diff options
author | Neil Schemenauer <nascheme@enme.ucalgary.ca> | 2001-02-27 04:45:05 (GMT) |
---|---|---|
committer | Neil Schemenauer <nascheme@enme.ucalgary.ca> | 2001-02-27 04:45:05 (GMT) |
commit | a35c688055c72e9442f6a82c3ec0e09654077975 (patch) | |
tree | 081386e63e64467a01558567750b371baa527f8e /Objects/obmalloc.c | |
parent | 29906eef3a56c43a4cd68a8706c75844b2384e59 (diff) | |
download | cpython-a35c688055c72e9442f6a82c3ec0e09654077975.zip cpython-a35c688055c72e9442f6a82c3ec0e09654077975.tar.gz cpython-a35c688055c72e9442f6a82c3ec0e09654077975.tar.bz2 |
Add Vladimir Marangozov's object allocator. It is disabled by default. This
closes SF patch #401229.
Diffstat (limited to 'Objects/obmalloc.c')
-rw-r--r-- | Objects/obmalloc.c | 743 |
1 files changed, 743 insertions, 0 deletions
diff --git a/Objects/obmalloc.c b/Objects/obmalloc.c new file mode 100644 index 0000000..4fcd187 --- /dev/null +++ b/Objects/obmalloc.c @@ -0,0 +1,743 @@ +/* An object allocator for Python. + + Here is an introduction to the layers of the Python memory architecture, + showing where the object allocator is actually used (layer +2), It is + called for every object allocation and deallocation (PyObject_New/Del), + unless the object-specific allocators implement a proprietary allocation + scheme (ex.: ints use a simple free list). This is also the place where + the cyclic garbage collector operates selectively on container objects. + + + Object-specific allocators + _____ ______ ______ ________ + [ int ] [ dict ] [ list ] ... [ string ] Python core | ++3 | <----- Object-specific memory -----> | <-- Non-object memory --> | + _______________________________ | | + [ Python's object allocator ] | | ++2 | ####### Object memory ####### | <------ Internal buffers ------> | + ______________________________________________________________ | + [ Python's raw memory allocator (PyMem_ API) ] | ++1 | <----- Python memory (under PyMem manager's control) ------> | | + __________________________________________________________________ + [ Underlying general-purpose allocator (ex: C library malloc) ] + 0 | <------ Virtual memory allocated for the python process -------> | + + ========================================================================= + _______________________________________________________________________ + [ OS-specific Virtual Memory Manager (VMM) ] +-1 | <--- Kernel dynamic storage allocation & management (page-based) ---> | + __________________________________ __________________________________ + [ ] [ ] +-2 | <-- Physical memory: ROM/RAM --> | | <-- Secondary storage (swap) --> | + +*/ +/*==========================================================================*/ + +/* A fast, special-purpose memory allocator for small blocks, to be used + on top of a general-purpose malloc -- heavily based on previous art. */ + +/* Vladimir Marangozov -- August 2000 */ + +/* + * "Memory management is where the rubber meets the road -- if we do the wrong + * thing at any level, the results will not be good. And if we don't make the + * levels work well together, we are in serious trouble." (1) + * + * (1) Paul R. Wilson, Mark S. Johnstone, Michael Neely, and David Boles, + * "Dynamic Storage Allocation: A Survey and Critical Review", + * in Proc. 1995 Int'l. Workshop on Memory Management, September 1995. + */ + +/* #undef WITH_MEMORY_LIMITS */ /* disable mem limit checks */ +#define WITH_MALLOC_HOOKS /* for profiling & debugging */ + +/*==========================================================================*/ + +/* + * Public functions exported by this allocator. + * + * -- Define and use these names in your code to obtain or release memory -- + */ +#define _THIS_MALLOC PyCore_OBJECT_MALLOC_FUNC +#define _THIS_CALLOC /* unused */ +#define _THIS_REALLOC PyCore_OBJECT_REALLOC_FUNC +#define _THIS_FREE