diff options
author | Guido van Rossum <guido@python.org> | 1998-05-13 21:20:49 (GMT) |
---|---|---|
committer | Guido van Rossum <guido@python.org> | 1998-05-13 21:20:49 (GMT) |
commit | b7057640d18ec9713aa1312b9d3270136144e53e (patch) | |
tree | cfc24aac3d442b43c7fb94fc824b4b156dfd7163 /Objects | |
parent | 01fc65d92fcf774c4b14fb0e744ad4d08c825168 (diff) | |
download | cpython-b7057640d18ec9713aa1312b9d3270136144e53e.zip cpython-b7057640d18ec9713aa1312b9d3270136144e53e.tar.gz cpython-b7057640d18ec9713aa1312b9d3270136144e53e.tar.bz2 |
Tim's quicksort on May 10.
Diffstat (limited to 'Objects')
-rw-r--r-- | Objects/listobject.c | 167 |
1 files changed, 99 insertions, 68 deletions
diff --git a/Objects/listobject.c b/Objects/listobject.c index aa034bd..12abb8f 100644 --- a/Objects/listobject.c +++ b/Objects/listobject.c @@ -624,6 +624,15 @@ docompare(x, y, compare) return 0; } +/* MINSIZE is the smallest array we care to partition; smaller arrays + are sorted using a straight insertion sort (above). It must be at + least 3 for the quicksort implementation to work. Assuming that + comparisons are more expensive than everything else (and this is a + good assumption for Python), it should be 10, which is the cutoff + point: quicksort requires more comparisons than insertion sort for + smaller arrays. */ +#define MINSIZE 12 + /* Straight insertion sort. More efficient for sorting small arrays. */ static int @@ -640,30 +649,23 @@ insertionsort(array, size, compare) register PyObject *key = *p; register PyObject **q = p; while (--q >= a) { - register int k = docompare(*q, key, compare); + register int k = docompare(key, *q, compare); /* if (p-q >= MINSIZE) fprintf(stderr, "OUCH! %d\n", p-q); */ if (k == CMPERROR) return -1; - if (k <= 0) + if (k < 0) { + *(q+1) = *q; + *q = key; /* For consistency */ + } + else break; - *(q+1) = *q; - *q = key; /* For consistency */ } } return 0; } -/* MINSIZE is the smallest array we care to partition; smaller arrays - are sorted using a straight insertion sort (above). It must be at - least 2 for the quicksort implementation to work. Assuming that - comparisons are more expensive than everything else (and this is a - good assumption for Python), it should be 10, which is the cutoff - point: quicksort requires more comparisons than insertion sort for - smaller arrays. */ -#define MINSIZE 10 - /* STACKSIZE is the size of our work stack. A rough estimate is that this allows us to sort arrays of MINSIZE * 2**STACKSIZE, or large enough. (Because of the way we push the biggest partition first, @@ -682,8 +684,9 @@ quicksort(array, size, compare) PyObject *compare;/* Comparison function object, or NULL for default */ { register PyObject *tmp, *pivot; - register PyObject **lo, **hi, **l, **r; - int top, k, n, n2; + register PyObject **l, **r, **p; + register PyObject **lo, **hi; + int top, k, n; PyObject **lostack[STACKSIZE]; PyObject **histack[STACKSIZE]; @@ -699,88 +702,117 @@ quicksort(array, size, compare) /* If it's a small one, use straight insertion sort */ n = hi - lo; - if (n < MINSIZE) { - /* - * skip it. The insertion sort at the end will - * catch these - */ + if (n < MINSIZE) continue; - } - /* Choose median of first, middle and last item as pivot */ - - l = lo + (n>>1); /* Middle */ - r = hi - 1; /* Last */ + /* Choose median of first, middle and last as pivot; + these 3 are reverse-sorted in the process; the ends + will be