only set %s format to 'unknown' or the "
- "detected platform value", typestr);
- return NULL;
- }
-
- *p = f;
- Py_RETURN_NONE;
+ char* typestr;
+ char* format;
+ float_format_type f;
+ float_format_type detected;
+ float_format_type *p;
+
+ if (!PyArg_ParseTuple(args, "ss:__setformat__", &typestr, &format))
+ return NULL;
+
+ if (strcmp(typestr, "double") == 0) {
+ p = &double_format;
+ detected = detected_double_format;
+ }
+ else if (strcmp(typestr, "float") == 0) {
+ p = &float_format;
+ detected = detected_float_format;
+ }
+ else {
+ PyErr_SetString(PyExc_ValueError,
+ "__setformat__() argument 1 must "
+ "be 'double' or 'float'");
+ return NULL;
+ }
+
+ if (strcmp(format, "unknown") == 0) {
+ f = unknown_format;
+ }
+ else if (strcmp(format, "IEEE, little-endian") == 0) {
+ f = ieee_little_endian_format;
+ }
+ else if (strcmp(format, "IEEE, big-endian") == 0) {
+ f = ieee_big_endian_format;
+ }
+ else {
+ PyErr_SetString(PyExc_ValueError,
+ "__setformat__() argument 2 must be "
+ "'unknown', 'IEEE, little-endian' or "
+ "'IEEE, big-endian'");
+ return NULL;
+
+ }
+
+ if (f != unknown_format && f != detected) {
+ PyErr_Format(PyExc_ValueError,
+ "can only set %s format to 'unknown' or the "
+ "detected platform value", typestr);
+ return NULL;
+ }
+
+ *p = f;
+ Py_RETURN_NONE;
}
PyDoc_STRVAR(float_setformat_doc,
@@ -1733,19 +1733,19 @@ PyDoc_STRVAR(float_setformat_doc,
static PyObject *
float_getzero(PyObject *v, void *closure)
{
- return PyFloat_FromDouble(0.0);
+ return PyFloat_FromDouble(0.0);
}
static PyObject *
float__format__(PyObject *self, PyObject *args)
{
- PyObject *format_spec;
+ PyObject *format_spec;
- if (!PyArg_ParseTuple(args, "U:__format__", &format_spec))
- return NULL;
- return _PyFloat_FormatAdvanced(self,
- PyUnicode_AS_UNICODE(format_spec),
- PyUnicode_GET_SIZE(format_spec));
+ if (!PyArg_ParseTuple(args, "U:__format__", &format_spec))
+ return NULL;
+ return _PyFloat_FormatAdvanced(self,
+ PyUnicode_AS_UNICODE(format_spec),
+ PyUnicode_GET_SIZE(format_spec));
}
PyDoc_STRVAR(float__format__doc,
@@ -1755,45 +1755,45 @@ PyDoc_STRVAR(float__format__doc,
static PyMethodDef float_methods[] = {
- {"conjugate", (PyCFunction)float_float, METH_NOARGS,
- "Returns self, the complex conjugate of any float."},
- {"__trunc__", (PyCFunction)float_trunc, METH_NOARGS,
- "Returns the Integral closest to x between 0 and x."},
- {"__round__", (PyCFunction)float_round, METH_VARARGS,
- "Returns the Integral closest to x, rounding half toward even.\n"
- "When an argument is passed, works like built-in round(x, ndigits)."},
- {"as_integer_ratio", (PyCFunction)float_as_integer_ratio, METH_NOARGS,
- float_as_integer_ratio_doc},
- {"fromhex", (PyCFunction)float_fromhex,
- METH_O|METH_CLASS, float_fromhex_doc},
- {"hex", (PyCFunction)float_hex,
- METH_NOARGS, float_hex_doc},
- {"is_integer", (PyCFunction)float_is_integer, METH_NOARGS,
- "Returns True if the float is an integer."},
+ {"conjugate", (PyCFunction)float_float, METH_NOARGS,
+ "Returns self, the complex conjugate of any float."},
+ {"__trunc__", (PyCFunction)float_trunc, METH_NOARGS,
+ "Returns the Integral closest to x between 0 and x."},
+ {"__round__", (PyCFunction)float_round, METH_VARARGS,
+ "Returns the Integral closest to x, rounding half toward even.\n"
+ "When an argument is passed, works like built-in round(x, ndigits)."},
+ {"as_integer_ratio", (PyCFunction)float_as_integer_ratio, METH_NOARGS,
+ float_as_integer_ratio_doc},
+ {"fromhex", (PyCFunction)float_fromhex,
+ METH_O|METH_CLASS, float_fromhex_doc},
+ {"hex", (PyCFunction)float_hex,
+ METH_NOARGS, float_hex_doc},
