diff options
author | Christian Heimes <christian@cheimes.de> | 2013-11-20 10:46:18 (GMT) |
---|---|---|
committer | Christian Heimes <christian@cheimes.de> | 2013-11-20 10:46:18 (GMT) |
commit | 985ecdcfc29adfc36ce2339acf03f819ad414869 (patch) | |
tree | 06a11f82271e768dbe49469c8736b65b083f671c /Python/pyhash.c | |
parent | fe32aec25a8b36498d840bd69485e9bc94195b9c (diff) | |
download | cpython-985ecdcfc29adfc36ce2339acf03f819ad414869.zip cpython-985ecdcfc29adfc36ce2339acf03f819ad414869.tar.gz cpython-985ecdcfc29adfc36ce2339acf03f819ad414869.tar.bz2 |
ssue #19183: Implement PEP 456 'secure and interchangeable hash algorithm'.
Python now uses SipHash24 on all major platforms.
Diffstat (limited to 'Python/pyhash.c')
-rw-r--r-- | Python/pyhash.c | 430 |
1 files changed, 430 insertions, 0 deletions
diff --git a/Python/pyhash.c b/Python/pyhash.c new file mode 100644 index 0000000..158c631 --- /dev/null +++ b/Python/pyhash.c @@ -0,0 +1,430 @@ +/* Set of hash utility functions to help maintaining the invariant that + if a==b then hash(a)==hash(b) + + All the utility functions (_Py_Hash*()) return "-1" to signify an error. +*/ +#include "Python.h" + +#ifdef __APPLE__ +# include <libkern/OSByteOrder.h> +#elif defined(HAVE_LE64TOH) && defined(HAVE_ENDIAN_H) +# include <endian.h> +#elif defined(HAVE_LE64TOH) && defined(HAVE_SYS_ENDIAN_H) +# include <sys/endian.h> +#endif + +#ifdef __cplusplus +extern "C" { +#endif + +_Py_HashSecret_t _Py_HashSecret; + +#if Py_HASH_ALGORITHM == Py_HASH_EXTERNAL +extern PyHash_FuncDef PyHash_Func; +#else +static PyHash_FuncDef PyHash_Func; +#endif + +/* Count _Py_HashBytes() calls */ +#ifdef Py_HASH_STATS +#define Py_HASH_STATS_MAX 32 +static Py_ssize_t hashstats[Py_HASH_STATS_MAX + 1] = {0}; +#endif + +/* For numeric types, the hash of a number x is based on the reduction + of x modulo the prime P = 2**_PyHASH_BITS - 1. It's designed so that + hash(x) == hash(y) whenever x and y are numerically equal, even if + x and y have different types. + + A quick summary of the hashing strategy: + + (1) First define the 'reduction of x modulo P' for any rational + number x; this is a standard extension of the usual notion of + reduction modulo P for integers. If x == p/q (written in lowest + terms), the reduction is interpreted as the reduction of p times + the inverse of the reduction of q, all modulo P; if q is exactly + divisible by P then define the reduction to be infinity. So we've + got a well-defined map + + reduce : { rational numbers } -> { 0, 1, 2, ..., P-1, infinity }. + + (2) Now for a rational number x, define hash(x) by: + + reduce(x) if x >= 0 + -reduce(-x) if x < 0 + + If the result of the reduction is infinity (this is impossible for + integers, floats and Decimals) then use the predefined hash value + _PyHASH_INF for x >= 0, or -_PyHASH_INF for x < 0, instead. + _PyHASH_INF, -_PyHASH_INF and _PyHASH_NAN are also used for the + hashes of float and Decimal infinities and nans. + + A selling point for the above strategy is that it makes it possible + to compute hashes of decimal and binary floating-point numbers + efficiently, even if the exponent of the binary or decimal number + is large. The key point is that + + reduce(x * y) == reduce(x) * reduce(y) (modulo _PyHASH_MODULUS) + + provided that {reduce(x), reduce(y)} != {0, infinity}. The