swapped on the first do-loop iteration. + */ + l = lo; /* First */ + p = lo + (n>>1); /* Middle */ + r = hi - 1; /* Last */ - k = docompare(*l, *lo, compare); + k = docompare(*l, *p, compare); if (k == CMPERROR) return -1; if (k < 0) - { tmp = *lo; *lo = *l; *l = tmp; } + { tmp = *l; *l = *p; *p = tmp; } - k = docompare(*r, *l, compare); + k = docompare(*p, *r, compare); if (k == CMPERROR) return -1; if (k < 0) - { tmp = *r; *r = *l; *l = tmp; } + { tmp = *p; *p = *r; *r = tmp; } - k = docompare(*l, *lo, compare); + k = docompare(*l, *p, compare); if (k == CMPERROR) return -1; if (k < 0) - { tmp = *l; *l = *lo; *lo = tmp; } - pivot = *l; + { tmp = *l; *l = *p; *p = tmp; } - /* Move pivot off to the side (swap with lo+1) */ - *l = *(lo+1); *(lo+1) = pivot; + pivot = *p; /* Partition the array */ - l = lo+2; - r = hi-2; do { + tmp = *l; *l = *r; *r = tmp; + if (l == p) { + p = r; + l++; + } + else if (r == p) { + p = l; + r--; + } + else { + l++; + r--; + } + /* Move left index to element >= pivot */ - while (l < hi) { - k = docompare(*l, pivot, compare); + while (l < p) { + k = docompare(*l, pivot, compare); if (k == CMPERROR) return -1; - if (k >= 0) + if (k < 0) + l++; + else break; - l++; } /* Move right index to element <= pivot */ - while (r > lo) { + while (r > p) { k = docompare(pivot, *r, compare); if (k == CMPERROR) return -1; - if (k >= 0) + if (k < 0) + r--; + else break; - r--; - } - - /* If they crossed, we're through */ - if (l <= r) { - /* Swap elements and continue */ - tmp = *l; *l = *r; *r = tmp; - l++; r--; } - } while (l <= r); - - /* Swap pivot back into place; *r <= pivot */ - *(lo+1) = *r; *r = pivot; + } while (l < r); + + /* lo < l == p == r < hi-1 + *p == pivot + + All in [lo,p) are <= pivot + At p == pivot + All in [p+1,hi) are >= pivot + + Now extend as far as possible (around p) so that: + All in [lo,r) are <= pivot + All in [r,l) are == pivot + All in [l,hi) are >= pivot + This wastes two compares if no elements are == to the + pivot, but can win big when there are duplicates. + Mildly tricky: continue using only "<" -- we deduce + equality indirectly. + */ + while (r > lo) { + /* because r-1 < p, *(r-1) <= pivot is known */ + k = docompare(*(r-1), pivot, compare); + if (k == CMPERROR) + return -1; + if (k < 0) + break; + /* <= and not < implies == */ + r--; + } - /* We have now reached the following conditions: - lo <= r < l <= hi - all x in [lo,r) are <= pivot - all x in [r,l) are == pivot - all x in [l,hi) are >= pivot - The partitions are [lo,r) and [l,hi) - */ + l++; + while (l < hi) { + /* because l > p, pivot <= *l is known */ + k = docompare(pivot, *l, compare); + if (k == CMPERROR) + return -1; + if (k < 0) + break; + /* <= and not < implies == */ + l++; + } /* Push biggest partition first */ - n = r - lo; - n2 = hi - l; - if (n > n2) { + if (r - lo >= hi - l) { /* First one is bigger */ lostack[top] = lo; histack[top++] = r; @@ -793,22 +825,21 @@ quicksort(array, size, compare) lostack[top] = lo; histack[top++] = r; } - /* Should assert top <= STACKSIZE */ } /* * Ouch - even if I screwed up the quicksort above, the * insertionsort below will cover up the problem - just a - * performance hit would be noticable. + * performance hit would be noticable. */ /* insertionsort is pretty fast on the partially sorted list */ if (insertionsort(array, size, compare) < 0) return -1; - - /* Succes */ + + /* Success */ return 0; } |