+ {"is_integer", (PyCFunction)float_is_integer, METH_NOARGS,
+ "Returns True if the float is an integer."},
#if 0
- {"is_inf", (PyCFunction)float_is_inf, METH_NOARGS,
- "Returns True if the float is positive or negative infinite."},
- {"is_finite", (PyCFunction)float_is_finite, METH_NOARGS,
- "Returns True if the float is finite, neither infinite nor NaN."},
- {"is_nan", (PyCFunction)float_is_nan, METH_NOARGS,
- "Returns True if the float is not a number (NaN)."},
+ {"is_inf", (PyCFunction)float_is_inf, METH_NOARGS,
+ "Returns True if the float is positive or negative infinite."},
+ {"is_finite", (PyCFunction)float_is_finite, METH_NOARGS,
+ "Returns True if the float is finite, neither infinite nor NaN."},
+ {"is_nan", (PyCFunction)float_is_nan, METH_NOARGS,
+ "Returns True if the float is not a number (NaN)."},
#endif
- {"__getnewargs__", (PyCFunction)float_getnewargs, METH_NOARGS},
- {"__getformat__", (PyCFunction)float_getformat,
- METH_O|METH_CLASS, float_getformat_doc},
- {"__setformat__", (PyCFunction)float_setformat,
- METH_VARARGS|METH_CLASS, float_setformat_doc},
- {"__format__", (PyCFunction)float__format__,
- METH_VARARGS, float__format__doc},
- {NULL, NULL} /* sentinel */
+ {"__getnewargs__", (PyCFunction)float_getnewargs, METH_NOARGS},
+ {"__getformat__", (PyCFunction)float_getformat,
+ METH_O|METH_CLASS, float_getformat_doc},
+ {"__setformat__", (PyCFunction)float_setformat,
+ METH_VARARGS|METH_CLASS, float_setformat_doc},
+ {"__format__", (PyCFunction)float__format__,
+ METH_VARARGS, float__format__doc},
+ {NULL, NULL} /* sentinel */
};
static PyGetSetDef float_getset[] = {
- {"real",
+ {"real",
(getter)float_float, (setter)NULL,
"the real part of a complex number",
NULL},
- {"imag",
+ {"imag",
(getter)float_getzero, (setter)NULL,
"the imaginary part of a complex number",
NULL},
@@ -1807,229 +1807,229 @@ Convert a string or number to a floating point number, if possible.");
static PyNumberMethods float_as_number = {
- float_add, /*nb_add*/
- float_sub, /*nb_subtract*/
- float_mul, /*nb_multiply*/
- float_rem, /*nb_remainder*/
- float_divmod, /*nb_divmod*/
- float_pow, /*nb_power*/
- (unaryfunc)float_neg, /*nb_negative*/
- (unaryfunc)float_float, /*nb_positive*/
- (unaryfunc)float_abs, /*nb_absolute*/
- (inquiry)float_bool, /*nb_bool*/
- 0, /*nb_invert*/
- 0, /*nb_lshift*/
- 0, /*nb_rshift*/
- 0, /*nb_and*/
- 0, /*nb_xor*/
- 0, /*nb_or*/
- float_trunc, /*nb_int*/
- 0, /*nb_reserved*/
- float_float, /*nb_float*/
- 0, /* nb_inplace_add */
- 0, /* nb_inplace_subtract */
- 0, /* nb_inplace_multiply */
- 0, /* nb_inplace_remainder */
- 0, /* nb_inplace_power */
- 0, /* nb_inplace_lshift */
- 0, /* nb_inplace_rshift */
- 0, /* nb_inplace_and */
- 0, /* nb_inplace_xor */
- 0, /* nb_inplace_or */
- float_floor_div, /* nb_floor_divide */
- float_div, /* nb_true_divide */
- 0, /* nb_inplace_floor_divide */
- 0, /* nb_inplace_true_divide */
+ float_add, /*nb_add*/
+ float_sub, /*nb_subtract*/
+ float_mul, /*nb_multiply*/
+ float_rem, /*nb_remainder*/
+ float_divmod, /*nb_divmod*/
+ float_pow, /*nb_power*/
+ (unaryfunc)float_neg, /*nb_negative*/
+ (unaryfunc)float_float, /*nb_positive*/
+ (unaryfunc)float_abs, /*nb_absolute*/
+ (inquiry)float_bool, /*nb_bool*/
+ 0, /*nb_invert*/
+ 0, /*nb_lshift*/
+ 0, /*nb_rshift*/
+ 0, /*nb_and*/
+ 0, /*nb_xor*/
+ 0, /*nb_or*/
+ float_trunc, /*nb_int*/
+ 0, /*nb_reserved*/
+ float_float, /*nb_float*/
+ 0, /* nb_inplace_add */
+ 0, /* nb_inplace_subtract */
+ 0, /* nb_inplace_multiply */
+ 0, /* nb_inplace_remainder */
+ 0, /* nb_inplace_power */
+ 0, /* nb_inplace_lshift */
