summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Doc/library/fractions.rst18
-rwxr-xr-xLib/fractions.py86
-rw-r--r--Lib/test/test_fractions.py31
3 files changed, 79 insertions, 56 deletions
diff --git a/Doc/library/fractions.rst b/Doc/library/fractions.rst
index 7f6019f..adc70c6 100644
--- a/Doc/library/fractions.rst
+++ b/Doc/library/fractions.rst
@@ -46,6 +46,24 @@ Fraction number class.
:class:`decimal.Decimal`.
+.. method:: Fraction.limit_denominator(max_denominator=1000000)
+
+ Finds and returns the closest :class:`Fraction` to ``self`` that
+ has denominator at most max_denominator. This method is useful for
+ finding rational approximations to a given floating-point number::
+
+ >>> Fraction('3.1415926535897932').limit_denominator(1000)
+ Fraction(355, 113)
+
+ or for recovering a rational number that's represented as a float::
+
+ >>> from math import pi, cos
+ >>> Fraction.from_float(cos(pi/3))
+ Fraction(4503599627370497L, 9007199254740992L)
+ >>> