summaryrefslogtreecommitdiffstats
path: root/Python/pyhash.c
diff options
context:
space:
mode:
authorChristian Heimes <christian@cheimes.de>2013-11-20 10:46:18 (GMT)
committerChristian Heimes <christian@cheimes.de>2013-11-20 10:46:18 (GMT)
commit985ecdcfc29adfc36ce2339acf03f819ad414869 (patch)
tree06a11f82271e768dbe49469c8736b65b083f671c /Python/pyhash.c
parentfe32aec25a8b36498d840bd69485e9bc94195b9c (diff)
downloadcpython-985ecdcfc29adfc36ce2339acf03f819ad414869.zip
cpython-985ecdcfc29adfc36ce2339acf03f819ad414869.tar.gz
cpython-985ecdcfc29adfc36ce2339acf03f819ad414869.tar.bz2
ssue #19183: Implement PEP 456 'secure and interchangeable hash algorithm'.
Python now uses SipHash24 on all major platforms.
Diffstat (limited to 'Python/pyhash.c')
-rw-r--r--Python/pyhash.c430
1 files changed, 430 insertions, 0 deletions
diff --git a/Python/pyhash.c b/Python/pyhash.c
new file mode 100644
index 0000000..158c631
--- /dev/null
+++ b/Python/pyhash.c
@@ -0,0 +1,430 @@
+/* Set of hash utility functions to help maintaining the invariant that
+ if a==b then hash(a)==hash(b)
+
+ All the utility functions (_Py_Hash*()) return "-1" to signify an error.
+*/
+#include "Python.h"
+
+#ifdef __APPLE__
+# include <libkern/OSByteOrder.h>
+#elif defined(HAVE_LE64TOH) && defined(HAVE_ENDIAN_H)
+# include <endian.h>
+#elif defined(HAVE_LE64TOH) && defined(HAVE_SYS_ENDIAN_H)
+# include <sys/endian.h>
+#endif
+
+#ifdef __cplusplus
+extern "C" {
+#endif
+
+_Py_HashSecret_t _Py_HashSecret;
+
+#if Py_HASH_ALGORITHM == Py_HASH_EXTERNAL
+extern PyHash_FuncDef PyHash_Func;
+#else
+static PyHash_FuncDef PyHash_Func;
+#endif
+
+/* Count _Py_HashBytes() calls */
+#ifdef Py_HASH_STATS
+#define Py_HASH_STATS_MAX 32
+static Py_ssize_t hashstats[Py_HASH_STATS_MAX + 1] = {0};
+#endif
+
+/* For numeric types, the hash of a number x is based on the reduction
+ of x modulo the prime P = 2**_PyHASH_BITS - 1. It's designed so that
+ hash(x) == hash(y) whenever x and y are numerically equal, even if
+ x and y have different types.
+
+ A quick summary of the hashing strategy:
+
+ (1) First define the 'reduction of x modulo P' for any rational
+ number x; this is a standard extension of the usual notion of
+ reduction modulo P for integers. If x == p/q (written in lowest
+ terms), the reduction is interpreted as the reduction of p times
+ the inverse of the reduction of q, all modulo P; if q is exactly
+ divisible by P then define the reduction to be infinity. So we've
+ got a well-defined map
+
+ reduce : { rational numbers } -> { 0, 1, 2, ..., P-1, infinity }.
+
+ (2) Now for a rational number x, define hash(x) by:
+
+ reduce(x) if x >= 0
+ -reduce(-x) if x < 0
+
+ If the result of the reduction is infinity (this is impossible for
+ integers, floats and Decimals) then use the predefined hash value
+ _PyHASH_INF for x >= 0, or -_PyHASH_INF for x < 0, instead.
+ _PyHASH_INF, -_PyHASH_INF and _PyHASH_NAN are also used for the
+ hashes of float and Decimal infinities and nans.
+
+ A selling point for the above strategy is that it makes it possible
+ to compute hashes of decimal and binary floating-point numbers
+ efficiently, even if the exponent of the binary or decimal number
+ is large. The key point is that
+
+ reduce(x * y) == reduce(x) * reduce(y) (modulo _PyHASH_MODULUS)
+
+ provided that {reduce(x), reduce(y)} != {0, infinity}. The reduction of a
+ binary or decimal float is never infinity, since the denominator is a power
+ of 2 (for binary) or a divisor of a power of 10 (for decimal). So we have,
+ for nonnegative x,
+
+ reduce(x * 2**e) == reduce(x) * reduce(2**e) % _PyHASH_MODULUS
+
+ reduce(x * 10**e) == reduce(x) * reduce(10**e) % _PyHASH_MODULUS
+
+ and reduce(10**e) can be computed efficiently by the usual modular
+ exponentiation algorithm. For reduce(2**e) it's even better: since
+ P is of the form 2**n-1, reduce(2**e) is 2**(e mod n), and multiplication
+ by 2**(e mod n) modulo 2**n-1 just amounts to a rotation of bits.
