summaryrefslogtreecommitdiffstats
path: root/Python/pymath.c
diff options
context:
space:
mode:
authorChristian Heimes <christian@cheimes.de>2008-04-18 23:13:07 (GMT)
committerChristian Heimes <christian@cheimes.de>2008-04-18 23:13:07 (GMT)
commit6f34109384f3a78d5f4f8bdd418a89caca19631e (patch)
treef5b446eb4cd2993b6be5a373148530976ce39f4b /Python/pymath.c
parent858a77099e094ce4ef57778d38230ec36db2e805 (diff)
downloadcpython-6f34109384f3a78d5f4f8bdd418a89caca19631e.zip
cpython-6f34109384f3a78d5f4f8bdd418a89caca19631e.tar.gz
cpython-6f34109384f3a78d5f4f8bdd418a89caca19631e.tar.bz2
I finally got the time to update and merge Mark's and my trunk-math branch. The patch is collaborated work of Mark Dickinson and me. It was mostly done a few months ago. The patch fixes a lot of loose ends and edge cases related to operations with NaN, INF, very small values and complex math.
The patch also adds acosh, asinh, atanh, log1p and copysign to all platforms. Finally it fixes differences between platforms like different results or exceptions for edge cases. Have fun :)
Diffstat (limited to 'Python/pymath.c')
-rw-r--r--Python/pymath.c232
1 files changed, 232 insertions, 0 deletions
diff --git a/Python/pymath.c b/Python/pymath.c
new file mode 100644
index 0000000..7c00106
--- /dev/null
+++ b/Python/pymath.c
@@ -0,0 +1,232 @@
+#include "Python.h"
+
+#ifndef HAVE_HYPOT
+double hypot(double x, double y)
+{
+ double yx;
+
+ x = fabs(x);
+ y = fabs(y);
+ if (x < y) {
+ double temp = x;
+ x = y;
+ y = temp;
+ }
+ if (x == 0.)
+ return 0.;
+ else {
+ yx = y/x;
+ return x*sqrt(1.+yx*yx);
+ }
+}
+#endif /* HAVE_HYPOT */
+
+#ifndef HAVE_COPYSIGN
+static double
+copysign(double x, double y)
+{
+ /* use atan2 to distinguish -0. from 0. */
+ if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) {
+ return fabs(x);
+ } else {
+ return -fabs(x);
+ }
+}
+#endif /* HAVE_COPYSIGN */
+
+#ifndef HAVE_LOG1P
+double
+log1p(double x)
+{
+ /* For x small, we use the following approach. Let y be the nearest
+ float to 1+x, then
+
+ 1+x = y * (1 - (y-1-x)/y)
+
+ so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny,
+ the second term is well approximated by (y-1-x)/y. If abs(x) >=
+ DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
+ then y-1-x will be exactly representable, and is computed exactly
+ by (y-1)-x.
+
+ If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
+ round-to-nearest then this method is slightly dangerous: 1+x could
+ be rounded up to 1+DBL_EPSILON instead of down to 1, and in that
+ case y-1-x will not be exactly representable any more and the
+ result can be off by many ulps. But this is easily fixed: for a
+ floating-point number |x| < DBL_EPSILON/2., the closest
+ floating-point number to log(1+x) is exactly x.
+ */
+
+ double y;
+ if (fabs(x) < DBL_EPSILON/2.) {
+ return x;
+ } else if (-0.5 <= x && x <= 1.) {
+ /* WARNING: it's possible than an overeager compiler
+ will incorrectly optimize the following two lines
+ to the equivalent of "return log(1.+x)". If this
+ happens, then results from log1p will be inaccurate
+ for small x. */
+ y = 1.+x;
+ return log(y)-((y-1.)-x)/y;
+ } else {
+ /* NaNs and infinities should end up here */
+ return log(1.+x);
+ }
+}
+#endif /* HAVE_LOG1P */
+
+/*
+ * ====================================================
+ * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
+ *
+ * Developed at SunPro, a Sun Microsystems, Inc. business.
+ * Permission to use, copy, modify, and distribute this
+ * software is freely granted, provided that this notice
+ * is preserved.