PyCore_OBJECT_FREE_FUNC + +/* + * Underlying allocator's functions called by this allocator. + * The underlying allocator is usually the one which comes with libc. + * + * -- Don't use these functions in your code (to avoid mixing allocators) -- + * + * Redefine these __only__ if you are using a 3rd party general purpose + * allocator which exports functions with names _other_ than the standard + * malloc, calloc, realloc, free. + */ +#define _SYSTEM_MALLOC PyCore_MALLOC_FUNC +#define _SYSTEM_CALLOC /* unused */ +#define _SYSTEM_REALLOC PyCore_REALLOC_FUNC +#define _SYSTEM_FREE PyCore_FREE_FUNC + +/* + * If malloc hooks are needed, names of the hooks' set & fetch + * functions exported by this allocator. + */ +#ifdef WITH_MALLOC_HOOKS +#define _SET_HOOKS _PyCore_ObjectMalloc_SetHooks +#define _FETCH_HOOKS _PyCore_ObjectMalloc_FetchHooks +#endif + +/*==========================================================================*/ + +/* + * Allocation strategy abstract: + * + * For small requests, the allocator sub-allocates <Big> blocks of memory. + * Requests greater than 256 bytes are routed to the system's allocator. + * + * Small requests are grouped in size classes spaced 8 bytes apart, due + * to the required valid alignment of the returned address. Requests of + * a particular size are serviced from memory pools of 4K (one VMM page). + * Pools are fragmented on demand and contain free lists of blocks of one + * particular size class. In other words, there is a fixed-size allocator + * for each size class. Free pools are shared by the different allocators + * thus minimizing the space reserved for a particular size class. + * + * This allocation strategy is a variant of what is known as "simple + * segregated storage based on array of free lists". The main drawback of + * simple segregated storage is that we might end up with lot of reserved + * memory for the different free lists, which degenerate in time. To avoid + * this, we partition each free list in pools and we share dynamically the + * reserved space between all free lists. This technique is quite efficient + * for memory intensive programs which allocate mainly small-sized blocks. + * + * For small requests we have the following table: + * + * Request in bytes Size of allocated block Size class idx + * ---------------------------------------------------------------- + * 1-8 8 0 + * 9-16 16 1 + * 17-24 24 2 + * 25-32 32 3 + * 33-40 40 4 + * 41-48 48 5 + * 49-56 56 6 + * 57-64 64 7 + * 65-72 72 8 + * ... ... ... + * 241-248 248 30 + * 249-256 256 31 + * + * 0, 257 and up: routed to the underlying allocator. + */ + +/*==========================================================================*/ + +/* + * -- Main tunable settings section -- + */ + +/* + * Alignment of addresses returned to the user. 8-bytes alignment works + * on most current architectures (with 32-bit or 64-bit address busses). + * The alignment value is also used for grouping small requests in size + * classes spaced ALIGNMENT bytes apart. + * + * You shouldn't change this unless you know what you are doing. + */ + +#define ALIGNMENT 8 /* must be 2^N */ +#define ALIGNMENT_SHIFT 3 +#define ALIGNMENT_MASK (ALIGNMENT - 1) + +/* + * Max size threshold below which malloc requests are considered to be + * small enough in order to use preallocated memory pools. You can tune + * this value according to your application behaviour and memory needs. + * + * The following invariants must hold: + * 1) ALIGNMENT <= SMALL_REQUEST_THRESHOLD <= 256 + * 2) SMALL_REQUEST_THRESHOLD == N * ALIGNMENT + * + * Although not required, for better performance and space efficiency, + * it is recommended that SMALL_REQUEST_THRESHOLD is set to a power of 2. + */ + +/* + * For Python compiled on systems with 32 bit pointers and integers, + * a value of 64 (= 8 * 8) is a reasonable speed/space tradeoff for + * the object allocator. To adjust automatically this threshold for + * systems with 64 bit pointers, we make this setting depend on a + * Python-specific slot size unit = sizeof(long) + sizeof(void *), + * which is expected to be 8, 12 or 16 bytes. + */ + +#define _PYOBJECT_THRESHOLD ((SIZEOF_LONG + SIZEOF_VOID_P) * ALIGNMENT) + +#define SMALL_REQUEST_THRESHOLD _PYOBJECT_THRESHOLD /* must be N * ALIGNMENT */ + +#define NB_SMALL_SIZE_CLASSES (SMALL_REQUEST_THRESHOLD / ALIGNMENT) + +/* + * The system's VMM page size can be obtained on most unices with a + * getpagesize() call or deduced from various header files. To make + * things simpler, we assume that it is 4K, which is OK for most systems. + * It is probably better if this is the native page size, but it doesn't + * have to be. + */ + +#define SYSTEM_PAGE_SIZE (4 * 1024) +#define SYSTEM_PAGE_SIZE_MASK (SYSTEM_PAGE_SIZE - 1) + +/* + * Maximum amount of memory managed by the allocator for small requests. + */ + +#ifdef WITH_MEMORY_LIMITS +#ifndef SMALL_MEMORY_LIMIT +#define SMALL_MEMORY_LIMIT (64 * 1024 * 1024) /* 64 MB -- more? */ +#endif +#endif + +/* + * The allocator sub-allocates <Big> blocks of memory (called arenas) aligned + * on a page boundary. This is a reserved virtual address space for the + * current process (obtained through a malloc call). In no way this means + * that the memory arenas will be used entirely. A malloc(<Big>) is usually + * an address range reservation for <Big> bytes, unless all pages within this + * space are referenced subsequently. So malloc'ing big blocks and not using + * them does not mean "wasting memory". It's an addressable range wastage... + * + * Therefore, allocating arenas with malloc is not optimal, because there is + * some address space wastage, but this is the most portable way to request + * memory from the system accross various platforms. + */ + +#define ARENA_SIZE (256 * 1024 - SYSTEM_PAGE_SIZE) /* 256k - 1p */ + +#ifdef WITH_MEMORY_LIMITS +#define MAX_ARENAS (SMALL_MEMORY_LIMIT / ARENA_SIZE) +#endif + +/* + * Size of the pools used for small blocks. Should be a power of 2, + * between 1K and SYSTEM_PAGE_SIZE, that is: 1k, 2k, 4k, eventually 8k. + */ + +#define POOL_SIZE SYSTEM_PAGE_SIZE /* must be 2^N */ +#define POOL_SIZE_MASK SYSTEM_PAGE_SIZE_MASK +#define POOL_MAGIC 0x74D3A651 /* authentication id */ + +#define ARENA_NB_POOLS (ARENA_SIZE / POOL_SIZE) +#define ARENA_NB_PAGES (ARENA_SIZE / SYSTEM_PAGE_SIZE) + +/* + * -- End of tunable settings section -- + */ + +/*==========================================================================*/ + +/* + * Locking + * + * To reduce lock contention, it would probably be better to refine the + * crude function locking with per size class locking. I'm not positive + * however, whether it's worth switching to such locking policy because + * of the performance penalty it might introduce. + * + * The following macros describe the simplest (should also be the fastest) + * lock object on a particular platform and the init/fini/lock/unlock + * operations on it. The locks defined here are not expected to be recursive + * because it is assumed that they will always be called in the order: + * INIT, [LOCK, UNLOCK]*, FINI. + */ + +/* + * Python's threads are serialized, so object malloc locking is disabled. + */ +#define SIMPLELOCK_DECL(lock) /* simple lock declaration */ +#define SIMPLELOCK_INIT(lock) /* allocate (if needed) and initialize */ +#define SIMPLELOCK_FINI(lock) /* free/destroy an existing lock */ +#define SIMPLELOCK_LOCK(lock) /* acquire released lock */ +#define SIMPLELOCK_UNLOCK(lock) /* release acquired lock */ + +/* + * Basic types + * I don't care if these are defined in <sys/types.h> or elsewhere. Axiom. + */ + +#undef uchar +#define uchar unsigned char /* assuming == 8 bits */ + +#undef ushort +#define ushort unsigned short /* assuming >= 16 bits */ + +#undef uint +#define uint unsigned int /* assuming >= 16 bits */ + +#undef ulong +#define ulong unsigned long /* assuming >= 32 bits */ + +#undef off_t +#define off_t uint /* 16 bits <= off_t <= 64 bits */ + +/* When you say memory, my mind reasons in terms of (pointers to) blocks */ +typedef uchar block; + +/* Pool for small blocks */ +struct pool_header { + union { block *__padding; + uint count; } ref; /* number of allocated blocks */ + block *freeblock; /* pool's free list head */ + struct pool_header *nextpool; /* next pool of this size class */ + struct pool_header *prevpool; /* previous pool "" */ + struct pool_header *pooladdr; /* pool address (always aligned) */ + uint magic; /* pool magic number */ + uint szidx; /* block size class index */ + uint capacity; /* pool capacity in # of blocks */ +}; + +typedef struct pool_header *poolp; + +#undef ROUNDUP +#define ROUNDUP(x) (((x) + ALIGNMENT_MASK) & ~ALIGNMENT_MASK) +#define POOL_OVERHEAD ROUNDUP(sizeof(struct pool_header)) + +#define DUMMY_SIZE_IDX 0xffff /* size class of newly cached pools */ + +/*==========================================================================*/ + +/* + * This malloc lock + */ +SIMPLELOCK_DECL(__malloc_lock); +#define LOCK() SIMPLELOCK_LOCK(__malloc_lock) +#define UNLOCK() SIMPLELOCK_UNLOCK(__malloc_lock) +#define LOCK_INIT() SIMPLELOCK_INIT(__malloc_lock) +#define LOCK_FINI() SIMPLELOCK_FINI(__malloc_lock) + +/* + * Pool table -- doubly linked lists of partially used pools + */ +#define PTA(x) ((poolp )((uchar *)&(usedpools[2*(x)]) - 2*sizeof(block *))) +#define PT(x) PTA(x), PTA(x) + +static poolp usedpools[2 * ((NB_SMALL_SIZE_CLASSES + 7) / 8) * 8] = { + PT(0), PT(1), PT(2), PT(3), PT(4), PT(5), PT(6), PT(7) +#if NB_SMALL_SIZE_CLASSES > 8 + , PT(8), PT(9), PT(10), PT(11), PT(12), PT(13), PT(14), PT(15) +#if NB_SMALL_SIZE_CLASSES > 16 + , PT(16), PT(17), PT(18), PT(19), PT(20), PT(21), PT(22), PT(23) +#if NB_SMALL_SIZE_CLASSES > 24 + , PT(24), PT(25), PT(26), PT(27), PT(28), PT(29), PT(30), PT(31) +#if NB_SMALL_SIZE_CLASSES > 32 + , PT(32), PT(33), PT(34), PT(35), PT(36), PT(37), PT(38), PT(39) +#if NB_SMALL_SIZE_CLASSES > 40 + , PT(40), PT(41), PT(42), PT(43), PT(44), PT(45), PT(46), PT(47) +#if NB_SMALL_SIZE_CLASSES > 48 + , PT(48), PT(49), PT(50), PT(51), PT(52), PT(53), PT(54), PT(55) +#if NB_SMALL_SIZE_CLASSES > 56 + , PT(56), PT(57), PT(58), PT(59), PT(60), PT(61), PT(62), PT(63) +#endif /* NB_SMALL_SIZE_CLASSES > 56 */ +#endif /* NB_SMALL_SIZE_CLASSES > 48 */ +#endif /* NB_SMALL_SIZE_CLASSES > 40 */ +#endif /* NB_SMALL_SIZE_CLASSES > 32 */ +#endif /* NB_SMALL_SIZE_CLASSES > 24 */ +#endif /* NB_SMALL_SIZE_CLASSES > 16 */ +#endif /* NB_SMALL_SIZE_CLASSES > 8 */ +}; + +/* + * Free (cached) pools + */ +static poolp freepools = NULL; /* free list for cached pools */ + +/* + * Arenas + */ +static uint arenacnt = 0; /* number of allocated arenas */ +static uint watermark = ARENA_NB_POOLS; /* number of pools allocated from + the current arena */ +static block *arenalist = NULL; /* list of allocated arenas */ +static block *arenabase = NULL; /* free space start address in + current arena */ + +/* + * Hooks + */ +#ifdef WITH_MALLOC_HOOKS +static void *(*malloc_hook)(size_t) = NULL; +static void *(*calloc_hook)(size_t, size_t) = NULL; +static void *(*realloc_hook)(void *, size_t) = NULL; +static void (*free_hook)(void *) = NULL; +#endif /* !WITH_MALLOC_HOOKS */ + +/*==========================================================================*/ + +/* malloc */ + +/* + * The basic blocks are ordered by decreasing execution frequency, + * which minimizes the number of jumps in the most common cases, + * improves branching prediction and instruction scheduling (small + * block allocations typically result in a