summaryrefslogtreecommitdiffstats
path: root/Objects
diff options
context:
space:
mode:
authorGuido van Rossum <guido@python.org>1998-05-26 15:06:32 (GMT)
committerGuido van Rossum <guido@python.org>1998-05-26 15:06:32 (GMT)
commit9be628338def23e88691fbb3ca28804ea8e48a28 (patch)
tree172b250c9afb1a43a439591a053e4cffeae4f539 /Objects
parent16653cb27327288deb2068223501bf706cc65d46 (diff)
downloadcpython-9be628338def23e88691fbb3ca28804ea8e48a28.zip
cpython-9be628338def23e88691fbb3ca28804ea8e48a28.tar.gz
cpython-9be628338def23e88691fbb3ca28804ea8e48a28.tar.bz2
Tim's quicksort on May 25.
Diffstat (limited to 'Objects')
-rw-r--r--Objects/listobject.c264
1 files changed, 141 insertions, 123 deletions
diff --git a/Objects/listobject.c b/Objects/listobject.c
index 60e1592..b608d53 100644
--- a/Objects/listobject.c
+++ b/Objects/listobject.c
@@ -625,46 +625,11 @@ docompare(x, y, compare)
}
/* MINSIZE is the smallest array we care to partition; smaller arrays
- are sorted using a straight insertion sort (above). It must be at
- least 3 for the quicksort implementation to work. Assuming that
- comparisons are more expensive than everything else (and this is a
- good assumption for Python), it should be 10, which is the cutoff
- point: quicksort requires more comparisons than insertion sort for
- smaller arrays. */
-#define MINSIZE 10
-
-/* Straight insertion sort. More efficient for sorting small arrays. */
-
-static int
-insertionsort(array, size, compare)
- PyObject **array; /* Start of array to sort */
- int size; /* Number of elements to sort */
- PyObject *compare;/* Comparison function object, or NULL => default */
-{
- register PyObject **a = array;
- register PyObject **end = array+size;
- register PyObject **p;
-
- for (p = a+1; p < end; p++) {
- register PyObject *key = *p;
- register PyObject **q = p;
- while (--q >= a) {
- register int k = docompare(key, *q, compare);
- /* if (p-q >= MINSIZE)
- fprintf(stderr, "OUCH! %d\n", p-q); */
- if (k == CMPERROR)
- return -1;
- if (k < 0) {
- *(q+1) = *q;
- *q = key; /* For consistency */
- }
- else
- break;
- }
- }
-
- return 0;
-}
+ are sorted using binary insertion. It must be at least 4 for the
+ quicksort implementation to work. Binary insertion always requires
+ fewer compares than quicksort, but does O(N**2) data movement. The
+ more expensive compares, the larger MINSIZE should be. */
+#define MINSIZE 49
/* STACKSIZE is the size of our work stack. A rough estimate is that
this allows us to sort arrays of MINSIZE * 2**STACKSIZE, or large
@@ -673,20 +638,20 @@ insertionsort(array, size, compare)
exactly in two.) */
#define STACKSIZE 64
-/* Quicksort algorithm. Return -1 if an exception occurred; in this
+/* quicksort algorithm. Return -1 if an exception occurred; in this
case we leave the array partly sorted but otherwise in good health
(i.e. no items have been removed or duplicated). */
static int
quicksort(array, size, compare)
- PyObject **array; /* Start of array to sort */
- int size; /* Number of elements to sort */
+ PyObject **array; /* Start of array to sort */
+ int size; /* Number of elements to sort */
PyObject *compare;/* Comparison function object, or NULL for default */
{
register PyObject *tmp, *pivot;
register PyObject **l, **r, **p;
- register PyObject **lo, **hi;
- int top, k, n;
+ PyObject **lo, **hi, **notp;
+ int top, k, n, lisp, risp;
PyObject **lostack[STACKSIZE];
PyObject **histack[STACKSIZE];
@@ -699,55 +664,66 @@ quicksort(array, size, compare)
while (--top >= 0) {
lo = lostack[top];
hi = histack[top];
-
- /* If it's a small one, use straight insertion sort */
n = hi - lo;
- if (n < MINSIZE)
+
+ /* If it's a small one, use binary insertion sort */
+ if (n < MINSIZE) {
+ for (notp = lo+1; notp < hi; ++notp) {
+ /* set l to where *notp belongs */
+ l = lo;
+ r = notp;
+ pivot = *r;
+ do {
+ p = l + ((r - l) >> 1);
+ k = docompare(pivot, *p, compare);
+ if (k == CMPERROR)
+ return -1;
+ if (k < 0)
+ r = p;
+ else
+ l = p + 1;
+ } while (l < r);
+ /* Pivot should go at l -- slide over to
+ make room. Caution: using memmove
+ is much slower under MSVC 5; we're
+ not usually moving many slots. */
+ for (p = notp; p > l; --p)
+ *p = *(p-1);
+ *l = pivot;
+ }
continue;
+ }
- /* Choose median of first, middle and last as pivot;
- these 3 are reverse-sorted in the process; the ends
- will be swapped on the first do-loop iteration.
