summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Lib/test/test_generators.py293
1 files changed, 291 insertions, 2 deletions
diff --git a/Lib/test/test_generators.py b/Lib/test/test_generators.py
index ee7d348..588f365 100644
--- a/Lib/test/test_generators.py
+++ b/Lib/test/test_generators.py
@@ -909,6 +909,42 @@ def conjoin(gs):
for x in gen(0):
yield x
+# And one more approach: For backtracking apps like the Knight's Tour
+# solver below, the number of backtracking levels can be enormous (one
+# level per square, for the Knight's Tour, so that e.g. a 100x100 board
+# needs 10,000 levels). In such cases Python is likely to run out of
+# stack space due to recursion. So here's a recursion-free version of
+# conjoin too.
+# NOTE WELL: This allows large problems to be solved with only trivial
+# demands on stack space. Without explicitly resumable generators, this is
+# much harder to achieve.
+
+def flat_conjoin(gs): # rename to conjoin to run tests with this instead
+ n = len(gs)
+ values = [None] * n
+ iters = [None] * n
+ i = 0
+ while i >= 0:
+ # Need a fresh iterator.
+ if i >= n:
+ yield values
+ # Backtrack.
+ i -= 1
+ else:
+ iters[i] = gs[i]().next
+
+ # Need next value from current iterator.
+ while i >= 0:
+ try:
+ values[i] = iters[i]()
+ except StopIteration:
+ # Backtrack.
+ i -= 1
+ else:
+ # Start fresh at next level.
+ i += 1
+ break
+
# A conjoin-based N-Queens solver.
class Queens:
@@ -961,12 +997,207 @@ class Queens:
print "|" + "|".join(squares) + "|"
print sep
+# A conjoin-based Knight's Tour solver. This is pretty sophisticated
+# (e.g., when used with flat_conjoin above, and passing hard=1 to the
+# constructor, a 200x200 Knight's Tour was found quickly -- note that we're
+# creating 10s of thousands of generators then!), so goes on at some length
+
+class Knights:
+ def __init__(self, n, hard=0):
+ self.n = n
+
+ def coords2index(i, j):
+ return i*n + j
+
+ offsets = [( 1, 2), ( 2, 1), ( 2, -1), ( 1, -2),
+ (-1, -2), (-2, -1), (-2, 1), (-1, 2)]
+ succs = []
+ for i in range(n):
+ for j in range(n):
+ s = [coords2index(i+io, j+jo) for io, jo in offsets
+ if 0 <= i+io < n and
+ 0 <= j+jo < n]
+ succs.append(s)
+ del s
+ del offsets
+
+ free = [0] * n**2 # 0 if occupied, 1 if visited
+ nexits = free[:] # number of free successors
+
+ def decrexits(i0):
+ # If we remove all exits from a free square, we're dead:
+ # even if we move to it next, we can't leave it again.
+ # If we create a square with one exit, we must visit it next;
+ # else somebody else will have to visit it, and since there's
+ # only one adjacent, there won't be a way to leave it again.
+ # Finelly, if we create more than one free square with a
+ # single exit, we can only move to one of them next, leaving
+ # the other one a dead end.
+ ne0 = ne1 = 0
+ for i in succs[i0]:
+ if free[i]:
+ e = nexits[i] - 1
+ nexits[i] = e
+ if e == 0:
+ ne0 += 1
+ elif e == 1:
+ ne1 += 1
+ return ne0 == 0 and ne1 < 2
+
+ def increxits(i0):
+ for i in succs[i0]:
+ if free[i]:
+ nexits[i] += 1
+
+ # Generate the first move.
+ def first():
+ if n < 1:
+ return
+
+ # Initialize board structures.
+ for i in xrange(n**2):
+ free[i] = 1
+ nexits[i] = len(succs[i])
+
+ # Since we're looking for a cycle, it doesn't matter where we
+ # start. Starting in a corner makes the 2nd move easy.
+ corner = coords2index(0, 0)
+ free[corner] = 0
+ decrexits(corner)
+ self.lastij = corner
+ yield corner
+ increxits(corner)
+ free[corner] = 1
+
+ # Generate the second moves.
