diff options
author | Mark Dickinson <mdickinson@enthought.com> | 2019-06-02 09:24:06 (GMT) |
---|---|---|
committer | GitHub <noreply@github.com> | 2019-06-02 09:24:06 (GMT) |
commit | c52996785a45d4693857ea219e040777a14584f8 (patch) | |
tree | ee1d54ea597b45ef0d57407f8affaffe57f93be6 /Objects/longobject.c | |
parent | 5ae299ac78abb628803ab7dee0997364547f5cc8 (diff) | |
download | cpython-c52996785a45d4693857ea219e040777a14584f8.zip cpython-c52996785a45d4693857ea219e040777a14584f8.tar.gz cpython-c52996785a45d4693857ea219e040777a14584f8.tar.bz2 |
bpo-36027: Extend three-argument pow to negative second argument (GH-13266)
Diffstat (limited to 'Objects/longobject.c')
-rw-r--r-- | Objects/longobject.c | 130 |
1 files changed, 118 insertions, 12 deletions
diff --git a/Objects/longobject.c b/Objects/longobject.c index 5d2b595..49f1420 100644 --- a/Objects/longobject.c +++ b/Objects/longobject.c @@ -4174,6 +4174,98 @@ long_divmod(PyObject *a, PyObject *b) return z; } + +/* Compute an inverse to a modulo n, or raise ValueError if a is not + invertible modulo n. Assumes n is positive. The inverse returned + is whatever falls out of the extended Euclidean algorithm: it may + be either positive or negative, but will be smaller than n in + absolute value. + + Pure Python equivalent for long_invmod: + + def invmod(a, n): + b, c = 1, 0 + while n: + q, r = divmod(a, n) + a, b, c, n = n, c, b - q*c, r + + # at this point a is the gcd of the original inputs + if a == 1: + return b + raise ValueError("Not invertible") +*/ + +static PyLongObject * +long_invmod(PyLongObject *a, PyLongObject *n) +{ + PyLongObject *b, *c; + + /* Should only ever be called for positive n */ + assert(Py_SIZE(n) > 0); + + b = (PyLongObject *)PyLong_FromLong(1L); + if (b == NULL) { + return NULL; + } + c = (PyLongObject *)PyLong_FromLong(0L); + if (c == NULL) { + Py_DECREF(b); + return NULL; + } + Py_INCREF(a); + Py_INCREF(n); + + /* references now owned: a, b, c, n */ + while (Py_SIZE(n) != 0) { + PyLongObject *q, *r, *s, *t; + + if (l_divmod(a, n, &q, &r) == -1) { + goto Error; + } + Py_DECREF(a); + a = n; + n = r; + t = (PyLongObject *)long_mul(q, c); + Py_DECREF(q); + if (t == NULL) { + goto Error; + } + s = (PyLongObject *)long_sub(b, t); + Py_DECREF(t); + if (s == NULL) { + goto Error; + } + Py_DECREF(b); + b = c; + c = s; + } + /* references now owned: a, b, c, n */ + + Py_DECREF(c); + Py_DECREF(n); + if (long_compare(a, _PyLong_One)) { + /* a != 1; we don't have an inverse. */ + Py_DECREF(a); + Py_DECREF(b); + PyErr_SetString(PyExc_ValueError, + "base is not invertible for the given modulus"); + return NULL; + } + else { + /* a == 1; b gives an inverse modulo n */ + Py_DECREF(a); + return b; + } + + Error: + Py_DECREF(a); + Py_DECREF(b); + Py_DECREF(c); + Py_DECREF(n); + return NULL; +} + + /* pow(v, w, x) */ static PyObject * long_pow(PyObject *v, PyObject *w, PyObject *x) @@ -4207,20 +4299,14 @@ long_pow(PyObject *v, PyObject *w, PyObject *x) Py_RETURN_NOTIMPLEMENTED; } - if (Py_SIZE(b) < 0) { /* if exponent is negative */ - if (c) { - PyErr_SetString(PyExc_ValueError, "pow() 2nd argument " - "cannot be negative when 3rd argument specified"); - goto Error; - } - else { - /* else return a float. This works because we know + if (Py_SIZE(b) < 0 && c == NULL) { + /* if exponent is negative and there's no modulus: + return a float. This works because we know that this calls float_pow() which converts its arguments to double. */ - Py_DECREF(a); - Py_DECREF(b); - return PyFloat_Type.tp_as_number->nb_power(v, w, x); - } + Py_DECREF(a); + Py_DECREF(b); + return PyFloat_Type.tp_as_number->nb_power(v, w, x); } if (c) { @@ -4255,6 +4341,26 @@ long_pow(PyObject *v, PyObject *w, PyObject *x) goto Done; } + /* if exponent is negative, negate the exponent and + replace the base with a modular inverse */ + if (Py_SIZE(b) < 0) { + temp = (PyLongObject *)_PyLong_Copy(b); + if (temp == NULL) + goto Error; + Py_DECREF(b); + b = temp; + temp = NULL; + _PyLong_Negate(&b); + if (b == NULL) + goto Error; + + temp = long_invmod(a, c); + if (temp == NULL) + goto Error; + Py_DECREF(a); + a = temp; + } + /* Reduce base by modulus in some cases: 1. If base < 0. Forcing the base non-negative makes things easier. 2. If base is obviously larger than the modulus. The "small |