- */
- l = lo; /* First */
+ /* Choose median of first, middle and last as pivot */
+ l = lo; /* First */
p = lo + (n>>1); /* Middle */
- r = hi - 1; /* Last */
+ r = hi - 1; /* Last */
- k = docompare(*l, *p, compare);
+ k = docompare(*p, *l, compare);
if (k == CMPERROR)
return -1;
if (k < 0)
- { tmp = *l; *l = *p; *p = tmp; }
+ { tmp = *p; *p = *l; *l = tmp; }
- k = docompare(*p, *r, compare);
+ k = docompare(*r, *p, compare);
if (k == CMPERROR)
return -1;
if (k < 0)
- { tmp = *p; *p = *r; *r = tmp; }
+ { tmp = *r; *r = *p; *p = tmp; }
- k = docompare(*l, *p, compare);
+ k = docompare(*p, *l, compare);
if (k == CMPERROR)
return -1;
if (k < 0)
- { tmp = *l; *l = *p; *p = tmp; }
+ { tmp = *p; *p = *l; *l = tmp; }
pivot = *p;
+ l++;
+ r--;
/* Partition the array */
- do {
- tmp = *l; *l = *r; *r = tmp;
- if (l == p) {
- p = r;
- l++;
- }
- else if (r == p) {
- p = l;
- r--;
- }
- else {
- l++;
- r--;
- }
+ for (;;) {
+ lisp = risp = 1; /* presumed guilty */
/* Move left index to element >= pivot */
while (l < p) {
@@ -756,8 +732,10 @@ quicksort(array, size, compare)
return -1;
if (k < 0)
l++;
- else
+ else {
+ lisp = 0;
break;
+ }
}
/* Move right index to element <= pivot */
while (r > p) {
@@ -766,79 +744,119 @@ quicksort(array, size, compare)
return -1;
if (k < 0)
r--;
- else
+ else {
+ risp = 0;
break;
+ }
+ }
+
+ if (lisp == risp) {
+ /* assert l < p < r or l == p == r
+ * This is the most common case, so we
+ * strive to get back to the top of the
+ * loop ASAP.
+ */
+ tmp = *l; *l = *r; *r = tmp;
+ l++; r--;
+ if (l < r)
+ continue;
+ break;
}
- } while (l < r);
+ /* One (exactly) of the pointers is at p */
+ /* assert (p == l) ^ (p == r) */
+ notp = lisp ? r : l;
+ k = (r - l) >> 1;
+ if (k) {
+ *p = *notp;
+ if (lisp) {
+ p = r - k;
+ l++;
+ }
+ else {
+ p = l + k;
+ r--;
+ }
+ /* assert l < p < r */
+ *notp = *p;
+ *p = pivot; /* for consistency */
+ continue;
+ }
- /* lo < l == p == r < hi-1
- *p == pivot
+ /* assert l+1 == r */
+ *p = *notp;
+ *notp = pivot;
+ p = notp;
+ break;
+ } /* end of partitioning loop */
+ /* assert *p == pivot
All in [lo,p) are <= pivot
At p == pivot
All in [p+1,hi) are >= pivot
-
- Now extend as far as possible (around p) so that:
- All in [lo,r) are <= pivot
- All in [r,l) are == pivot
- All in [l,hi) are >= pivot
- This wastes two compares if no elements are == to the
- pivot, but can win big when there are duplicates.
- Mildly tricky: continue using only "<" -- we deduce
- equality indirectly.
*/
- while (r > lo) {
- /* because r-1 < p, *(r-1) <= pivot is known */
- k = docompare(*(r-1), pivot, compare);
- if (k == CMPERROR)
- return -1;
- if (k < 0)
- break;
- /* <= and not < implies == */
- r--;
- }
- l++;
- while (l < hi) {
- /* because l > p, pivot <= *l is known */
- k = docompare(pivot, *l, compare);
- if (k == CMPERROR)
- return -1;
- if (k < 0)
- break;
- /* <= and not < implies == */
+ r = p;
+ l = p + 1;
+ /* Partitions are [lo,r) and [l,hi).
+ * See whether *l == pivot; we know *l >= pivot, so
+ * they're equal iff *l <= pivot too, or not pivot < *l.
+ * This wastes a compare if it fails, but can win big
+ * when there are runs of duplicates.
+ */
+ k = docompare(pivot, *l, compare);
+ if (k == CMPERROR)
+ return -1;
+ if (!(k < 0)) {
+ /* Now extend as far as possible (around p) so that:
+ All in [lo,r) are <= pivot
+ All in [r,l) are == pivot
+ All in [l,hi) are >= pivot
+ Mildly tricky: continue using only "<" -- we
+ deduce equality indirectly.
+ */
+ while (r > lo) {
+ /* because r-1 < p, *(r-1) <= pivot is known */
+ k = docompare(*(r-1), pivot, compare);
+ if (k == CMPERROR)
+ return -1;
+ if (k < 0)
+ break;
+ /* <= and not < implies == */
+ r--;
+ }
+
l++;
- }
+ while (l < hi) {
+ /* because l > p, pivot <= *l is known */
+ k = docompare(pivot, *l, compare);
+ if (k == CMPERROR)
+ return -1;
+ if (k < 0)
+ break;
+ /* <= and not < implies == */
+ l++;
+ }
+
+ } /* end of checking for duplicates */
/* Push biggest partition first */
if (r - lo >= hi - l) {
/* First one is bigger */
- lostack[top] = lo;
+ lostack[top] = lo;
histack[top++] = r;
- lostack[top] = l;
+ lostack[top] = l;
histack[top++] = hi;
} else {
/* Second one is bigger */
- lostack[top] = l;
+ lostack[top] = l;
histack[top++] = hi;
- lostack[top] = lo;
+ lostack[top] = lo;
histack[top++] = r;
}
/* Should assert top <= STACKSIZE */
}
- /*
- * Ouch - even if I screwed up the quicksort above, the
- * insertionsort below will cover up the problem - just a
- * performance hit would be noticable.
- */
-
- /* insertionsort is pretty fast on the partially sorted list */
-
- if (insertionsort(array, size, compare) < 0)
- return -1;
-
/* Success */
return 0;
}