couple of instructions). + * Unless the optimizer reorders everything, being too smart... + */ + +void * +_THIS_MALLOC(size_t nbytes) +{ + block *bp; + poolp pool; + poolp next; + uint size; + +#ifdef WITH_MALLOC_HOOKS + if (malloc_hook != NULL) + return (*malloc_hook)(nbytes); +#endif + + /* + * This implicitly redirects malloc(0) + */ + if ((nbytes - 1) < SMALL_REQUEST_THRESHOLD) { + LOCK(); + /* + * Most frequent paths first + */ + size = (uint )(nbytes - 1) >> ALIGNMENT_SHIFT; + pool = usedpools[size + size]; + if (pool != pool->nextpool) { + /* + * There is a used pool for this size class. + * Pick up the head block of its free list. + */ + ++pool->ref.count; + bp = pool->freeblock; + if ((pool->freeblock = *(block **)bp) != NULL) { + UNLOCK(); + return (void *)bp; + } + /* + * Reached the end of the free list, try to extend it + */ + if (pool->ref.count < pool->capacity) { + /* + * There is room for another block + */ + size++; + size <<= ALIGNMENT_SHIFT; /* block size */ + pool->freeblock = (block *)pool + \ + POOL_OVERHEAD + \ + pool->ref.count * size; + *(block **)(pool->freeblock) = NULL; + UNLOCK(); + return (void *)bp; + } + /* + * Pool is full, unlink from used pools + */ + next = pool->nextpool; + pool = pool->prevpool; + next->prevpool = pool; + pool->nextpool = next; + UNLOCK(); + return (void *)bp; + } + /* + * Try to get a cached free pool + */ + pool = freepools; + if (pool != NULL) { + /* + * Unlink from cached pools + */ + freepools = pool->nextpool; + init_pool: + /* + * Frontlink to used pools + */ + next = usedpools[size + size]; /* == prev */ + pool->nextpool = next; + pool->prevpool = next; + next->nextpool = pool; + next->prevpool = pool; + pool->ref.count = 1; + if (pool->szidx == size) { + /* + * Luckily, this pool last contained blocks + * of the same size class, so its header + * and free list are already initialized. + */ + bp = pool->freeblock; + pool->freeblock = *(block **)bp; + UNLOCK(); + return (void *)bp; + } + /* + * Initialize the pool header and free list + * then return the first block. + */ + pool->szidx = size; + size++; + size <<= ALIGNMENT_SHIFT; /* block size */ + bp = (block *)pool + POOL_OVERHEAD; + pool->freeblock = bp + size; + *(block **)(pool->freeblock) = NULL; + pool->capacity = (POOL_SIZE - POOL_OVERHEAD) / size; + UNLOCK(); + return (void *)bp; + } + /* + * Allocate new pool + */ + if (watermark < ARENA_NB_POOLS) { + /* commit malloc(POOL_SIZE) from the current arena */ + commit_pool: + watermark++; + pool = (poolp )arenabase; + arenabase += POOL_SIZE; + pool->pooladdr = pool; + pool->magic = (uint )POOL_MAGIC; + pool->szidx = DUMMY_SIZE_IDX; + goto init_pool; + } + /* + * Allocate new arena + */ +#ifdef WITH_MEMORY_LIMITS + if (!(arenacnt < MAX_ARENAS)) { + UNLOCK(); + goto redirect; + } +#endif + /* + * With malloc, we can't avoid loosing one page address space + * per arena due to the required alignment on page boundaries. + */ + bp = (block *)_SYSTEM_MALLOC(ARENA_SIZE + SYSTEM_PAGE_SIZE); + if (bp == NULL) { + UNLOCK(); + goto redirect; + } + /* + * Keep a reference in the list of allocated arenas. We might + * want to release (some of) them in the future. The first + * word is never used, no matter whether the returned address + * is page-aligned or not, so we safely store a pointer in it. + */ + *(block **)bp = arenalist; + arenalist = bp; + arenacnt++; + watermark = 0; + /* Page-round up */ + arenabase = bp + (SYSTEM_PAGE_SIZE - + ((off_t )bp & SYSTEM_PAGE_SIZE_MASK)); + goto commit_pool; + } + + /* The small block allocator ends here. */ + + redirect: + + /* + * Redirect the original request to the underlying (libc) allocator. + * We jump here on bigger requests, on error in the code above (as a + * last chance to serve the request) or when the max memory limit + * has been reached. + */ + return (void *)_SYSTEM_MALLOC(nbytes); +} + +/* free */ + +void +_THIS_FREE(void *p) +{ + poolp pool; + poolp next, prev; + uint size; + off_t offset; + +#ifdef WITH_MALLOC_HOOKS + if (free_hook != NULL) { + (*free_hook)(p); + return; + } +#endif + + if (p == NULL) /* free(NULL) has no effect */ + return; + + offset = (off_t )p & POOL_SIZE_MASK; + pool = (poolp )((block *)p - offset); + if (pool->pooladdr != pool || pool->magic != (uint )POOL_MAGIC) { + _SYSTEM_FREE(p); + return; + } + + LOCK(); + /* + * At this point, the pool is not empty + */ + if ((*(block **)p = pool->freeblock) == NULL) { + /* + * Pool was full + */ + pool->freeblock = (block *)p; + --pool->ref.count; + /* + * Frontlink to used pools + * This mimics LRU pool usage for new allocations and + * targets optimal filling when several pools contain + * blocks of the same size class. + */ + size = pool->szidx; + next = usedpools[size + size]; + prev = next->prevpool; + pool->nextpool = next; + pool->prevpool = prev; + next->prevpool = pool; + prev->nextpool = pool; + UNLOCK(); + return; + } + /* + * Pool was not full + */ + pool->freeblock = (block *)p; + if (--pool->ref.count != 0) { + UNLOCK(); + return; + } + /* + * Pool is now empty, unlink from used pools + */ + next = pool->nextpool; + prev = pool->prevpool; + next->prevpool = prev; + prev->nextpool = next; + /* + * Frontlink to free pools + * This ensures that previously freed pools will be allocated + * later (being not referenced, they are perhaps paged out). + */ + pool->nextpool = freepools; + freepools = pool; + UNLOCK(); + return; +} + +/* realloc */ + +void * +_THIS_REALLOC(void *p, size_t nbytes) +{ + block *bp; + poolp pool; + uint size; + +#ifdef WITH_MALLOC_HOOKS + if (realloc_hook != NULL) + return (*realloc_hook)(p, nbytes); +#endif + + if (p == NULL) + return _THIS_MALLOC(nbytes); + + /* realloc(p, 0) on big blocks is redirected. */ + pool = (poolp )((block *)p - ((off_t )p & POOL_SIZE_MASK)); + if (pool->pooladdr != pool || pool->magic != (uint )POOL_MAGIC) { + /* We haven't allocated this block */ + if (!(nbytes > SMALL_REQUEST_THRESHOLD) && nbytes) { + /* small request */ + size = nbytes; + goto malloc_copy_free; + } + bp = (block *)_SYSTEM_REALLOC(p, nbytes); + } + else { + /* We're in charge of this block */ + size = (pool->szidx + 1) << ALIGNMENT_SHIFT; /* block size */ + if (size >= nbytes) { + /* Don't bother if a smaller size was requested + except for realloc(p, 0) == free(p), ret NULL */ + if (nbytes == 0) { + _THIS_FREE(p); + bp = NULL; + } + else + bp = (block *)p; + } + else { + + malloc_copy_free: + + bp = (block *)_THIS_MALLOC(nbytes); + if (bp != NULL) { + memcpy(bp, p, size); + _THIS_FREE(p); + } + } + } + return (void *)bp; +} + +/* calloc */ + +/* -- unused -- +void * +_THIS_CALLOC(size_t nbel, size_t elsz) +{ + void *p; + size_t nbytes; + +#ifdef WITH_MALLOC_HOOKS + if (calloc_hook != NULL) + return (*calloc_hook)(nbel, elsz); +#endif + + nbytes = nbel * elsz; + p = _THIS_MALLOC(nbytes); + if (p != NULL) + memset(p, 0, nbytes); + return p; +} +*/ + +/*==========================================================================*/ + +/* + * Hooks + */ + +#ifdef WITH_MALLOC_HOOKS + +void +_SET_HOOKS( void *(*malloc_func)(size_t), + void *(*calloc_func)(size_t, size_t), + void *(*realloc_func)(void *, size_t), + void (*free_func)(void *) ) +{ + LOCK(); + malloc_hook = malloc_func; + calloc_hook = calloc_func; + realloc_hook = realloc_func; + free_hook = free_func; + UNLOCK(); +} + +void +_FETCH_HOOKS( void *(**malloc_funcp)(size_t), + void *(**calloc_funcp)(size_t, size_t), + void *(**realloc_funcp)(void *, size_t), + void (**free_funcp)(void *) ) +{ + LOCK(); + *malloc_funcp = malloc_hook; + *calloc_funcp = calloc_hook; + *realloc_funcp = realloc_hook; + *free_funcp = free_hook; + UNLOCK(); +} +#endif /* !WITH_MALLOC_HOOKS */ |