+ 0, /* nb_inplace_rshift */
+ 0, /* nb_inplace_and */
+ 0, /* nb_inplace_xor */
+ 0, /* nb_inplace_or */
+ float_floor_div, /* nb_floor_divide */
+ float_div, /* nb_true_divide */
+ 0, /* nb_inplace_floor_divide */
+ 0, /* nb_inplace_true_divide */
};
PyTypeObject PyFloat_Type = {
- PyVarObject_HEAD_INIT(&PyType_Type, 0)
- "float",
- sizeof(PyFloatObject),
- 0,
- (destructor)float_dealloc, /* tp_dealloc */
- 0, /* tp_print */
- 0, /* tp_getattr */
- 0, /* tp_setattr */
- 0, /* tp_reserved */
- (reprfunc)float_repr, /* tp_repr */
- &float_as_number, /* tp_as_number */
- 0, /* tp_as_sequence */
- 0, /* tp_as_mapping */
- (hashfunc)float_hash, /* tp_hash */
- 0, /* tp_call */
- (reprfunc)float_str, /* tp_str */
- PyObject_GenericGetAttr, /* tp_getattro */
- 0, /* tp_setattro */
- 0, /* tp_as_buffer */
- Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
- float_doc, /* tp_doc */
- 0, /* tp_traverse */
- 0, /* tp_clear */
- float_richcompare, /* tp_richcompare */
- 0, /* tp_weaklistoffset */
- 0, /* tp_iter */
- 0, /* tp_iternext */
- float_methods, /* tp_methods */
- 0, /* tp_members */
- float_getset, /* tp_getset */
- 0, /* tp_base */
- 0, /* tp_dict */
- 0, /* tp_descr_get */
- 0, /* tp_descr_set */
- 0, /* tp_dictoffset */
- 0, /* tp_init */
- 0, /* tp_alloc */
- float_new, /* tp_new */
+ PyVarObject_HEAD_INIT(&PyType_Type, 0)
+ "float",
+ sizeof(PyFloatObject),
+ 0,
+ (destructor)float_dealloc, /* tp_dealloc */
+ 0, /* tp_print */
+ 0, /* tp_getattr */
+ 0, /* tp_setattr */
+ 0, /* tp_reserved */
+ (reprfunc)float_repr, /* tp_repr */
+ &float_as_number, /* tp_as_number */
+ 0, /* tp_as_sequence */
+ 0, /* tp_as_mapping */
+ (hashfunc)float_hash, /* tp_hash */
+ 0, /* tp_call */
+ (reprfunc)float_str, /* tp_str */
+ PyObject_GenericGetAttr, /* tp_getattro */
+ 0, /* tp_setattro */
+ 0, /* tp_as_buffer */
+ Py_TPFLAGS_DEFAULT | Py_TPFLAGS_BASETYPE, /* tp_flags */
+ float_doc, /* tp_doc */
+ 0, /* tp_traverse */
+ 0, /* tp_clear */
+ float_richcompare, /* tp_richcompare */
+ 0, /* tp_weaklistoffset */
+ 0, /* tp_iter */
+ 0, /* tp_iternext */
+ float_methods, /* tp_methods */
+ 0, /* tp_members */
+ float_getset, /* tp_getset */
+ 0, /* tp_base */
+ 0, /* tp_dict */
+ 0, /* tp_descr_get */
+ 0, /* tp_descr_set */
+ 0, /* tp_dictoffset */
+ 0, /* tp_init */
+ 0, /* tp_alloc */
+ float_new, /* tp_new */
};
void
_PyFloat_Init(void)
{
- /* We attempt to determine if this machine is using IEEE
- floating point formats by peering at the bits of some
- carefully chosen values. If it looks like we are on an
- IEEE platform, the float packing/unpacking routines can
- just copy bits, if not they resort to arithmetic & shifts
- and masks. The shifts & masks approach works on all finite
- values, but what happens to infinities, NaNs and signed
- zeroes on packing is an accident, and attempting to unpack
- a NaN or an infinity will raise an exception.
-
- Note that if we're on some whacked-out platform which uses
- IEEE formats but isn't strictly little-endian or big-
- endian, we will fall back to the portable shifts & masks
- method. */
+ /* We attempt to determine if this machine is using IEEE
+ floating point formats by peering at the bits of some
+ carefully chosen values. If it looks like we are on an
+ IEEE platform, the float packing/unpacking routines can
+ just copy bits, if not they resort to arithmetic & shifts
+ and masks. The shifts & masks approach works on all finite
+ values, but what happens to infinities, NaNs and signed
+ zeroes on packing is an accident, and attempting to unpack
+ a NaN or an infinity will raise an exception.
