summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Doc/lib/librandom.tex12
-rw-r--r--Lib/random.py51
2 files changed, 2 insertions, 61 deletions
diff --git a/Doc/lib/librandom.tex b/Doc/lib/librandom.tex
index df05203..5483ff2 100644
--- a/Doc/lib/librandom.tex
+++ b/Doc/lib/librandom.tex
@@ -168,18 +168,6 @@ these equations can be found in any statistics text.
Returned values range between 0 and 1.
\end{funcdesc}
-\begin{funcdesc}{cunifvariate}{mean, arc}
- Circular uniform distribution. \var{mean} is the mean angle, and
- \var{arc} is the range of the distribution, centered around the mean
- angle. Both values must be expressed in radians, and can range
- between 0 and \emph{pi}. Returned values range between
- \code{\var{mean} - \var{arc}/2} and \code{\var{mean} +
- \var{arc}/2} and are normalized to between 0 and \emph{pi}.
-
- \deprecated{2.3}{Instead, use \code{(\var{mean} + \var{arc} *
- (random.random() - 0.5)) \% math.pi}.}
-\end{funcdesc}
-
\begin{funcdesc}{expovariate}{lambd}
Exponential distribution. \var{lambd} is 1.0 divided by the desired
mean. (The parameter would be called ``lambda'', but that is a
diff --git a/Lib/random.py b/Lib/random.py
index 1a0b8f3..76dc416 100644
--- a/Lib/random.py
+++ b/Lib/random.py
@@ -45,8 +45,8 @@ from math import floor as _floor
__all__ = ["Random","seed","random","uniform","randint","choice","sample",
"randrange","shuffle","normalvariate","lognormvariate",
- "cunifvariate","expovariate","vonmisesvariate","gammavariate",
- "stdgamma","gauss","betavariate","paretovariate","weibullvariate",
+ "expovariate","vonmisesvariate","gammavariate",
+ "gauss","betavariate","paretovariate","weibullvariate",
"getstate","setstate","jumpahead"]
NV_MAGICCONST = 4 * _exp(-0.5)/_sqrt(2.0)
@@ -308,29 +308,6 @@ class Random(_random.Random):
"""
return _exp(self.normalvariate(mu, sigma))
-## -------------------- circular uniform --------------------
-
- def cunifvariate(self, mean, arc):
- """Circular uniform distribution.
-
- mean is the mean angle, and arc is the range of the distribution,
- centered around the mean angle. Both values must be expressed in
- radians. Returned values range between mean - arc/2 and
- mean + arc/2 and are normalized to between 0 and pi.
-
- Deprecated in version 2.3. Use:
- (mean + arc * (Random.random() - 0.5)) % Math.pi
-
- """
- # mean: mean angle (in radians between 0 and pi)
- # arc: range of distribution (in radians between 0 and pi)
- import warnings
- warnings.warn("The cunifvariate function is deprecated; Use (mean "
- "+ arc * (Random.random() - 0.5)) % Math.pi instead",
- DeprecationWarning)
-
- return (mean + arc * (self.random() - 0.5)) % _pi
-
## -------------------- exponential distribution --------------------
def expovariate(self, lambd):
@@ -465,27 +442,6 @@ class Random(_random.Random):
break
return x * beta
-
- def stdgamma(self, alpha, ainv, bbb, ccc):
- # This method was (and shall remain) undocumented.
- # This method is deprecated
- # for the following reasons:
- # 1. Returns same as .gammavariate(alpha, 1.0)
- # 2. Requires caller to provide 3 extra arguments
- # that are functions of alpha anyway
- # 3. Can't be used for alpha < 0.5
-
- # ainv = sqrt(2 * alpha - 1)
- # bbb = alpha - log(4)
- # ccc = alpha + ainv
- import warnings
- warnings.warn("The stdgamma function is deprecated; "
- "use gammavariate() instead",
- DeprecationWarning)
- return self.gammavariate(alpha, 1.0)
-
-
-
## -------------------- Gauss (faster alternative) --------------------
def gauss(self, mu, sigma):
@@ -755,7 +711,6 @@ def _test(N=2000):
_test_generator(N, 'random()')
_test_generator(N, 'normalvariate(0.0, 1.0)')
_test_generator(N, 'lognormvariate(0.0, 1.0)')
- _test_generator(N, 'cunifvariate(0.0, 1.0)')
_test_generator(N, 'vonmisesvariate(0.0, 1.0)')
_test_generator(N, 'gammavariate(0.01, 1.0)')
_test_generator(N, 'gammavariate(0.1, 1.0)')
@@ -786,11 +741,9 @@ sample = _inst.sample
shuffle = _inst.shuffle
normalvariate = _inst.normalvariate
lognormvariate = _inst.lognormvariate
-cunifvariate = _inst.cunifvariate
expovariate = _inst.expovariate
vonmisesvariate = _inst.vonmisesvariate
gammavariate = _inst.gammavariate
-stdgamma = _inst.stdgamma
gauss = _inst.gauss
betavariate = _inst.betavariate
paretovariate = _inst.paretovariate