+
+ */
+
+Py_hash_t
+_Py_HashDouble(double v)
+{
+ int e, sign;
+ double m;
+ Py_uhash_t x, y;
+
+ if (!Py_IS_FINITE(v)) {
+ if (Py_IS_INFINITY(v))
+ return v > 0 ? _PyHASH_INF : -_PyHASH_INF;
+ else
+ return _PyHASH_NAN;
+ }
+
+ m = frexp(v, &e);
+
+ sign = 1;
+ if (m < 0) {
+ sign = -1;
+ m = -m;
+ }
+
+ /* process 28 bits at a time; this should work well both for binary
+ and hexadecimal floating point. */
+ x = 0;
+ while (m) {
+ x = ((x << 28) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - 28);
+ m *= 268435456.0; /* 2**28 */
+ e -= 28;
+ y = (Py_uhash_t)m; /* pull out integer part */
+ m -= y;
+ x += y;
+ if (x >= _PyHASH_MODULUS)
+ x -= _PyHASH_MODULUS;
+ }
+
+ /* adjust for the exponent; first reduce it modulo _PyHASH_BITS */
+ e = e >= 0 ? e % _PyHASH_BITS : _PyHASH_BITS-1-((-1-e) % _PyHASH_BITS);
+ x = ((x << e) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - e);
+
+ x = x * sign;
+ if (x == (Py_uhash_t)-1)
+ x = (Py_uhash_t)-2;
+ return (Py_hash_t)x;
+}
+
+Py_hash_t
+_Py_HashPointer(void *p)
+{
+ Py_hash_t x;
+ size_t y = (size_t)p;
+ /* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid
+ excessive hash collisions for dicts and sets */
+ y = (y >> 4) | (y << (8 * SIZEOF_VOID_P - 4));
+ x = (Py_hash_t)y;
+ if (x == -1)
+ x = -2;
+ return x;
+}
+
+Py_hash_t
+_Py_HashBytes(const void *src, Py_ssize_t len)
+{
+ Py_hash_t x;
+ /*
+ We make the hash of the empty string be 0, rather than using
+ (prefix ^ suffix), since this slightly obfuscates the hash secret
+ */
+ if (len == 0) {
+ return 0;
+ }
+
+#ifdef Py_HASH_STATS
+ hashstats[(len <= Py_HASH_STATS_MAX) ? len : 0]++;
+#endif
+
+#if Py_HASH_CUTOFF > 0
+ if (len < Py_HASH_CUTOFF) {
+ /* Optimize hashing of very small strings with inline DJBX33A. */
+ Py_uhash_t hash;
+ const unsigned char *p = src;
+ hash = 5381; /* DJBX33A starts with 5381 */
+
+ switch(len) {
+ /* ((hash << 5) + hash) + *p == hash * 33 + *p */
+ case 7: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
+ case 6: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
+ case 5: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
+ case 4: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
+ case 3: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
+ case 2: hash = ((hash << 5) + hash) + *p++; /* fallthrough */
+ case 1: hash = ((hash << 5) + hash) + *p++; break;
+ default:
+ assert(0);
+ }
+ hash ^= len;
+ hash ^= (Py_uhash_t) _Py_HashSecret.djbx33a.suffix;
+ x = (Py_hash_t)hash;
+ }
+ else
+#endif /* Py_HASH_CUTOFF */
+ x = PyHash_Func.hash(src, len);
+
+ if (x == -1)
+ return -2;
+ return x;
+}
+
+void
+_PyHash_Fini(void)
+{
+#ifdef Py_HASH_STATS
+ int i;
+ Py_ssize_t total = 0;
+ char *fmt = "%2i %8" PY_FORMAT_SIZE_T "d %8" PY_FORMAT_SIZE_T "d\n";
+
+ fprintf(stderr, "len calls total\n");
+ for (i = 1; i <= Py_HASH_STATS_MAX; i++) {
+ total += hashstats[i];
+ fprintf(stderr, fmt, i, hashstats[i], total);
+ }
+ total += hashstats[0];
+ fprintf(stderr, "> %8" PY_FORMAT_SIZE_T "d %8" PY_FORMAT_SIZE_T "d\n",
+ hashstats[0], total);
+#endif
+}
+
+PyHash_FuncDef *
+PyHash_GetFuncDef(void)
+{
+ return &PyHash_Func;
+}
+
+/* Optimized memcpy() for Windows */
+#ifdef _MSC_VER
+# if SIZEOF_PY_UHASH_T == 4
+# define PY_UHASH_CPY(dst, src) do { \
+ dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; \
+ } while(0)
+# elif SIZEOF_PY_UHASH_T == 8
+# define PY_UHASH_CPY(dst, src) do { \
+ dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; \
+ dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; \
+ } while(0)
+# else
+# error SIZEOF_PY_UHASH_T must be 4 or 8
+# endif /* SIZEOF_PY_UHASH_T */
+#else /* not Windows */
+# define PY_UHASH_CPY(dst, src) memcpy(dst, src, SIZEOF_PY_UHASH_T)
+#endif /* _MSC_VER */
+
+
+#if Py_HASH_ALGORITHM == Py_HASH_FNV
+/* **************************************************************************
+ * Modified Fowler-Noll-Vo (FNV) hash function
+ */
+static Py_hash_t
+fnv(const void *src, Py_ssize_t len)
+{
+ const unsigned char *p = src;
+ Py_uhash_t x;
+ Py_ssize_t remainder, blocks;
+ union {
+ Py_uhash_t value;
+ unsigned char bytes[SIZEOF_PY_UHASH_T];
+ } block;
+
+#ifdef Py_DEBUG
+ assert(_Py_HashSecret_Initialized);
+#endif
+ remainder = len % SIZEOF_PY_UHASH_T;
+ if (remainder == 0) {
+ /* Process at least one block byte by byte to reduce hash collisions
+ * for strings with common prefixes. */
+ remainder = SIZEOF_PY_UHASH_T;
+ }
+ blocks = (len - remainder) / SIZEOF_PY_UHASH_T;
+
+ x = (Py_uhash_t) _Py_HashSecret.fnv.prefix;
+ x ^= (Py_uhash_t) *p << 7;
+ while (blocks--) {
+ PY_UHASH_CPY(block.bytes, p);
+ x = (_PyHASH_MULTIPLIER * x) ^ block.value;
+ p += SIZEOF_PY_UHASH_T;
+ }
+ /* add remainder */
+ for (; remainder > 0; remainder--)
+ x = (_PyHASH_MULTIPLIER * x) ^ (Py_uhash_t) *p++;
+ x ^= (Py_uhash_t) len;
+ x ^= (Py_uhash_t) _Py_HashSecret.fnv.suffix;
+ if (x == -1) {
+ x = -2;
+ }
+ return x;
+}
+
+static PyHash_FuncDef PyHash_Func = {fnv, "fnv", 8 * SIZEOF_PY_HASH_T,
+ 16 * SIZEOF_PY_HASH_T};
+
+#endif /* Py_HASH_ALGORITHM == Py_HASH_FNV */
+
+
+#if Py_HASH_ALGORITHM == Py_HASH_SIPHASH24
+/* **************************************************************************
+ <MIT License>
+ Copyright (c) 2013 Marek Majkowski <marek@popcount.org>
+
+ Permission is hereby granted, free of charge, to any person obtaining a copy
+ of this software and associated documentation files (the "Software"), to deal
+ in the Software without restriction, including without limitation the rights
+ to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
+ copies of the Software, and to permit persons to whom the Software is
+ furnished to do so, subject to the following conditions:
+
+ The above copyright notice and this permission notice shall be included in
+ all copies or substantial portions of the Software.
+
+ THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
+ IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
+ FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE
+ AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
+ LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
+ OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
+ THE SOFTWARE.
+ </MIT License>
+
+ Original location:
+ https://github.com/majek/csiphash/
+
+ Solution inspired by code from:
+ Samuel Neves (supercop/crypto_auth/siphash24/little)
+ djb (supercop/crypto_auth/siphash24/little2)
+ Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c)
+
+ Modified for Python by Christian Heimes:
+ - C89 / MSVC compatibility
+ - PY_UINT64_T, PY_UINT32_T and PY_UINT8_T
+ - _rotl64() on Windows
+ - letoh64() fallback
+*/
+
+typedef unsigned char PY_UINT8_T;
+
+/* byte swap little endian to host endian
+ * Endian conversion not only ensures that the hash function returns the same
+ * value on all platforms. It is also required to for a good dispersion of
+ * the hash values' least significant bits.