+
+ Note that if we're on some whacked-out platform which uses
+ IEEE formats but isn't strictly little-endian or big-
+ endian, we will fall back to the portable shifts & masks
+ method. */
#if SIZEOF_DOUBLE == 8
- {
- double x = 9006104071832581.0;
- if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
- detected_double_format = ieee_big_endian_format;
- else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
- detected_double_format = ieee_little_endian_format;
- else
- detected_double_format = unknown_format;
- }
+ {
+ double x = 9006104071832581.0;
+ if (memcmp(&x, "\x43\x3f\xff\x01\x02\x03\x04\x05", 8) == 0)
+ detected_double_format = ieee_big_endian_format;
+ else if (memcmp(&x, "\x05\x04\x03\x02\x01\xff\x3f\x43", 8) == 0)
+ detected_double_format = ieee_little_endian_format;
+ else
+ detected_double_format = unknown_format;
+ }
#else
- detected_double_format = unknown_format;
+ detected_double_format = unknown_format;
#endif
#if SIZEOF_FLOAT == 4
- {
- float y = 16711938.0;
- if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
- detected_float_format = ieee_big_endian_format;
- else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
- detected_float_format = ieee_little_endian_format;
- else
- detected_float_format = unknown_format;
- }
+ {
+ float y = 16711938.0;
+ if (memcmp(&y, "\x4b\x7f\x01\x02", 4) == 0)
+ detected_float_format = ieee_big_endian_format;
+ else if (memcmp(&y, "\x02\x01\x7f\x4b", 4) == 0)
+ detected_float_format = ieee_little_endian_format;
+ else
+ detected_float_format = unknown_format;
+ }
#else
- detected_float_format = unknown_format;
+ detected_float_format = unknown_format;
#endif
- double_format = detected_double_format;
- float_format = detected_float_format;
+ double_format = detected_double_format;
+ float_format = detected_float_format;
- /* Init float info */
- if (FloatInfoType.tp_name == 0)
- PyStructSequence_InitType(&FloatInfoType, &floatinfo_desc);
+ /* Init float info */
+ if (FloatInfoType.tp_name == 0)
+ PyStructSequence_InitType(&FloatInfoType, &floatinfo_desc);
}
int
PyFloat_ClearFreeList(void)
{
- PyFloatObject *p;
- PyFloatBlock *list, *next;
- int i;
- int u; /* remaining unfreed floats per block */
- int freelist_size = 0;
-
- list = block_list;
- block_list = NULL;
- free_list = NULL;
- while (list != NULL) {
- u = 0;
- for (i = 0, p = &list->objects[0];
- i < N_FLOATOBJECTS;
- i++, p++) {
- if (PyFloat_CheckExact(p) && Py_REFCNT(p) != 0)
- u++;
- }
- next = list->next;
- if (u) {
- list->next = block_list;
- block_list = list;
- for (i = 0, p = &list->objects[0];
- i < N_FLOATOBJECTS;
- i++, p++) {
- if (!PyFloat_CheckExact(p) ||
- Py_REFCNT(p) == 0) {
- Py_TYPE(p) = (struct _typeobject *)
- free_list;
- free_list = p;
- }
- }
- }
- else {
- PyMem_FREE(list);
- }
- freelist_size += u;
- list = next;
- }
- return freelist_size;
+ PyFloatObject *p;
+ PyFloatBlock *list, *next;
+ int i;
+ int u; /* remaining unfreed floats per block */
+ int freelist_size = 0;
+
+ list = block_list;
+ block_list = NULL;
+ free_list = NULL;
+ while (list != NULL) {
+ u = 0;
+ for (i = 0, p = &list->objects[0];
+ i < N_FLOATOBJECTS;
+ i++, p++) {
+ if (PyFloat_CheckExact(p) && Py_REFCNT(p) != 0)
+ u++;
+ }
+ next = list->next;
+ if (u) {
+ list->next = block_list;
+ block_list = list;
+ for (i = 0, p = &list->objects[0];
+ i < N_FLOATOBJECTS;
+ i++, p++) {
+ if (!PyFloat_CheckExact(p) ||
+ Py_REFCNT(p) == 0) {
+ Py_TYPE(p) = (struct _typeobject *)
+ free_list;
+ free_list = p;
+ }
+ }
+ }
+ else {
+ PyMem_FREE(list);
+ }
+ freelist_size += u;
+ list = next;
+ }
+ return freelist_size;
}
void
PyFloat_Fini(void)
