summaryrefslogtreecommitdiffstats
path: root/Python
diff options
context:
space:
mode:
authorMark Dickinson <dickinsm@gmail.com>2010-01-14 15:37:49 (GMT)
committerMark Dickinson <dickinsm@gmail.com>2010-01-14 15:37:49 (GMT)
commit853c3bbc4c10c84f66471ff9423d572301f3015b (patch)
treec70b9e1ed594e015bd59e1eefda9162d00b8bd77 /Python
parentae5465a5789c76afb1849f48818285e3be6fff2a (diff)
downloadcpython-853c3bbc4c10c84f66471ff9423d572301f3015b.zip
cpython-853c3bbc4c10c84f66471ff9423d572301f3015b.tar.gz
cpython-853c3bbc4c10c84f66471ff9423d572301f3015b.tar.bz2
Merged revisions 77477-77478,77481-77483,77490-77493 via svnmerge from
svn+ssh://pythondev@svn.python.org/python/trunk ........ r77477 | mark.dickinson | 2010-01-13 18:21:53 +0000 (Wed, 13 Jan 2010) | 1 line Add comments explaining the role of the bigcomp function in dtoa.c. ........ r77478 | mark.dickinson | 2010-01-13 19:02:37 +0000 (Wed, 13 Jan 2010) | 1 line Clarify that sulp expects a nonnegative input, but that +0.0 is fine. ........ r77481 | mark.dickinson | 2010-01-13 20:55:03 +0000 (Wed, 13 Jan 2010) | 1 line Simplify and annotate the bigcomp function, removing unused special cases. ........ r77482 | mark.dickinson | 2010-01-13 22:15:53 +0000 (Wed, 13 Jan 2010) | 1 line Fix buggy comparison: LHS of comparison was being treated as unsigned. ........ r77483 | mark.dickinson | 2010-01-13 22:20:10 +0000 (Wed, 13 Jan 2010) | 1 line More dtoa.c cleanup; remove the need for bc.dplen, bc.dp0 and bc.dp1. ........ r77490 | mark.dickinson | 2010-01-14 13:02:36 +0000 (Thu, 14 Jan 2010) | 1 line Fix off-by-one error introduced in r77483. I have a test for this, but it currently fails due to a different dtoa.c bug; I'll add the test once that bug is fixed. ........ r77491 | mark.dickinson | 2010-01-14 13:14:49 +0000 (Thu, 14 Jan 2010) | 1 line Issue 7632: fix a dtoa.c bug (bug 6) causing incorrect rounding. Tests to follow. ........ r77492 | mark.dickinson | 2010-01-14 14:40:20 +0000 (Thu, 14 Jan 2010) | 1 line Issue 7632: fix incorrect rounding for long input strings with values very close to a power of 2. (See Bug 4 in the tracker discussion.) ........ r77493 | mark.dickinson | 2010-01-14 15:22:33 +0000 (Thu, 14 Jan 2010) | 1 line Issue #7632: add tests for bugs fixed so far. ........
Diffstat (limited to 'Python')
-rw-r--r--Python/dtoa.c258
1 files changed, 145 insertions, 113 deletions
diff --git a/Python/dtoa.c b/Python/dtoa.c
index 1fe20f4..51895c7 100644
--- a/Python/dtoa.c
+++ b/Python/dtoa.c
@@ -270,7 +270,7 @@ typedef union { double d; ULong L[2]; } U;
typedef struct BCinfo BCinfo;
struct
BCinfo {
- int dp0, dp1, dplen, dsign, e0, nd, nd0, scale;
+ int dsign, e0, nd, nd0, scale;
};
#define FFFFFFFF 0xffffffffUL
@@ -437,7 +437,7 @@ multadd(Bigint *b, int m, int a) /* multiply by m and add a */
NULL on failure. */
static Bigint *
-s2b(const char *s, int nd0, int nd, ULong y9, int dplen)
+s2b(const char *s, int nd0, int nd, ULong y9)
{
Bigint *b;
int i, k;
@@ -451,18 +451,16 @@ s2b(const char *s, int nd0, int nd, ULong y9, int dplen)
b->x[0] = y9;
b->wds = 1;
- i = 9;
- if (9 < nd0) {
- s += 9;
- do {
- b = multadd(b, 10, *s++ - '0');
- if (b == NULL)
- return NULL;
- } while(++i < nd0);
- s += dplen;
+ if (nd <= 9)
+ return b;
+
+ s += 9;
+ for (i = 9; i < nd0; i++) {
+ b = multadd(b, 10, *s++ - '0');
+ if (b == NULL)
+ return NULL;
}
- else
- s += dplen + 9;
+ s++;
for(; i < nd; i++) {
b = multadd(b, 10, *s++ - '0');
if (b == NULL)
@@ -1130,76 +1128,120 @@ quorem(Bigint *b, Bigint *S)
return q;
}
-/* version of ulp(x) that takes bc.scale into account.
