diff options
-rw-r--r-- | Lib/test/test_generators.py | 293 |
1 files changed, 291 insertions, 2 deletions
diff --git a/Lib/test/test_generators.py b/Lib/test/test_generators.py index ee7d348..588f365 100644 --- a/Lib/test/test_generators.py +++ b/Lib/test/test_generators.py @@ -909,6 +909,42 @@ def conjoin(gs): for x in gen(0): yield x +# And one more approach: For backtracking apps like the Knight's Tour +# solver below, the number of backtracking levels can be enormous (one +# level per square, for the Knight's Tour, so that e.g. a 100x100 board +# needs 10,000 levels). In such cases Python is likely to run out of +# stack space due to recursion. So here's a recursion-free version of +# conjoin too. +# NOTE WELL: This allows large problems to be solved with only trivial +# demands on stack space. Without explicitly resumable generators, this is +# much harder to achieve. + +def flat_conjoin(gs): # rename to conjoin to run tests with this instead + n = len(gs) + values = [None] * n + iters = [None] * n + i = 0 + while i >= 0: + # Need a fresh iterator. + if i >= n: + yield values + # Backtrack. + i -= 1 + else: + iters[i] = gs[i]().next + + # Need next value from current iterator. + while i >= 0: + try: + values[i] = iters[i]() + except StopIteration: + # Backtrack. + i -= 1 + else: + # Start fresh at next level. + i += 1 + break + # A conjoin-based N-Queens solver. class Queens: @@ -961,12 +997,207 @@ class Queens: print "|" + "|".join(squares) + "|" print sep +# A conjoin-based Knight's Tour solver. This is pretty sophisticated +# (e.g., when used with flat_conjoin above, and passing hard=1 to the +# constructor, a 200x200 Knight's Tour was found quickly -- note that we're +# creating 10s of thousands of generators then!), so goes on at some length + +class Knights: + def __init__(self, n, hard=0): + self.n = n + + def coords2index(i, j): + return i*n + j + + offsets = [( 1, 2), ( 2, 1), ( 2, -1), ( 1, -2), + (-1, -2), (-2, -1), (-2, 1), (-1, 2)] + succs = [] + for i in range(n): + for j in range(n): + s = [coords2index(i+io, j+jo) for io, jo in offsets + if 0 <= i+io < n and + 0 <= j+jo < n] + succs.append(s) + del s + del offsets + + free = [0] * n**2 # 0 if occupied, 1 if visited + nexits = free[:] # number of free successors + + def decrexits(i0): + # If we remove all exits from a free square, we're dead: + # even if we move to it next, we can't leave it again. + # If we create a square with one exit, we must visit it next; + # else somebody else will have to visit it, and since there's + # only one adjacent, there won't be a way to leave it again. + # Finelly, if we create more than one free square with a + # single exit, we can only move to one of them next, leaving + # the other one a dead end. + ne0 = ne1 = 0 + for i in succs[i0]: + if free[i]: + e = nexits[i] - 1 + nexits[i] = e + if e == 0: + ne0 += 1 + elif e == 1: + ne1 += 1 + return ne0 == 0 and ne1 < 2 + + def increxits(i0): + for i in succs[i0]: + if free[i]: + nexits[i] += 1 + + # Generate the first move. + def first(): + if n < 1: + return + + # Initialize board structures. + for i in xrange(n**2): + free[i] = 1 + nexits[i] = len(succs[i]) + + # Since we're looking for a cycle, it doesn't matter where we + # start. Starting in a corner makes the 2nd move easy. + corner = coords2index(0, 0) + free[corner] = 0 + decrexits(corner) + self.lastij = corner + yield corner + increxits(corner) + free[corner] = 1 + + # Generate the second moves. + def second(): + corner = coords2index(0, 0) + assert self.lastij == corner # i.e., we started in the corner + if n < 3: + return + assert nexits[corner] == len(succs[corner]) == 2 + assert coords2index(1, 2) in succs[corner] + assert coords2index(2, 1) in succs[corner] + # Only two choices. Whichever we pick, the other must be the + # square picked on move n**2, as it's the only way to get back + # to (0, 0). Save its index in self.final so that moves before + # the last know it must be kept free. + for i, j in (1, 2), (2, 1): + this, final = coords2index(i, j), coords2index(3-i, 3-j) + assert free[this] and free[final] + self.final = final + nexits[final] += 1 # it has an exit back to 0,0 + + free[this] = 0 + decrexits(this) + self.lastij = this + yield this + increxits(this) + free[this] = 1 + + nexits[final] -= 1 + + # Generate moves 3 thru n**2-1. + def advance(): + # If some successor has only one exit, must take it. + # Else favor successors with fewer exits. + candidates = [] + for i in succs[self.lastij]: + if free[i]: + e = nexits[i] + assert e > 0, "else decrexits() pruning flawed" + if e == 1: + candidates = [(e, i)] + break + candidates.append((e, i)) + else: + candidates.sort() + + for e, i in candidates: + if i != self.final: + if decrexits(i): + free[i] = 0 + self.lastij = i + yield i + free[i] = 1 + increxits(i) + + # Generate moves 3 thru n**2-1. Alternative version using a + # stronger (but more expensive) heuristic to order successors. + # Since the # of backtracking levels is n**2, a poor move early on + # can take eons to undo. Smallest n for which this matters a lot is + # n==52. + def advance_hard(midpoint=(n-1)/2.0): + # If some successor has only one exit, must take it. + # Else favor successors with fewer exits. + # Break ties via max distance from board centerpoint (favor + # corners and edges whenever possible). + candidates = [] + for i in succs[self.lastij]: + if free[i]: + e = nexits[i] + assert e > 0, "else decrexits() pruning flawed" + if e == 1: + candidates = [(e, 0, i)] + break + i1, j1 = divmod(i, n) + d = (i1 - midpoint)**2 + (j1 - midpoint)**2 + candidates.append((e, -d, i)) + else: + candidates.sort() + + for e, d, i in candidates: + if i != self.final: + if decrexits(i): + free[i] = 0 + self.lastij = i + yield i + free[i] = 1 + increxits(i) + + # Generate the last move. + def last(): + assert self.final in succs[self.lastij] + yield self.final + + if n <= 1: + self.rowgenerators = [first] + else: + self.rowgenerators = [first, second] + \ + [hard and advance_hard or advance] * (n**2 - 3) + \ + [last] + + # Generate solutions. + def solve(self): + for x in conjoin(self.rowgenerators): + yield x + + def printsolution(self, x): + n = self.n + assert len(x) == n**2 + w = len(str(n**2 + 1)) + format = "%" + str(w) + "d" + + squares = [[None] * n for i in range(n)] + k = 1 + for i in x: + i1, j1 = divmod(i, n) + squares[i1][j1] = format % k + k += 1 + + sep = "+" + ("-" * w + "+") * n + print sep + for i in range(n): + row = squares[i] + print "|" + "|".join(row) + "|" + print sep + conjoin_tests = """ Generate the 3-bit binary numbers in order. This illustrates dumbest- possible use of conjoin, just to generate the full cross-product. ->>> for c in conjoin([lambda: (0, 1)] * 3): +>>> for c in conjoin([lambda: iter((0, 1))] * 3): ... print c [0, 0, 0] [0, 0, 1] @@ -986,7 +1217,7 @@ generated sequence, you need to copy its results. ... yield x[:] >>> for n in range(10): -... all = list(gencopy(conjoin([lambda: (0, 1)] * n))) +... all = list(gencopy(conjoin([lambda: iter((0, 1))] * n))) ... print n, len(all), all[0] == [0] * n, all[-1] == [1] * n 0 1 1 1 1 2 1 1 @@ -1048,6 +1279,64 @@ Solution 2 >>> print count, "solutions in all." 92 solutions in all. + +And run a Knight's Tour on a 10x10 board. Note that there are about +20,000 solutions even on a 6x6 board, so don't dare run this to exhaustion. + +>>> k = Knights(10) +>>> LIMIT = 2 +>>> count = 0 +>>> for x in k.solve(): +... count += 1 +... if count <= LIMIT: +... print "Solution", count +... k.printsolution(x) +... else: +... break +Solution 1 ++---+---+---+---+---+---+---+---+---+---+ +| 1| 58| 27| 34| 3| 40| 29| 10| 5| 8| ++---+---+---+---+---+---+---+---+---+---+ +| 26| 35| 2| 57| 28| 33| 4| 7| 30| 11| ++---+---+---+---+---+---+---+---+---+---+ +| 59|100| 73| 36| 41| 56| 39| 32| 9| 6| ++---+---+---+---+---+---+---+---+---+---+ +| 74| 25| 60| 55| 72| 37| 42| 49| 12| 31| ++---+---+---+---+---+---+---+---+---+---+ +| 61| 86| 99| 76| 63| 52| 47| 38| 43| 50| ++---+---+---+---+---+---+---+---+---+---+ +| 24| 75| 62| 85| 54| 71| 64| 51| 48| 13| ++---+---+---+---+---+---+---+---+---+---+ +| 87| 98| 91| 80| 77| 84| 53| 46| 65| 44| ++---+---+---+---+---+---+---+---+---+---+ +| 90| 23| 88| 95| 70| 79| 68| 83| 14| 17| ++---+---+---+---+---+---+---+---+---+---+ +| 97| 92| 21| 78| 81| 94| 19| 16| 45| 66| ++---+---+---+---+---+---+---+---+---+---+ +| 22| 89| 96| 93| 20| 69| 82| 67| 18| 15| ++---+---+---+---+---+---+---+---+---+---+ +Solution 2 ++---+---+---+---+---+---+---+---+---+---+ +| 1| 58| 27| 34| 3| 40| 29| 10| 5| 8| ++---+---+---+---+---+---+---+---+---+---+ +| 26| 35| 2| 57| 28| 33| 4| 7| 30| 11| ++---+---+---+---+---+---+---+---+---+---+ +| 59|100| 73| 36| 41| 56| 39| 32| 9| 6| ++---+---+---+---+---+---+---+---+---+---+ +| 74| 25| 60| 55| 72| 37| 42| 49| 12| 31| ++---+---+---+---+---+---+---+---+---+---+ +| 61| 86| 99| 76| 63| 52| 47| 38| 43| 50| ++---+---+---+---+---+---+---+---+---+---+ +| 24| 75| 62| 85| 54| 71| 64| 51| 48| 13| ++---+---+---+---+---+---+---+---+---+---+ +| 87| 98| 89| 80| 77| 84| 53| 46| 65| 44| ++---+---+---+---+---+---+---+---+---+---+ +| 90| 23| 92| 95| 70| 79| 68| 83| 14| 17| ++---+---+---+---+---+---+---+---+---+---+ +| 97| 88| 21| 78| 81| 94| 19| 16| 45| 66| ++---+---+---+---+---+---+---+---+---+---+ +| 22| 91| 96| 93| 20| 69| 82| 67| 18| 15| ++---+---+---+---+---+---+---+---+---+---+ """ __test__ = {"tut": tutorial_tests, |