{
- PyFloatObject *p;
- PyFloatBlock *list;
- int i;
- int u; /* total unfreed floats per block */
-
- u = PyFloat_ClearFreeList();
-
- if (!Py_VerboseFlag)
- return;
- fprintf(stderr, "# cleanup floats");
- if (!u) {
- fprintf(stderr, "\n");
- }
- else {
- fprintf(stderr,
- ": %d unfreed float%s\n",
- u, u == 1 ? "" : "s");
- }
- if (Py_VerboseFlag > 1) {
- list = block_list;
- while (list != NULL) {
- for (i = 0, p = &list->objects[0];
- i < N_FLOATOBJECTS;
- i++, p++) {
- if (PyFloat_CheckExact(p) &&
- Py_REFCNT(p) != 0) {
- char *buf = PyOS_double_to_string(
- PyFloat_AS_DOUBLE(p), 'r',
- 0, 0, NULL);
- if (buf) {
- /* XXX(twouters) cast
- refcount to long
- until %zd is
- universally
- available
- */
- fprintf(stderr,
- "# <float at %p, refcnt=%ld, val=%s>\n",
- p, (long)Py_REFCNT(p), buf);
- PyMem_Free(buf);
- }
- }
- }
- list = list->next;
- }
- }
+ PyFloatObject *p;
+ PyFloatBlock *list;
+ int i;
+ int u; /* total unfreed floats per block */
+
+ u = PyFloat_ClearFreeList();
+
+ if (!Py_VerboseFlag)
+ return;
+ fprintf(stderr, "# cleanup floats");
+ if (!u) {
+ fprintf(stderr, "\n");
+ }
+ else {
+ fprintf(stderr,
+ ": %d unfreed float%s\n",
+ u, u == 1 ? "" : "s");
+ }
+ if (Py_VerboseFlag > 1) {
+ list = block_list;
+ while (list != NULL) {
+ for (i = 0, p = &list->objects[0];
+ i < N_FLOATOBJECTS;
+ i++, p++) {
+ if (PyFloat_CheckExact(p) &&
+ Py_REFCNT(p) != 0) {
+ char *buf = PyOS_double_to_string(
+ PyFloat_AS_DOUBLE(p), 'r',
+ 0, 0, NULL);
+ if (buf) {
+ /* XXX(twouters) cast
+ refcount to long
+ until %zd is
+ universally
+ available
+ */
+ fprintf(stderr,
+ "# <float at %p, refcnt=%ld, val=%s>\n",
+ p, (long)Py_REFCNT(p), buf);
+ PyMem_Free(buf);
+ }
+ }
+ }
+ list = list->next;
+ }
+ }
}
/*----------------------------------------------------------------------------
@@ -2038,406 +2038,406 @@ PyFloat_Fini(void)
int
_PyFloat_Pack4(double x, unsigned char *p, int le)
{
- if (float_format == unknown_format) {
- unsigned char sign;
- int e;
- double f;
- unsigned int fbits;
- int incr = 1;
-
- if (le) {
- p += 3;
- incr = -1;
- }
-
- if (x < 0) {
- sign = 1;
- x = -x;
- }
- else
- sign = 0;
-
- f = frexp(x, &e);
-
- /* Normalize f to be in the range [1.0, 2.0) */
- if (0.5 <= f && f < 1.0) {
- f *= 2.0;
- e--;
- }
- else if (f == 0.0)
- e = 0;
- else {
- PyErr_SetString(PyExc_SystemError,
- "frexp() result out of range");
- return -1;
- }
-
- if (e >= 128)
- goto Overflow;
- else if (e < -126) {
- /* Gradual underflow */
- f = ldexp(f, 126 + e);
- e = 0;
- }
- else if (!(e == 0 && f == 0.0)) {
- e += 127;
- f -= 1.0; /* Get rid of leading 1 */
- }
-
- f *= 8388608.0; /* 2**23 */
- fbits = (unsigned int)(f + 0.5); /* Round */
- assert(fbits <= 8388608);
- if (fbits >> 23) {
- /* The carry propagated out of a string of 23 1 bits. */
- fbits = 0;
- ++e;
- if (e >= 255)
- goto Overflow;
- }
-
- /* First byte */
- *p = (sign << 7) | (e >> 1);
- p += incr;
-
- /* Second byte */
- *p = (char) (((e & 1) << 7) | (fbits >> 16));
- p += incr;
-
- /* Third byte */
- *p = (fbits >> 8) & 0xFF;
- p += incr;
-
- /* Fourth byte */
- *p = fbits & 0xFF;
-
- /* Done */
- return 0;
-
- }
- else {
- float y = (float)x;
- const char *s = (char*)&y;
- int i, incr = 1;
-
- if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
- goto Overflow;
-
- if ((float_format == ieee_little_endian_format && !le)
- || (float_format == ieee_big_endian_format && le)) {
- p += 3;
- incr = -1;
- }
-
- for (i = 0; i < 4; i++) {
- *p = *s++;
- p += incr;
- }
- return 0;
- }
+ if (float_format == unknown_format) {
+ unsigned char sign;
+ int e;
+ double f;
+ unsigned int fbits;
+ int incr = 1;