+ * ====================================================
+ */
+
+static const double ln2 = 6.93147180559945286227E-01;
+static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
+static const double two_pow_p28 = 268435456.0; /* 2**28 */
+static const double zero = 0.0;
+
+/* asinh(x)
+ * Method :
+ * Based on
+ * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
+ * we have
+ * asinh(x) := x if 1+x*x=1,
+ * := sign(x)*(log(x)+ln2)) for large |x|, else
+ * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
+ * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
+ */
+
+#ifndef HAVE_ASINH
+double
+asinh(double x)
+{
+ double w;
+ double absx = fabs(x);
+
+ if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
+ return x+x;
+ }
+ if (absx < two_pow_m28) { /* |x| < 2**-28 */
+ return x; /* return x inexact except 0 */
+ }
+ if (absx > two_pow_p28) { /* |x| > 2**28 */
+ w = log(absx)+ln2;
+ }
+ else if (absx > 2.0) { /* 2 < |x| < 2**28 */
+ w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
+ }
+ else { /* 2**-28 <= |x| < 2= */
+ double t = x*x;
+ w = log1p(absx + t / (1.0 + sqrt(1.0 + t)));
+ }
+ return copysign(w, x);
+
+}
+#endif /* HAVE_ASINH */
+
+/* acosh(x)
+ * Method :
+ * Based on
+ * acosh(x) = log [ x + sqrt(x*x-1) ]
+ * we have
+ * acosh(x) := log(x)+ln2, if x is large; else
+ * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
+ * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
+ *
+ * Special cases:
+ * acosh(x) is NaN with signal if x<1.
+ * acosh(NaN) is NaN without signal.
+ */
+
+#ifndef HAVE_ACOSH
+double
+acosh(double x)
+{
+ if (Py_IS_NAN(x)) {
+ return x+x;
+ }
+ if (x < 1.) { /* x < 1; return a signaling NaN */
+ errno = EDOM;
+#ifdef Py_NAN
+ return Py_NAN;
+#else
+ return (x-x)/(x-x);
+#endif
+ }
+ else if (x >= two_pow_p28) { /* x > 2**28 */
+ if (Py_IS_INFINITY(x)) {
+ return x+x;
+ } else {
+ return log(x)+ln2; /* acosh(huge)=log(2x) */
+ }
+ }
+ else if (x == 1.) {
+ return 0.0; /* acosh(1) = 0 */
+ }
+ else if (x > 2.) { /* 2 < x < 2**28 */
+ double t = x*x;
+ return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
+ }
+ else { /* 1 < x <= 2 */
+ double t = x - 1.0;
+ return log1p(t + sqrt(2.0*t + t*t));
+ }
+}
+#endif /* HAVE_ACOSH */
+
+/* atanh(x)
+ * Method :
+ * 1.Reduced x to positive by atanh(-x) = -atanh(x)
+ * 2.For x>=0.5
+ * 1 2x x
+ * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
+ * 2 1 - x 1 - x
+ *
+ * For x<0.5
+ * atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
+ *
+ * Special cases:
+ * atanh(x) is NaN if |x| >= 1 with signal;
+ * atanh(NaN) is that NaN with no signal;
+ *
+ */
+
+#ifndef HAVE_ATANH
+double
+atanh(double x)
+{
+ double absx;
+ double t;
+
+ if (Py_IS_NAN(x)) {
+ return x+x;
+ }
+ absx = fabs(x);
+ if (absx >= 1.) { /* |x| >= 1 */
+ errno = EDOM;
+#ifdef Py_NAN
+ return Py_NAN;
+#else
+ return x/zero;
+#endif
+ }
+ if (absx < two_pow_m28) { /* |x| < 2**-28 */
+ return x;
+ }
+ if (absx < 0.5) { /* |x| < 0.5 */
+ t = absx+absx;
+ t = 0.5 * log1p(t + t*absx / (1.0 - absx));
+ }
+ else { /* 0.5 <= |x| <= 1.0 */
+ t = 0.5 * log1p((absx + absx) / (1.0 - absx));
+ }
+ return copysign(t, x);
+}
+#endif /* HAVE_ATANH */