+/* sulp(x) is a version of ulp(x) that takes bc.scale into account.
- Assuming that x is finite and nonzero, and x / 2^bc.scale is exactly
- representable as a double, sulp(x) is equivalent to 2^bc.scale * ulp(x /
- 2^bc.scale). */
+ Assuming that x is finite and nonnegative (positive zero is fine
+ here) and x / 2^bc.scale is exactly representable as a double,
+ sulp(x) is equivalent to 2^bc.scale * ulp(x / 2^bc.scale). */
static double
sulp(U *x, BCinfo *bc)
{
U u;
- if (bc->scale && 2*P + 1 - ((word0(x) & Exp_mask) >> Exp_shift) > 0) {
+ if (bc->scale && 2*P + 1 > (int)((word0(x) & Exp_mask) >> Exp_shift)) {
/* rv/2^bc->scale is subnormal */
word0(&u) = (P+2)*Exp_msk1;
word1(&u) = 0;
return u.d;
}
- else
+ else {
+ assert(word0(x) || word1(x)); /* x != 0.0 */
return ulp(x);
+ }
}
-/* return 0 on success, -1 on failure */
+/* The bigcomp function handles some hard cases for strtod, for inputs
+ with more than STRTOD_DIGLIM digits. It's called once an initial
+ estimate for the double corresponding to the input string has
+ already been obtained by the code in _Py_dg_strtod.
+
+ The bigcomp function is only called after _Py_dg_strtod has found a
+ double value rv such that either rv or rv + 1ulp represents the
+ correctly rounded value corresponding to the original string. It
+ determines which of these two values is the correct one by
+ computing the decimal digits of rv + 0.5ulp and comparing them with
+ the corresponding digits of s0.
+
+ In the following, write dv for the absolute value of the number represented
+ by the input string.
+
+ Inputs:
+
+ s0 points to the first significant digit of the input string.
+
+ rv is a (possibly scaled) estimate for the closest double value to the
+ value represented by the original input to _Py_dg_strtod. If
+ bc->scale is nonzero, then rv/2^(bc->scale) is the approximation to
+ the input value.
+
+ bc is a struct containing information gathered during the parsing and
+ estimation steps of _Py_dg_strtod. Description of fields follows:
+
+ bc->dsign is 1 if rv < decimal value, 0 if rv >= decimal value. In
+ normal use, it should almost always be 1 when bigcomp is entered.
+
+ bc->e0 gives the exponent of the input value, such that dv = (integer
+ given by the bd->nd digits of s0) * 10**e0
+
+ bc->nd gives the total number of significant digits of s0. It will
+ be at least 1.
+
+ bc->nd0 gives the number of significant digits of s0 before the
+ decimal separator. If there's no decimal separator, bc->nd0 ==
+ bc->nd.
+
+ bc->scale is the value used to scale rv to avoid doing arithmetic with
+ subnormal values. It's either 0 or 2*P (=106).
+
+ Outputs:
+
+ On successful exit, rv/2^(bc->scale) is the closest double to dv.