+
+ if (le) {
+ p += 3;
+ incr = -1;
+ }
+
+ if (x < 0) {
+ sign = 1;
+ x = -x;
+ }
+ else
+ sign = 0;
+
+ f = frexp(x, &e);
+
+ /* Normalize f to be in the range [1.0, 2.0) */
+ if (0.5 <= f && f < 1.0) {
+ f *= 2.0;
+ e--;
+ }
+ else if (f == 0.0)
+ e = 0;
+ else {
+ PyErr_SetString(PyExc_SystemError,
+ "frexp() result out of range");
+ return -1;
+ }
+
+ if (e >= 128)
+ goto Overflow;
+ else if (e < -126) {
+ /* Gradual underflow */
+ f = ldexp(f, 126 + e);
+ e = 0;
+ }
+ else if (!(e == 0 && f == 0.0)) {
+ e += 127;
+ f -= 1.0; /* Get rid of leading 1 */
+ }
+
+ f *= 8388608.0; /* 2**23 */
+ fbits = (unsigned int)(f + 0.5); /* Round */
+ assert(fbits <= 8388608);
+ if (fbits >> 23) {
+ /* The carry propagated out of a string of 23 1 bits. */
+ fbits = 0;
+ ++e;
+ if (e >= 255)
+ goto Overflow;
+ }
+
+ /* First byte */
+ *p = (sign << 7) | (e >> 1);
+ p += incr;
+
+ /* Second byte */
+ *p = (char) (((e & 1) << 7) | (fbits >> 16));
+ p += incr;
+
+ /* Third byte */
+ *p = (fbits >> 8) & 0xFF;
+ p += incr;
+
+ /* Fourth byte */
+ *p = fbits & 0xFF;
+
+ /* Done */
+ return 0;
+
+ }
+ else {
+ float y = (float)x;
+ const char *s = (char*)&y;
+ int i, incr = 1;
+
+ if (Py_IS_INFINITY(y) && !Py_IS_INFINITY(x))
+ goto Overflow;
+
+ if ((float_format == ieee_little_endian_format && !le)
+ || (float_format == ieee_big_endian_format && le)) {
+ p += 3;
+ incr = -1;
+ }
+
+ for (i = 0; i < 4; i++) {
+ *p = *s++;
+ p += incr;
+ }
+ return 0;
+ }
Overflow:
- PyErr_SetString(PyExc_OverflowError,
- "float too large to pack with f format");
- return -1;
+ PyErr_SetString(PyExc_OverflowError,
+ "float too large to pack with f format");
+ return -1;
}
int
_PyFloat_Pack8(double x, unsigned char *p, int le)
{
- if (double_format == unknown_format) {
- unsigned char sign;
- int e;
- double f;
- unsigned int fhi, flo;
- int incr = 1;
-
- if (le) {
- p += 7;
- incr = -1;
- }
-
- if (x < 0) {
- sign = 1;
- x = -x;
- }
- else
- sign = 0;
-
- f = frexp(x, &e);
-
- /* Normalize f to be in the range [1.0, 2.0) */
- if (0.5 <= f && f < 1.0) {
- f *= 2.0;
- e--;
- }
- else if (f == 0.0)
- e = 0;
- else {
- PyErr_SetString(PyExc_SystemError,
- "frexp() result out of range");
- return -1;
- }
-
- if (e >= 1024)
- goto Overflow;
- else if (e < -1022) {
- /* Gradual underflow */
- f = ldexp(f, 1022 + e);
- e = 0;
- }
- else if (!(e == 0 && f == 0.0)) {
- e += 1023;
- f -= 1.0; /* Get rid of leading 1 */
- }
-
- /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
- f *= 268435456.0; /* 2**28 */
- fhi = (unsigned int)f; /* Truncate */
- assert(fhi < 268435456);
-
- f -= (double)fhi;
- f *= 16777216.0; /* 2**24 */
- flo = (unsigned int)(f + 0.5); /* Round */
- assert(flo <= 16777216);
- if (flo >> 24) {
- /* The carry propagated out of a string of 24 1 bits. */
- flo = 0;
- ++fhi;
- if (fhi >> 28) {
- /* And it also progagated out of the next 28 bits. */
- fhi = 0;
- ++e;
- if (e >= 2047)
- goto Overflow;
- }
- }
-
- /* First byte */
- *p = (sign << 7) | (e >> 4);
- p += incr;
-
- /* Second byte */
- *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
- p += incr;
-
- /* Third byte */
- *p = (fhi >> 16) & 0xFF;
- p += incr;
-
- /* Fourth byte */
- *p = (fhi >> 8) & 0xFF;
- p += incr;
-
- /* Fifth byte */
- *p = fhi & 0xFF;
- p += incr;
-
- /* Sixth byte */
- *p = (flo >> 16) & 0xFF;
- p += incr;
-
- /* Seventh byte */
- *p = (flo >> 8) & 0xFF;
- p += incr;
-
- /* Eighth byte */
- *p = flo & 0xFF;
- p += incr;
-
- /* Done */
- return 0;
-
- Overflow:
- PyErr_SetString(PyExc_OverflowError,
- "float too large to pack with d format");
- return -1;
- }
- else {
- const char *s = (char*)&x;