+ */
+#if PY_LITTLE_ENDIAN
+# define _le64toh(x) ((PY_UINT64_T)(x))
+#elif defined(__APPLE__)
+# define _le64toh(x) OSSwapLittleToHostInt64(x)
+#elif defined(HAVE_LETOH64)
+# define _le64toh(x) le64toh(x)
+#else
+# define _le64toh(x) (((PY_UINT64_T)(x) << 56) | \
+ (((PY_UINT64_T)(x) << 40) & 0xff000000000000ULL) | \
+ (((PY_UINT64_T)(x) << 24) & 0xff0000000000ULL) | \
+ (((PY_UINT64_T)(x) << 8) & 0xff00000000ULL) | \
+ (((PY_UINT64_T)(x) >> 8) & 0xff000000ULL) | \
+ (((PY_UINT64_T)(x) >> 24) & 0xff0000ULL) | \
+ (((PY_UINT64_T)(x) >> 40) & 0xff00ULL) | \
+ ((PY_UINT64_T)(x) >> 56))
+#endif
+
+
+#ifdef _MSC_VER
+# define ROTATE(x, b) _rotl64(x, b)
+#else
+# define ROTATE(x, b) (PY_UINT64_T)( ((x) << (b)) | ( (x) >> (64 - (b))) )
+#endif
+
+#define HALF_ROUND(a,b,c,d,s,t) \
+ a += b; c += d; \
+ b = ROTATE(b, s) ^ a; \
+ d = ROTATE(d, t) ^ c; \
+ a = ROTATE(a, 32);
+
+#define DOUBLE_ROUND(v0,v1,v2,v3) \
+ HALF_ROUND(v0,v1,v2,v3,13,16); \
+ HALF_ROUND(v2,v1,v0,v3,17,21); \
+ HALF_ROUND(v0,v1,v2,v3,13,16); \
+ HALF_ROUND(v2,v1,v0,v3,17,21);
+
+
+static Py_hash_t
+siphash24(const void *src, Py_ssize_t src_sz) {
+ PY_UINT64_T k0 = _le64toh(_Py_HashSecret.siphash.k0);
+ PY_UINT64_T k1 = _le64toh(_Py_HashSecret.siphash.k1);
+ PY_UINT64_T b = (PY_UINT64_T)src_sz << 56;
+ const PY_UINT64_T *in = (PY_UINT64_T*)src;
+
+ PY_UINT64_T v0 = k0 ^ 0x736f6d6570736575ULL;
+ PY_UINT64_T v1 = k1 ^ 0x646f72616e646f6dULL;
+ PY_UINT64_T v2 = k0 ^ 0x6c7967656e657261ULL;
+ PY_UINT64_T v3 = k1 ^ 0x7465646279746573ULL;
+
+ PY_UINT64_T t;
+ PY_UINT8_T *pt;
+ PY_UINT8_T *m;
+
+ while (src_sz >= 8) {
+ PY_UINT64_T mi = _le64toh(*in);
+ in += 1;
+ src_sz -= 8;
+ v3 ^= mi;
+ DOUBLE_ROUND(v0,v1,v2,v3);
+ v0 ^= mi;
+ }
+
+ t = 0;
+ pt = (PY_UINT8_T *)&t;
+ m = (PY_UINT8_T *)in;
+ switch (src_sz) {
+ case 7: pt[6] = m[6];
+ case 6: pt[5] = m[5];
+ case 5: pt[4] = m[4];
+ case 4: *((PY_UINT32_T*)&pt[0]) = *((PY_UINT32_T*)&m[0]); break;
+ case 3: pt[2] = m[2];
+ case 2: pt[1] = m[1];
+ case 1: pt[0] = m[0];
+ }
+ b |= _le64toh(t);
+
+ v3 ^= b;
+ DOUBLE_ROUND(v0,v1,v2,v3);
+ v0 ^= b;
+ v2 ^= 0xff;
+ DOUBLE_ROUND(v0,v1,v2,v3);
+ DOUBLE_ROUND(v0,v1,v2,v3);
+
+ /* modified */
+ t = (v0 ^ v1) ^ (v2 ^ v3);
+#if SIZEOF_VOID_P == 4
+ t ^= (t >> 32);
+#endif
+ return (Py_hash_t)t;
+}
+
+static PyHash_FuncDef PyHash_Func = {siphash24, "siphash24", 64, 128};
+
+#endif /* Py_HASH_ALGORITHM == Py_HASH_SIPHASH24 */
+
+#ifdef __cplusplus
+}
+#endif