+
+ Returns 0 on success, -1 on failure (e.g., due to a failed malloc call). */
static int
bigcomp(U *rv, const char *s0, BCinfo *bc)
{
Bigint *b, *d;
- int b2, bbits, d2, dd, dig, dsign, i, j, nd, nd0, p2, p5, speccase;
+ int b2, bbits, d2, dd, i, nd, nd0, odd, p2, p5;
- dsign = bc->dsign;
+ dd = 0; /* silence compiler warning about possibly unused variable */
nd = bc->nd;
nd0 = bc->nd0;
p5 = nd + bc->e0;
- speccase = 0;
- if (rv->d == 0.) { /* special case: value near underflow-to-zero */
- /* threshold was rounded to zero */
- b = i2b(1);
+ if (rv->d == 0.) {
+ /* special case because d2b doesn't handle 0.0 */
+ b = i2b(0);
if (b == NULL)
return -1;
- p2 = Emin - P + 1;
- bbits = 1;
- word0(rv) = (P+2) << Exp_shift;
- i = 0;
- {
- speccase = 1;
- --p2;
- dsign = 0;
- goto have_i;
- }
+ p2 = Emin - P + 1; /* = -1074 for IEEE 754 binary64 */
+ bbits = 0;
}
- else
- {
+ else {
b = d2b(rv, &p2, &bbits);
if (b == NULL)
return -1;
+ p2 -= bc->scale;
}
- p2 -= bc->scale;
- /* floor(log2(rv)) == bbits - 1 + p2 */
- /* Check for denormal case. */
+ /* now rv/2^(bc->scale) = b * 2**p2, and b has bbits significant bits */
+
+ /* Replace (b, p2) by (b << i, p2 - i), with i the largest integer such
+ that b << i has at most P significant bits and p2 - i >= Emin - P +
+ 1. */
i = P - bbits;
- if (i > (j = P - Emin - 1 + p2)) {
- i = j;
- }
- {
- b = lshift(b, ++i);
- if (b == NULL)
- return -1;
- b->x[0] |= 1;
- }
- have_i:
+ if (i > p2 - (Emin - P + 1))
+ i = p2 - (Emin - P + 1);
+ /* increment i so that we shift b by an extra bit; then or-ing a 1 into
+ the lsb of b gives us rv/2^(bc->scale) + 0.5ulp. */
+ b = lshift(b, ++i);
+ if (b == NULL)
+ return -1;
+ /* record whether the lsb of rv/2^(bc->scale) is odd: in the exact halfway
+ case, this is used for round to even. */
+ odd = b->x[0] & 2;
+ b->x[0] |= 1;
+
p2 -= p5 + i;
d = i2b(1);
if (d == NULL) {
@@ -1247,92 +1289,58 @@ bigcomp(U *rv, const char *s0, BCinfo *bc)
}
}
- /* Now 10*b/d = exactly half-way between the two floating-point values
- on either side of the input string. If b >= d, round down. */
+ /* if b >= d, round down */
if (cmp(b, d) >= 0) {
dd = -1;
goto ret;
}
-
- /* Compute first digit of 10*b/d. */
- b = multadd(b, 10, 0);
- if (b == NULL) {
- Bfree(d);
- return -1;
- }
- dig = quorem(b, d);
- assert(dig < 10);
/* Compare b/d with s0 */
-
- assert(nd > 0);
- dd = 9999; /* silence gcc compiler warning */
- for(i = 0; i < nd0; ) {
- if ((dd = s0[i++] - '0' - dig))
- goto ret;
- if (!b->x[0] && b->wds == 1) {
- if (i < nd)
- dd = 1;
- goto ret;
- }
+ for(i = 0; i < nd0; i++) {
b = multadd(b, 10, 0);
if (b == NULL) {
Bfree(d);
return -1;
}
- dig = quorem(b,d);
- }
- for(j = bc->dp1; i++ < nd;) {
- if ((dd = s0[j++] - '0' - dig))
+ dd = *s0++ - '0' - quorem(b, d);
+ if (dd)
goto ret;
if (!b->x[0] && b->wds == 1) {
- if (i < nd)
+ if (i < nd - 1)
dd = 1;
goto ret;
}
+ }
+ s0++;
+ for(; i < nd; i++) {
b = multadd(b, 10, 0);
if (b == NULL) {
Bfree(d);
return -1;
}
- dig = quorem(b,d);
+ dd = *s0++ - '0' - quorem(b, d);
+ if (dd)
+ goto ret;
+ if (!b->x[0] && b->wds == 1) {
+ if (i < nd - 1)
+ dd = 1;
+ goto ret;
+ }
}
if (b->x[0] || b->wds > 1)