- int i, incr = 1;
-
- if ((double_format == ieee_little_endian_format && !le)
- || (double_format == ieee_big_endian_format && le)) {
- p += 7;
- incr = -1;
- }
-
- for (i = 0; i < 8; i++) {
- *p = *s++;
- p += incr;
- }
- return 0;
- }
+ if (double_format == unknown_format) {
+ unsigned char sign;
+ int e;
+ double f;
+ unsigned int fhi, flo;
+ int incr = 1;
+
+ if (le) {
+ p += 7;
+ incr = -1;
+ }
+
+ if (x < 0) {
+ sign = 1;
+ x = -x;
+ }
+ else
+ sign = 0;
+
+ f = frexp(x, &e);
+
+ /* Normalize f to be in the range [1.0, 2.0) */
+ if (0.5 <= f && f < 1.0) {
+ f *= 2.0;
+ e--;
+ }
+ else if (f == 0.0)
+ e = 0;
+ else {
+ PyErr_SetString(PyExc_SystemError,
+ "frexp() result out of range");
+ return -1;
+ }
+
+ if (e >= 1024)
+ goto Overflow;
+ else if (e < -1022) {
+ /* Gradual underflow */
+ f = ldexp(f, 1022 + e);
+ e = 0;
+ }
+ else if (!(e == 0 && f == 0.0)) {
+ e += 1023;
+ f -= 1.0; /* Get rid of leading 1 */
+ }
+
+ /* fhi receives the high 28 bits; flo the low 24 bits (== 52 bits) */
+ f *= 268435456.0; /* 2**28 */
+ fhi = (unsigned int)f; /* Truncate */
+ assert(fhi < 268435456);
+
+ f -= (double)fhi;
+ f *= 16777216.0; /* 2**24 */
+ flo = (unsigned int)(f + 0.5); /* Round */
+ assert(flo <= 16777216);
+ if (flo >> 24) {
+ /* The carry propagated out of a string of 24 1 bits. */
+ flo = 0;
+ ++fhi;
+ if (fhi >> 28) {
+ /* And it also progagated out of the next 28 bits. */
+ fhi = 0;
+ ++e;
+ if (e >= 2047)
+ goto Overflow;
+ }
+ }
+
+ /* First byte */
+ *p = (sign << 7) | (e >> 4);
+ p += incr;
+
+ /* Second byte */
+ *p = (unsigned char) (((e & 0xF) << 4) | (fhi >> 24));
+ p += incr;
+
+ /* Third byte */
+ *p = (fhi >> 16) & 0xFF;
+ p += incr;
+
+ /* Fourth byte */
+ *p = (fhi >> 8) & 0xFF;
+ p += incr;
+
+ /* Fifth byte */
+ *p = fhi & 0xFF;
+ p += incr;
+
+ /* Sixth byte */
+ *p = (flo >> 16) & 0xFF;
+ p += incr;
+
+ /* Seventh byte */
+ *p = (flo >> 8) & 0xFF;
+ p += incr;
+
+ /* Eighth byte */
+ *p = flo & 0xFF;
+ p += incr;
+
+ /* Done */
+ return 0;
+
+ Overflow:
+ PyErr_SetString(PyExc_OverflowError,
+ "float too large to pack with d format");
+ return -1;
+ }
+ else {
+ const char *s = (char*)&x;
+ int i, incr = 1;
+
+ if ((double_format == ieee_little_endian_format && !le)
+ || (double_format == ieee_big_endian_format && le)) {
+ p += 7;
+ incr = -1;
+ }
+
+ for (i = 0; i < 8; i++) {
+ *p = *s++;
+ p += incr;
+ }
+ return 0;
+ }
}
double
_PyFloat_Unpack4(const unsigned char *p, int le)
{
- if (float_format == unknown_format) {
- unsigned char sign;
- int e;
- unsigned int f;
- double x;
- int incr = 1;
-
- if (le) {
- p += 3;
- incr = -1;
- }
-
- /* First byte */
- sign = (*p >> 7) & 1;
- e = (*p & 0x7F) << 1;
- p += incr;
-
- /* Second byte */
- e |= (*p >> 7) & 1;
- f = (*p & 0x7F) << 16;
- p += incr;
-
- if (e == 255) {
- PyErr_SetString(
- PyExc_ValueError,
- "can't unpack IEEE 754 special value "
- "on non-IEEE platform");
- return -1;
- }
-
- /* Third byte */
- f |= *p << 8;
- p += incr;
-
- /* Fourth byte */
- f |= *p;
-
- x = (double)f / 8388608.0;
-
- /* XXX This sadly ignores Inf/NaN issues */
- if (e == 0)
- e = -126;
- else {
- x += 1.0;
- e -= 127;
- }
- x = ldexp(x, e);
-
- if (sign)
- x = -x;
-
- return x;
- }
- else {
- float x;
-
- if ((float_format == ieee_little_endian_format && !le)
- || (float_format == ieee_big_endian_format && le)) {
- char buf[4];
- char *d = &buf[3];
- int i;
-
- for (i = 0; i < 4; i++) {
- *d-- = *p++;
- }
- memcpy(&x, buf, 4);
- }
- else {
- memcpy(&x, p, 4);
- }
-
- return x;
- }
+ if (float_format == unknown_format) {
+ unsigned char sign;
+ int e;
+ unsigned int f;
+ double x;
