diff options
-rw-r--r-- | Doc/lib/librandom.tex | 48 | ||||
-rw-r--r-- | Doc/librandom.tex | 48 |
2 files changed, 50 insertions, 46 deletions
diff --git a/Doc/lib/librandom.tex b/Doc/lib/librandom.tex index ab4527f..66fda8d 100644 --- a/Doc/lib/librandom.tex +++ b/Doc/lib/librandom.tex @@ -9,66 +9,68 @@ distributions. For generating distribution of angles, the circular uniform and von Mises distributions are available. The module exports the following functions, which are exactly -equivalent to those in the \code{whrandom} module: \code{choice}, -\code{randint}, \code{random}, \code{uniform}. See the documentation -for the \code{whrandom} module for these functions. +equivalent to those in the \module{whrandom} module: +\function{choice()}, \function{randint()}, \function{random()} and +\function{uniform()}. See the documentation for the \module{whrandom} +module for these functions. -The following functions specific to the \code{random} module are also +The following functions specific to the \module{random} module are also defined, and all return real values. Function parameters are named after the corresponding variables in the distribution's equation, as used in common mathematical practice; most of these equations can be found in any statistics text. \setindexsubitem{(in module random)} -\begin{funcdesc}{betavariate}{alpha\, beta} -Beta distribution. Conditions on the parameters are \code{alpha>-1} -and \code{beta>-1}. +\begin{funcdesc}{betavariate}{alpha, beta} +Beta distribution. Conditions on the parameters are +\code{\var{alpha}>-1} and \code{\var{beta}>-1}. Returned values will range between 0 and 1. \end{funcdesc} -\begin{funcdesc}{cunifvariate}{mean\, arc} +\begin{funcdesc}{cunifvariate}{mean, arc} Circular uniform distribution. \var{mean} is the mean angle, and \var{arc} is the range of the distribution, centered around the mean angle. Both values must be expressed in radians, and can range between 0 and \code{pi}. Returned values will range between -\code{mean - arc/2} and \code{mean + arc/2}. +\code{\var{mean} - \var{arc}/2} and \code{\var{mean} + \var{arc}/2}. \end{funcdesc} \begin{funcdesc}{expovariate}{lambd} -Exponential distribution. \var{lambd} is 1.0 divided by the desired mean. -(The parameter would be called ``lambda'', but that's also a reserved -word in Python.) Returned values will range from 0 to positive infinity. +Exponential distribution. \var{lambd} is 1.0 divided by the desired +mean. (The parameter would be called ``lambda'', but that is a +reserved word in Python.) Returned values will range from 0 to +positive infinity. \end{funcdesc} -\begin{funcdesc}{gamma}{alpha\, beta} -Gamma distribution. (\emph{Not} the gamma function!) -Conditions on the parameters are \code{alpha>-1} and \code{beta>0}. +\begin{funcdesc}{gamma}{alpha, beta} +Gamma distribution. (\emph{Not} the gamma function!) Conditions on +the parameters are \code{\var{alpha}>-1} and \code{\var{beta}>0}. \end{funcdesc} -\begin{funcdesc}{gauss}{mu\, sigma} +\begin{funcdesc}{gauss}{mu, sigma} Gaussian distribution. \var{mu} is the mean, and \var{sigma} is the standard deviation. This is slightly faster than the -\code{normalvariate} function defined below. +\function{normalvariate()} function defined below. \end{funcdesc} -\begin{funcdesc}{lognormvariate}{mu\, sigma} +\begin{funcdesc}{lognormvariate}{mu, sigma} Log normal distribution. If you take the natural logarithm of this distribution, you'll get a normal distribution with mean \var{mu} and -standard deviation \var{sigma} \var{mu} can have any value, and \var{sigma} +standard deviation \var{sigma}. \var{mu} can have any value, and \var{sigma} must be greater than zero. \end{funcdesc} -\begin{funcdesc}{normalvariate}{mu\, sigma} +\begin{funcdesc}{normalvariate}{mu, sigma} Normal distribution. \var{mu} is the mean, and \var{sigma} is the standard deviation. \end{funcdesc} -\begin{funcdesc}{vonmisesvariate}{mu\, kappa} +\begin{funcdesc}{vonmisesvariate}{mu, kappa} \var{mu} is the mean angle, expressed in radians between 0 and pi, and \var{kappa} is the concentration parameter, which must be greater then or equal to zero. If \var{kappa} is equal to zero, this distribution reduces to a uniform random angle over the range 0 to -\code{2*pi}. +$2\pi$. \end{funcdesc} \begin{funcdesc}{paretovariate}{alpha} @@ -76,7 +78,7 @@ Pareto distribution. \var{alpha} is the shape parameter. \end{funcdesc} \begin{funcdesc}{weibullvariate}{alpha, beta} -Weibull distribution. \var{alpha} is the scale parameter, and +Weibull distribution. \var{alpha} is