dd = -1;
ret:
Bfree(b);
Bfree(d);
- if (speccase) {
- if (dd <= 0)
- rv->d = 0.;
- }
- else if (dd < 0) {
- if (!dsign) /* does not happen for round-near */
- retlow1:
- dval(rv) -= sulp(rv, bc);
- }
- else if (dd > 0) {
- if (dsign) {
- rethi1:
- dval(rv) += sulp(rv, bc);
- }
- }
- else {
- /* Exact half-way case: apply round-even rule. */
- if (word1(rv) & 1) {
- if (dsign)
- goto rethi1;
- goto retlow1;
- }
- }
-
+ if (dd > 0 || (dd == 0 && odd))
+ dval(rv) += sulp(rv, bc);
return 0;
}
double
_Py_dg_strtod(const char *s00, char **se)
{
- int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1, error;
+ int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dp0, dp1, dplen, e, e1, error;
int esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
const char *s, *s0, *s1;
double aadj, aadj1;
@@ -1341,7 +1349,7 @@ _Py_dg_strtod(const char *s00, char **se)
BCinfo bc;
Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
- sign = nz0 = nz = bc.dplen = 0;
+ sign = nz0 = nz = dplen = 0;
dval(&rv) = 0.;
for(s = s00;;s++) switch(*s) {
case '-':
@@ -1380,11 +1388,11 @@ _Py_dg_strtod(const char *s00, char **se)
else if (nd < 16)
z = 10*z + c - '0';
nd0 = nd;
- bc.dp0 = bc.dp1 = s - s0;
+ dp0 = dp1 = s - s0;
if (c == '.') {
c = *++s;
- bc.dp1 = s - s0;
- bc.dplen = bc.dp1 - bc.dp0;
+ dp1 = s - s0;
+ dplen = 1;
if (!nd) {
for(; c == '0'; c = *++s)
nz++;
@@ -1587,10 +1595,10 @@ _Py_dg_strtod(const char *s00, char **se)
/* in IEEE arithmetic. */
i = j = 18;
if (i > nd0)
- j += bc.dplen;
+ j += dplen;
for(;;) {
- if (--j <= bc.dp1 && j >= bc.dp0)
- j = bc.dp0 - 1;
+ if (--j <= dp1 && j >= dp0)
+ j = dp0 - 1;
if (s0[j] != '0')
break;
--i;
@@ -1603,11 +1611,11 @@ _Py_dg_strtod(const char *s00, char **se)
y = 0;
for(i = 0; i < nd0; ++i)
y = 10*y + s0[i] - '0';
- for(j = bc.dp1; i < nd; ++i)
+ for(j = dp1; i < nd; ++i)
y = 10*y + s0[j++] - '0';
}
}
- bd0 = s2b(s0, nd0, nd, y, bc.dplen);
+ bd0 = s2b(s0, nd0, nd, y);
if (bd0 == NULL)
goto failed_malloc;
@@ -1730,6 +1738,30 @@ _Py_dg_strtod(const char *s00, char **se)
if (bc.nd > nd && i <= 0) {
if (bc.dsign)
break; /* Must use bigcomp(). */
+
+ /* Here rv overestimates the truncated decimal value by at most
+ 0.5 ulp(rv). Hence rv either overestimates the true decimal
+ value by <= 0.5 ulp(rv), or underestimates it by some small
+ amount (< 0.1 ulp(rv)); either way, rv is within 0.5 ulps of
+ the true decimal value, so it's possible to exit.
+
+ Exception: if scaled rv is a normal exact power of 2, but not
+ DBL_MIN, then rv - 0.5 ulp(rv) takes us all the way down to the
+ next double, so the correctly rounded result is either rv - 0.5
+ ulp(rv) or rv; in this case, use bigcomp to distinguish. */
+
+ if (!word1(&rv) && !(word0(&rv) & Bndry_mask)) {
+ /* rv can't be 0, since it's an overestimate for some
+ nonzero value. So rv is a normal power of 2. */
+ j = (int)(word0(&rv) & Exp_mask) >> Exp_shift;
+ /* rv / 2^bc.scale = 2^(j - 1023 - bc.scale); use bigcomp if
+ rv / 2^bc.scale >= 2^-1021. */
+ if (j - bc.scale >= 2) {
+ dval(&rv) -= 0.5 * sulp(&rv, &bc);
+ break;
+ }
+ }
+
{
bc.nd = nd;
i = -1; /* Discarded digits make delta smaller. */