+ int incr = 1;
+
+ if (le) {
+ p += 3;
+ incr = -1;
+ }
+
+ /* First byte */
+ sign = (*p >> 7) & 1;
+ e = (*p & 0x7F) << 1;
+ p += incr;
+
+ /* Second byte */
+ e |= (*p >> 7) & 1;
+ f = (*p & 0x7F) << 16;
+ p += incr;
+
+ if (e == 255) {
+ PyErr_SetString(
+ PyExc_ValueError,
+ "can't unpack IEEE 754 special value "
+ "on non-IEEE platform");
+ return -1;
+ }
+
+ /* Third byte */
+ f |= *p << 8;
+ p += incr;
+
+ /* Fourth byte */
+ f |= *p;
+
+ x = (double)f / 8388608.0;
+
+ /* XXX This sadly ignores Inf/NaN issues */
+ if (e == 0)
+ e = -126;
+ else {
+ x += 1.0;
+ e -= 127;
+ }
+ x = ldexp(x, e);
+
+ if (sign)
+ x = -x;
+
+ return x;
+ }
+ else {
+ float x;
+
+ if ((float_format == ieee_little_endian_format && !le)
+ || (float_format == ieee_big_endian_format && le)) {
+ char buf[4];
+ char *d = &buf[3];
+ int i;
+
+ for (i = 0; i < 4; i++) {
+ *d-- = *p++;
+ }
+ memcpy(&x, buf, 4);
+ }
+ else {
+ memcpy(&x, p, 4);
+ }
+
+ return x;
+ }
}
double
_PyFloat_Unpack8(const unsigned char *p, int le)
{
- if (double_format == unknown_format) {
- unsigned char sign;
- int e;
- unsigned int fhi, flo;
- double x;
- int incr = 1;
-
- if (le) {
- p += 7;
- incr = -1;
- }
-
- /* First byte */
- sign = (*p >> 7) & 1;
- e = (*p & 0x7F) << 4;
-
- p += incr;
-
- /* Second byte */
- e |= (*p >> 4) & 0xF;
- fhi = (*p & 0xF) << 24;
- p += incr;
-
- if (e == 2047) {
- PyErr_SetString(
- PyExc_ValueError,
- "can't unpack IEEE 754 special value "
- "on non-IEEE platform");
- return -1.0;
- }
-
- /* Third byte */
- fhi |= *p << 16;
- p += incr;
-
- /* Fourth byte */
- fhi |= *p << 8;
- p += incr;
-
- /* Fifth byte */
- fhi |= *p;
- p += incr;
-
- /* Sixth byte */
- flo = *p << 16;
- p += incr;
-
- /* Seventh byte */
- flo |= *p << 8;
- p += incr;
-
- /* Eighth byte */
- flo |= *p;
-
- x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
- x /= 268435456.0; /* 2**28 */
-
- if (e == 0)
- e = -1022;
- else {
- x += 1.0;
- e -= 1023;
- }
- x = ldexp(x, e);
-
- if (sign)
- x = -x;
-
- return x;
- }
- else {
- double x;
-
- if ((double_format == ieee_little_endian_format && !le)
- || (double_format == ieee_big_endian_format && le)) {
- char buf[8];
- char *d = &buf[7];
- int i;
-
- for (i = 0; i < 8; i++) {
- *d-- = *p++;
- }
- memcpy(&x, buf, 8);
- }
- else {
- memcpy(&x, p, 8);
- }
-
- return x;
- }
+ if (double_format == unknown_format) {
+ unsigned char sign;
+ int e;
+ unsigned int fhi, flo;
+ double x;
+ int incr = 1;
+
+ if (le) {
+ p += 7;
+ incr = -1;
+ }
+
+ /* First byte */
+ sign = (*p >> 7) & 1;
+ e = (*p & 0x7F) << 4;
+
+ p += incr;
+
+ /* Second byte */
+ e |= (*p >> 4) & 0xF;
+ fhi = (*p & 0xF) << 24;
+ p += incr;
+
+ if (e == 2047) {
+ PyErr_SetString(
+ PyExc_ValueError,
+ "can't unpack IEEE 754 special value "
+ "on non-IEEE platform");
+ return -1.0;
+ }
+
+ /* Third byte */
+ fhi |= *p << 16;
+ p += incr;
+
+ /* Fourth byte */
+ fhi |= *p << 8;
+ p += incr;
+
+ /* Fifth byte */
+ fhi |= *p;
+ p += incr;
+
+ /* Sixth byte */
+ flo = *p << 16;
+ p += incr;
+
+ /* Seventh byte */
+ flo |= *p << 8;
+ p += incr;
+
+ /* Eighth byte */
+ flo |= *p;
+
+ x = (double)fhi + (double)flo / 16777216.0; /* 2**24 */
+ x /= 268435456.0; /* 2**28 */
+
+ if (e == 0)
+ e = -1022;
+ else {
+ x += 1.0;
+ e -= 1023;
+ }
+ x = ldexp(x, e);
+
+ if (sign)
+ x = -x;
+
+ return x;
+ }
+ else {
+ double x;
+
+ if ((double_format == ieee_little_endian_format && !le)
+ || (double_format == ieee_big_endian_format && le)) {
+ char buf[8];
+ char *d = &buf[7];
+ int i;
+
+ for (i = 0; i < 8; i++) {
+ *d-- = *p++;
+ }
+ memcpy(&x, buf, 8);
+ }
+ else {
+ memcpy(&x, p, 8);
+ }
+
+ return x;
+ }
}