the scale parameter and \var{beta} is the shape parameter. \end{funcdesc} diff --git a/Doc/librandom.tex b/Doc/librandom.tex index ab4527f..66fda8d 100644 --- a/Doc/librandom.tex +++ b/Doc/librandom.tex @@ -9,66 +9,68 @@ distributions. For generating distribution of angles, the circular uniform and von Mises distributions are available. The module exports the following functions, which are exactly -equivalent to those in the \code{whrandom} module: \code{choice}, -\code{randint}, \code{random}, \code{uniform}. See the documentation -for the \code{whrandom} module for these functions. +equivalent to those in the \module{whrandom} module: +\function{choice()}, \function{randint()}, \function{random()} and +\function{uniform()}. See the documentation for the \module{whrandom} +module for these functions. -The following functions specific to the \code{random} module are also +The following functions specific to the \module{random} module are also defined, and all return real values. Function parameters are named after the corresponding variables in the distribution's equation, as used in common mathematical practice; most of these equations can be found in any statistics text. \setindexsubitem{(in module random)} -\begin{funcdesc}{betavariate}{alpha\, beta} -Beta distribution. Conditions on the parameters are \code{alpha>-1} -and \code{beta>-1}. +\begin{funcdesc}{betavariate}{alpha, beta} +Beta distribution. Conditions on the parameters are +\code{\var{alpha}>-1} and \code{\var{beta}>-1}. Returned values will range between 0 and 1. \end{funcdesc} -\begin{funcdesc}{cunifvariate}{mean\, arc} +\begin{funcdesc}{cunifvariate}{mean, arc} Circular uniform distribution. \var{mean} is the mean angle, and \var{arc} is the range of the distribution, centered around the mean angle. Both values must be expressed in radians, and can range between 0 and \code{pi}. Returned values will range between -\code{mean - arc/2} and \code{mean + arc/2}. +\code{\var{mean} - \var{arc}/2} and \code{\var{mean} + \var{arc}/2}. \end{funcdesc} \begin{funcdesc}{expovariate}{lambd} -Exponential distribution. \var{lambd} is 1.0 divided by the desired mean. -(The parameter would be called ``lambda'', but that's also a reserved -word in Python.) Returned values will range from 0 to positive infinity. +Exponential distribution. \var{lambd} is 1.0 divided by the desired +mean. (The parameter would be called ``lambda'', but that is a +reserved word in Python.) Returned values will range from 0 to +positive infinity. \end{funcdesc} -\begin{funcdesc}{gamma}{alpha\, beta} -Gamma distribution. (\emph{Not} the gamma function!) -Conditions on the parameters are \code{alpha>-1} and \code{beta>0}. +\begin{funcdesc}{gamma}{alpha, beta} +Gamma distribution. (\emph{Not} the gamma function!) Conditions on +the parameters are \code{\var{alpha}>-1} and \code{\var{beta}>0}. \end{funcdesc} -\begin{funcdesc}{gauss}{mu\, sigma} +\begin{funcdesc}{gauss}{mu, sigma} Gaussian distribution. \var{mu} is the mean, and \var{sigma} is the standard deviation. This is slightly faster than the -\code{normalvariate} function defined below. +\function{normalvariate()} function defined below. \end{funcdesc} -\begin{funcdesc}{lognormvariate}{mu\, sigma} +\begin{funcdesc}{lognormvariate}{mu, sigma} Log normal distribution. If you take the natural logarithm of this distribution, you'll get a normal distribution with mean \var{mu} and -standard deviation \var{sigma} \var{mu} can have any value, and \var{sigma} +standard deviation \var{sigma}. \var{mu} can have any value, and \var{sigma} must be greater than zero. \end{funcdesc} -\begin{funcdesc}{normalvariate}{mu\, sigma} +\begin{funcdesc}{normalvariate}{mu, sigma} Normal distribution. \var{mu} is the mean, and \var{sigma} is the standard deviation. \end{funcdesc} -\begin{funcdesc}{vonmisesvariate}{mu\, kappa} +\begin{funcdesc}{vonmisesvariate}{mu, kappa} \var{mu} is the mean angle, expressed in radians between 0 and pi, and \var{kappa} is the concentration parameter, which must be greater then or equal to zero. If \var{kappa} is equal to zero, this distribution reduces to a uniform random angle over the range 0 to -\code{2*pi}. +$2\pi$. \end{funcdesc} \begin{funcdesc}{paretovariate}{alpha} @@ -76,7 +78,7 @@ Pareto distribution. \var{alpha} is the shape parameter. \end{funcdesc} \begin{funcdesc}{weibullvariate}{alpha, beta} -Weibull distribution. \var{alpha} is the scale parameter, and +Weibull distribution. \var{alpha} is the scale parameter and \var{beta} is the shape parameter. \end{funcdesc} |