+ def second():
+ corner = coords2index(0, 0)
+ assert self.lastij == corner # i.e., we started in the corner
+ if n < 3:
+ return
+ assert nexits[corner] == len(succs[corner]) == 2
+ assert coords2index(1, 2) in succs[corner]
+ assert coords2index(2, 1) in succs[corner]
+ # Only two choices. Whichever we pick, the other must be the
+ # square picked on move n**2, as it's the only way to get back
+ # to (0, 0). Save its index in self.final so that moves before
+ # the last know it must be kept free.
+ for i, j in (1, 2), (2, 1):
+ this, final = coords2index(i, j), coords2index(3-i, 3-j)
+ assert free[this] and free[final]
+ self.final = final
+ nexits[final] += 1 # it has an exit back to 0,0
+
+ free[this] = 0
+ decrexits(this)
+ self.lastij = this
+ yield this
+ increxits(this)
+ free[this] = 1
+
+ nexits[final] -= 1
+
+ # Generate moves 3 thru n**2-1.
+ def advance():
+ # If some successor has only one exit, must take it.
+ # Else favor successors with fewer exits.
+ candidates = []
+ for i in succs[self.lastij]:
+ if free[i]:
+ e = nexits[i]
+ assert e > 0, "else decrexits() pruning flawed"
+ if e == 1:
+ candidates = [(e, i)]
+ break
+ candidates.append((e, i))
+ else:
+ candidates.sort()
+
+ for e, i in candidates:
+ if i != self.final:
+ if decrexits(i):
+ free[i] = 0
+ self.lastij = i
+ yield i
+ free[i] = 1
+ increxits(i)
+
+ # Generate moves 3 thru n**2-1. Alternative version using a
+ # stronger (but more expensive) heuristic to order successors.
+ # Since the # of backtracking levels is n**2, a poor move early on
+ # can take eons to undo. Smallest n for which this matters a lot is
+ # n==52.
+ def advance_hard(midpoint=(n-1)/2.0):
+ # If some successor has only one exit, must take it.
+ # Else favor successors with fewer exits.
+ # Break ties via max distance from board centerpoint (favor
+ # corners and edges whenever possible).
+ candidates = []
+ for i in succs[self.lastij]:
+ if free[i]:
+ e = nexits[i]
+ assert e > 0, "else decrexits() pruning flawed"
+ if e == 1:
+ candidates = [(e, 0, i)]
+ break
+ i1, j1 = divmod(i, n)
+ d = (i1 - midpoint)**2 + (j1 - midpoint)**2
+ candidates.append((e, -d, i))
+ else:
+ candidates.sort()
+
+ for e, d, i in candidates:
+ if i != self.final:
+ if decrexits(i):
+ free[i] = 0
+ self.lastij = i
+ yield i
+ free[i] = 1
+ increxits(i)
+
+ # Generate the last move.
+ def last():
+ assert self.final in succs[self.lastij]
+ yield self.final
+
+ if n <= 1:
+ self.rowgenerators = [first]
+ else:
+ self.rowgenerators = [first, second] + \
+ [hard and advance_hard or advance] * (n**2 - 3) + \
+ [last]
+
+ # Generate solutions.
+ def solve(self):
+ for x in conjoin(self.rowgenerators):
+ yield x
+
+ def printsolution(self, x):
+ n = self.n
+ assert len(x) == n**2
+ w = len(str(n**2 + 1))
+ format = "%" + str(w) + "d"
+
+ squares = [[None] * n for i in range(n)]
+ k = 1
+ for i in x:
+ i1, j1 = divmod(i, n)
+ squares[i1][j1] = format % k
+ k += 1
+
+ sep = "+" + ("-" * w + "+") * n
+ print sep
+ for i in range(n):
+ row = squares[i]
+ print "|" + "|".join(row) + "|"
+ print sep
+
conjoin_tests = """
Generate the 3-bit binary numbers in order. This illustrates dumbest-
possible use of conjoin, just to generate the full cross-product.