reduction of a + binary or decimal float is never infinity, since the denominator is a power + of 2 (for binary) or a divisor of a power of 10 (for decimal). So we have, + for nonnegative x, + + reduce(x * 2**e) == reduce(x) * reduce(2**e) % _PyHASH_MODULUS + + reduce(x * 10**e) == reduce(x) * reduce(10**e) % _PyHASH_MODULUS + + and reduce(10**e) can be computed efficiently by the usual modular + exponentiation algorithm. For reduce(2**e) it's even better: since + P is of the form 2**n-1, reduce(2**e) is 2**(e mod n), and multiplication + by 2**(e mod n) modulo 2**n-1 just amounts to a rotation of bits. + + */ + +Py_hash_t +_Py_HashDouble(double v) +{ + int e, sign; + double m; + Py_uhash_t x, y; + + if (!Py_IS_FINITE(v)) { + if (Py_IS_INFINITY(v)) + return v > 0 ? _PyHASH_INF : -_PyHASH_INF; + else + return _PyHASH_NAN; + } + + m = frexp(v, &e); + + sign = 1; + if (m < 0) { + sign = -1; + m = -m; + } + + /* process 28 bits at a time; this should work well both for binary + and hexadecimal floating point. */ + x = 0; + while (m) { + x = ((x << 28) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - 28); + m *= 268435456.0; /* 2**28 */ + e -= 28; + y = (Py_uhash_t)m; /* pull out integer part */ + m -= y; + x += y; + if (x >= _PyHASH_MODULUS) + x -= _PyHASH_MODULUS; + } + + /* adjust for the exponent; first reduce it modulo _PyHASH_BITS */ + e = e >= 0 ? e % _PyHASH_BITS : _PyHASH_BITS-1-((-1-e) % _PyHASH_BITS); + x = ((x << e) & _PyHASH_MODULUS) | x >> (_PyHASH_BITS - e); + + x = x * sign; + if (x == (Py_uhash_t)-1) + x = (Py_uhash_t)-2; + return (Py_hash_t)x; +} + +Py_hash_t +_Py_HashPointer(void *p) +{ + Py_hash_t x; + size_t y = (size_t)p; + /* bottom 3 or 4 bits are likely to be 0; rotate y by 4 to avoid + excessive hash collisions for dicts and sets */ + y = (y >> 4) | (y << (8 * SIZEOF_VOID_P - 4)); + x = (Py_hash_t)y; + if (x == -1) + x = -2; + return x; +} + +Py_hash_t +_Py_HashBytes(const void *src, Py_ssize_t len) +{ + Py_hash_t x; + /* + We make the hash of the empty string be 0, rather than using + (prefix ^ suffix), since this slightly obfuscates the hash secret + */ + if (len == 0) { + return 0; + } + +#ifdef Py_HASH_STATS + hashstats[(len <= Py_HASH_STATS_MAX) ? len : 0]++; +#endif + +#if Py_HASH_CUTOFF > 0 + if (len < Py_HASH_CUTOFF) { + /* Optimize hashing of very small strings with inline DJBX33A. */ + Py_uhash_t hash; + const unsigned char *p = src; + hash = 5381; /* DJBX33A starts with 5381 */ + + switch(len) { + /* ((hash << 5) + hash) + *p == hash * 33 + *p */ + case 7: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ + case 6: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ + case 5: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ + case 4: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ + case 3: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ + case 2: hash = ((hash << 5) + hash) + *p++; /* fallthrough */ + case 1: hash = ((hash << 5) + hash) + *p++; break; + default: + assert(0); + } + hash ^= len; + hash ^= (Py_uhash_t) _Py_HashSecret.djbx33a.suffix; + x = (Py_hash_t)hash; + } + else +#endif /* Py_HASH_CUTOFF */ + x = PyHash_Func.hash(src, len); + + if (x == -1) + return -2; + return x; +} + +void +_PyHash_Fini(void) +{ +#ifdef Py_HASH_STATS + int i; + Py_ssize_t total = 0; + char *fmt = "%2i %8" PY_FORMAT_SIZE_T "d %8" PY_FORMAT_SIZE_T "d\n"; + + fprintf(stderr, "len calls total\n"); + for (i = 1; i <= Py_HASH_STATS_MAX; i++) { + total += hashstats[i]; + fprintf(stderr, fmt, i, hashstats[i], total); + } + total += hashstats[0]; + fprintf(stderr, "> %8" PY_FORMAT_SIZE_T "d %8" PY_FORMAT_SIZE_T "d\n", + hashstats[0], total); +#endif +} + +PyHash_FuncDef * +PyHash_GetFuncDef(void) +{ + return &PyHash_Func; +} + +/* Optimized memcpy() for Windows */ +#ifdef _MSC_VER +# if SIZEOF_PY_UHASH_T == 4 +# define PY_UHASH_CPY(dst, src) do { \ + dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; \ + } while(0) +# elif SIZEOF_PY_UHASH_T == 8 +# define PY_UHASH_CPY(dst, src) do { \ + dst[0] = src[0]; dst[1] = src[1]; dst[2] = src[2]; dst[3] = src[3]; \ + dst[4] = src[4]; dst[5] = src[5]; dst[6] = src[6]; dst[7] = src[7]; \ + } while(0) +# else +# error SIZEOF_PY_UHASH_T must be 4 or 8 +# endif /* SIZEOF_PY_UHASH_T */ +#else /* not Windows */ +# define PY_UHASH_CPY(dst, src) memcpy(dst, src, SIZEOF_PY_UHASH_T) +#endif /* _MSC_VER */ + + +#if Py_HASH_ALGORITHM == Py_HASH_FNV +/* ************************************************************************** + * Modified Fowler-Noll-Vo (FNV) hash function + */ +static Py_hash_t +fnv(const void *src, Py_ssize_t len) +{ + const unsigned char *p = src; + Py_uhash_t x; + Py_ssize_t remainder, blocks; + union { + Py_uhash_t value; + unsigned char bytes[SIZEOF_PY_UHASH_T]; + } block; + +#ifdef Py_DEBUG + assert(_Py_HashSecret_Initialized); +#endif + remainder = len % SIZEOF_PY_UHASH_T; + if (remainder == 0) { + /* Process at least one block byte by byte to reduce hash collisions + * for strings with common prefixes. */ + remainder = SIZEOF_PY_UHASH_T; + } + blocks = (len - remainder) / SIZEOF_PY_UHASH_T; + + x = (Py_uhash_t) _Py_HashSecret.fnv.prefix; + x ^= (Py_uhash_t) *p << 7; + while (blocks--) { + PY_UHASH_CPY(block.bytes, p); + x = (_PyHASH_MULTIPLIER * x) ^ block.value; + p += SIZEOF_PY_UHASH_T; + } + /* add remainder */ + for (; remainder > 0; remainder--) + x = (_PyHASH_MULTIPLIER * x) ^ (Py_uhash_t) *p++; + x ^= (Py_uhash_t) len; + x ^= (Py_uhash_t) _Py_HashSecret.fnv.suffix; + if (x == -1) { + x = -2; + } + return x; +} + +static PyHash_FuncDef PyHash_Func = {fnv, "fnv", 8 * SIZEOF_PY_HASH_T, + 16 * SIZEOF_PY_HASH_T}; + +#endif /* Py_HASH_ALGORITHM == Py_HASH_FNV */ + + +#if Py_HASH_ALGORITHM == Py_HASH_SIPHASH24 +/* ************************************************************************** + <MIT License> + Copyright (c) 2013 Marek Majkowski <marek@popcount.org> + + Permission is hereby granted, free of charge, to any person obtaining a copy + of this software and associated documentation files (the "Software"), to deal + in the Software without restriction, including without limitation the rights + to use, copy, modify, merge, publish, distribute, sublicense, and/or sell + copies of the Software, and to permit persons to whom the Software is + furnished to do so, subject to the following conditions: + + The above copyright notice and this permission notice shall be included in + all copies or substantial portions of the Software. + + THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR + IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, + FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE + AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER + LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, + OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN + THE SOFTWARE. + </MIT License> + + Original location: + https://github.com/majek/csiphash/ + + Solution inspired by code from: + Samuel Neves (supercop/crypto_auth/siphash24/little) + djb (supercop/crypto_auth/siphash24/little2) + Jean-Philippe Aumasson (https://131002.net/siphash/siphash24.c) + + Modified for Python by Christian Heimes: + - C89 / MSVC compatibility + - PY_UINT64_T, PY_UINT32_T and PY_UINT8_T + - _rotl64() on Windows + - letoh64() fallback +*/ + +typedef unsigned char PY_UINT8_T; + +/* byte swap little endian to host endian + * Endian conversion not only ensures that the hash function returns the same + * value on all platforms. It is also required to for a good dispersion of + * the hash values' least significant bits. + */ +#if PY_LITTLE_ENDIAN +# define _le64toh(x) ((PY_UINT64_T)(x)) +#elif defined(__APPLE__) +# define _le64toh(x) OSSwapLittleToHostInt64(x) +#elif defined(HAVE_LETOH64) +# define _le64toh(x) le64toh(x) +#else +# define _le64toh(x) (((PY_UINT64_T)(x) << 56) | \ + (((PY_UINT64_T)(x) << 40) & 0xff000000000000ULL) | \ + (((PY_UINT64_T)(x) << 24) & 0xff0000000000ULL) | \ + (((PY_UINT64_T)(x) << 8) & 0xff00000000ULL) | \ + (((PY_UINT64_T)(x) >> 8) & 0xff000000ULL) | \ + (((PY_UINT64_T)(x) >> 24) & 0xff0000ULL) | \ + (((PY_UINT64_T)(x) >> 40) & 0xff00ULL) | \ + ((PY_UINT64_T)(x) >> 56)) +#endif + + +#ifdef _MSC_VER +# define ROTATE(x, b) _rotl64(x, b) +#else +# define ROTATE(x, b) (PY_UINT64_T)( ((x) << (b)) | ( (x) >> (64 - (b))) ) +#endif + +#define HALF_ROUND(a,b,c,d,s,t) \ + a += b; c += d; \ + b = ROTATE(b, s) ^ a; \ + d = ROTATE(d, t) ^ c; \ + a = ROTATE(a, 32); + +#define DOUBLE_ROUND(v0,v1,v2,v3) \ + HALF_ROUND(v0,v1,v2,v3,13,16); \ + HALF_ROUND(v2,v1,v0,v3,17,21); \ + HALF_ROUND(v0,v1,v2,v3,13,16); \ + HALF_ROUND(v2,v1,v0,v3,17,21); + + +static Py_hash_t +siphash24(const void *src, Py_ssize_t src_sz) { + PY_UINT64_T k0 = _le64toh(_Py_HashSecret.siphash.k0); + PY_UINT64_T k1 = _le64toh(_Py_HashSecret.siphash.k1); + PY_UINT64_T b = (PY_UINT64_T)src_sz << 56; + const PY_UINT64_T *in = (PY_UINT64_T*)src; + + PY_UINT64_T v0 = k0 ^ 0x736f6d6570736575ULL; + PY_UINT64_T v1 = k1 ^ 0x646f72616e646f6dULL; + PY_UINT64_T v2 = k0 ^ 0x6c7967656e657261ULL; + PY_UINT64_T v3 = k1 ^ 0x7465646279746573ULL; + + PY_UINT64_T t; + PY_UINT8_T *pt; + PY_UINT8_T *m; + + while (src_sz >= 8) { + PY_UINT64_T mi = _le64toh(*in); + in += 1; + src_sz -= 8; + v3 ^= mi; + DOUBLE_ROUND(v0,v1,v2,v3); + v0 ^= mi; + } + + t = 0; + pt = (PY_UINT8_T *)&t; + m = (PY_UINT8_T *)in; + switch (src_sz) { + case 7: pt[6] = m[6]; + case 6: pt[5] = m[5]; + case 5: pt[4] = m[4]; + case 4: *((PY_UINT32_T*)&pt[0]) = *((PY_UINT32_T*)&m[0]); break; + case 3: pt[2] = m[2]; + case 2: pt[1] = m[1]; + case 1: pt[0] = m[0]; + } + b |= _le64toh(t); + + v3 ^= b; + DOUBLE_ROUND(v0,v1,v2,v3); + v0 ^= b; + v2 ^= 0xff; + DOUBLE_ROUND(v0,v1,v2,v3); + DOUBLE_ROUND(v0,v1,v2,v3); + + /* modified */ + t = (v0 ^ v1) ^ (v2 ^ v3); +#if SIZEOF_VOID_P == 4 + t ^= (t >> 32); +#endif + return (Py_hash_t)t; +} + +static PyHash_FuncDef PyHash_Func = {siphash24, "siphash24", 64, 128}; + +#endif /* Py_HASH_ALGORITHM == Py_HASH_SIPHASH24 */ + +#ifdef __cplusplus +} +#endif |