summaryrefslogtreecommitdiffstats
path: root/Python
diff options
context:
space:
mode:
authorMark Dickinson <dickinsm@gmail.com>2009-12-21 15:27:41 (GMT)
committerMark Dickinson <dickinsm@gmail.com>2009-12-21 15:27:41 (GMT)
commitf371859a4f0705062e94798e21ebe3705d891a37 (patch)
treec4b520a35156bd0d6729980b1253a4ce04bf39c3 /Python
parent0f72d6c25fb3ff16b4c459221d56f87f221c59d0 (diff)
downloadcpython-f371859a4f0705062e94798e21ebe3705d891a37.zip
cpython-f371859a4f0705062e94798e21ebe3705d891a37.tar.gz
cpython-f371859a4f0705062e94798e21ebe3705d891a37.tar.bz2
Merged revisions 76978 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk ........ r76978 | mark.dickinson | 2009-12-21 15:22:00 +0000 (Mon, 21 Dec 2009) | 3 lines Issue #7518: Move substitute definitions of C99 math functions from pymath.c to Modules/_math.c. ........
Diffstat (limited to 'Python')
-rw-r--r--Python/pymath.c199
1 files changed, 0 insertions, 199 deletions
diff --git a/Python/pymath.c b/Python/pymath.c
index db2920c..83105f2 100644
--- a/Python/pymath.c
+++ b/Python/pymath.c
@@ -77,202 +77,3 @@ round(double x)
return copysign(y, x);
}
#endif /* HAVE_ROUND */
-
-#ifndef HAVE_LOG1P
-#include <float.h>
-
-double
-log1p(double x)
-{
- /* For x small, we use the following approach. Let y be the nearest
- float to 1+x, then
-
- 1+x = y * (1 - (y-1-x)/y)
-
- so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny,
- the second term is well approximated by (y-1-x)/y. If abs(x) >=
- DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest
- then y-1-x will be exactly representable, and is computed exactly
- by (y-1)-x.
-
- If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be
- round-to-nearest then this method is slightly dangerous: 1+x could
- be rounded up to 1+DBL_EPSILON instead of down to 1, and in that
- case y-1-x will not be exactly representable any more and the
- result can be off by many ulps. But this is easily fixed: for a
- floating-point number |x| < DBL_EPSILON/2., the closest
- floating-point number to log(1+x) is exactly x.
- */
-
- double y;
- if (fabs(x) < DBL_EPSILON/2.) {
- return x;
- } else if (-0.5 <= x && x <= 1.) {
- /* WARNING: it's possible than an overeager compiler
- will incorrectly optimize the following two lines
- to the equivalent of "return log(1.+x)". If this
- happens, then results from log1p will be inaccurate
- for small x. */
- y = 1.+x;
- return log(y)-((y-1.)-x)/y;
- } else {
- /* NaNs and infinities should end up here */
- return log(1.+x);
- }
-}
-#endif /* HAVE_LOG1P */
-
-/*
- * ====================================================
- * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved.
- *
- * Developed at SunPro, a Sun Microsystems, Inc. business.
- * Permission to use, copy, modify, and distribute this
- * software is freely granted, provided that this notice
- * is preserved.
- * ====================================================
- */
-
-static const double ln2 = 6.93147180559945286227E-01;
-static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */
-static const double two_pow_p28 = 268435456.0; /* 2**28 */
-static const double zero = 0.0;
-
-/* asinh(x)
- * Method :
- * Based on
- * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ]
- * we have
- * asinh(x) := x if 1+x*x=1,
- * := sign(x)*(log(x)+ln2)) for large |x|, else
- * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else
- * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2)))
- */
-
-#ifndef HAVE_ASINH
-double
-asinh(double x)
-{
- double w;
- double absx = fabs(x);
-
- if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) {
- return x+x;
- }
- if (absx < two_pow_m28) { /* |x| < 2**-28 */
- return x; /* return x inexact except 0 */
- }
- if (absx > two_pow_p28) { /* |x| > 2**28 */
- w = log(absx)+ln2;
- }
- else if (absx > 2.0) { /* 2 < |x| < 2**28 */
- w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx));
- }
- else { /* 2**-28 <= |x| < 2= */
- double t = x*x;
- w = log1p(absx + t / (1.0 + sqrt(1.0 + t)));
- }
- return copysign(w, x);
-
-}
-#endif /* HAVE_ASINH */
-
-/* acosh(x)
- * Method :
- * Based on
- * acosh(x) = log [ x + sqrt(x*x-1) ]
- * we have
- * acosh(x) := log(x)+ln2, if x is large; else
- * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else
- * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1.
- *
- * Special cases:
- * acosh(x) is NaN with signal if x<1.
- * acosh(NaN) is NaN without signal.
- */
-
-#ifndef HAVE_ACOSH
-double
-acosh(double x)
-{
- if (Py_IS_NAN(x)) {
- return x+x;
- }
- if (x < 1.) { /* x < 1; return a signaling NaN */
- errno = EDOM;
-#ifdef Py_NAN
- return Py_NAN;
-#else
- return (x-x)/(x-x);
-#endif
- }
- else if (x >= two_pow_p28) { /* x > 2**28 */
- if (Py_IS_INFINITY(x)) {
- return x+x;
- } else {
- return log(x)+ln2; /* acosh(huge)=log(2x) */
- }
- }
- else if (x == 1.) {
- return 0.0; /* acosh(1) = 0 */
- }
- else if (x > 2.) { /* 2 < x < 2**28 */
- double t = x*x;
- return log(2.0*x - 1.0 / (x + sqrt(t - 1.0)));
- }
- else { /* 1 < x <= 2 */
- double t = x - 1.0;
- return log1p(t + sqrt(2.0*t + t*t));
- }
-}
-#endif /* HAVE_ACOSH */
-
-/* atanh(x)
- * Method :
- * 1.Reduced x to positive by atanh(-x) = -atanh(x)
- * 2.For x>=0.5
- * 1 2x x
- * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------)
- * 2 1 - x 1 - x
- *
- * For x<0.5
- * atanh(x) = 0.5*log1p(2x+2x*x/(1-x))
- *
- * Special cases:
- * atanh(x) is NaN if |x| >= 1 with signal;
- * atanh(NaN) is that NaN with no signal;
- *
- */
-
-#ifndef HAVE_ATANH
-double
-atanh(double x)
-{
- double absx;
- double t;
-
- if (Py_IS_NAN(x)) {
- return x+x;
- }
- absx = fabs(x);
- if (absx >= 1.) { /* |x| >= 1 */
- errno = EDOM;
-#ifdef Py_NAN
- return Py_NAN;
-#else
- return x/zero;
-#endif
- }
- if (absx < two_pow_m28) { /* |x| < 2**-28 */
- return x;
- }
- if (absx < 0.5) { /* |x| < 0.5 */
- t = absx+absx;
- t = 0.5 * log1p(t + t*absx / (1.0 - absx));
- }
- else { /* 0.5 <= |x| <= 1.0 */
- t = 0.5 * log1p((absx + absx) / (1.0 - absx));
- }
- return copysign(t, x);
-}
-#endif /* HAVE_ATANH */