->>> for c in conjoin([lambda: (0, 1)] * 3):
+>>> for c in conjoin([lambda: iter((0, 1))] * 3):
... print c
[0, 0, 0]
[0, 0, 1]
@@ -986,7 +1217,7 @@ generated sequence, you need to copy its results.
... yield x[:]
>>> for n in range(10):
-... all = list(gencopy(conjoin([lambda: (0, 1)] * n)))
+... all = list(gencopy(conjoin([lambda: iter((0, 1))] * n)))
... print n, len(all), all[0] == [0] * n, all[-1] == [1] * n
0 1 1 1
1 2 1 1
@@ -1048,6 +1279,64 @@ Solution 2
>>> print count, "solutions in all."
92 solutions in all.
+
+And run a Knight's Tour on a 10x10 board. Note that there are about
+20,000 solutions even on a 6x6 board, so don't dare run this to exhaustion.
+
+>>> k = Knights(10)
+>>> LIMIT = 2
+>>> count = 0
+>>> for x in k.solve():
+... count += 1
+... if count <= LIMIT:
+... print "Solution", count
+... k.printsolution(x)
+... else:
+... break
+Solution 1
++---+---+---+---+---+---+---+---+---+---+
+| 1| 58| 27| 34| 3| 40| 29| 10| 5| 8|
++---+---+---+---+---+---+---+---+---+---+
+| 26| 35| 2| 57| 28| 33| 4| 7| 30| 11|
++---+---+---+---+---+---+---+---+---+---+
+| 59|100| 73| 36| 41| 56| 39| 32| 9| 6|
++---+---+---+---+---+---+---+---+---+---+
+| 74| 25| 60| 55| 72| 37| 42| 49| 12| 31|
++---+---+---+---+---+---+---+---+---+---+
+| 61| 86| 99| 76| 63| 52| 47| 38| 43| 50|
++---+---+---+---+---+---+---+---+---+---+
+| 24| 75| 62| 85| 54| 71| 64| 51| 48| 13|
++---+---+---+---+---+---+---+---+---+---+
+| 87| 98| 91| 80| 77| 84| 53| 46| 65| 44|
++---+---+---+---+---+---+---+---+---+---+
+| 90| 23| 88| 95| 70| 79| 68| 83| 14| 17|
++---+---+---+---+---+---+---+---+---+---+
+| 97| 92| 21| 78| 81| 94| 19| 16| 45| 66|
++---+---+---+---+---+---+---+---+---+---+
+| 22| 89| 96| 93| 20| 69| 82| 67| 18| 15|
++---+---+---+---+---+---+---+---+---+---+
+Solution 2
++---+---+---+---+---+---+---+---+---+---+
+| 1| 58| 27| 34| 3| 40| 29| 10| 5| 8|
++---+---+---+---+---+---+---+---+---+---+
+| 26| 35| 2| 57| 28| 33| 4| 7| 30| 11|
++---+---+---+---+---+---+---+---+---+---+
+| 59|100| 73| 36| 41| 56| 39| 32| 9| 6|
++---+---+---+---+---+---+---+---+---+---+
+| 74| 25| 60| 55| 72| 37| 42| 49| 12| 31|
++---+---+---+---+---+---+---+---+---+---+
+| 61| 86| 99| 76| 63| 52| 47| 38| 43| 50|
++---+---+---+---+---+---+---+---+---+---+
+| 24| 75| 62| 85| 54| 71| 64| 51| 48| 13|
++---+---+---+---+---+---+---+---+---+---+
+| 87| 98| 89| 80| 77| 84| 53| 46| 65| 44|
++---+---+---+---+---+---+---+---+---+---+
+| 90| 23| 92| 95| 70| 79| 68| 83| 14| 17|
++---+---+---+---+---+---+---+---+---+---+
+| 97| 88| 21| 78| 81| 94| 19| 16| 45| 66|
++---+---+---+---+---+---+---+---+---+---+
+| 22| 91| 96| 93| 20| 69| 82| 67| 18| 15|
++---+---+---+---+---+---+---+---+---+---+
"""
__test__ = {"tut": tutorial_tests,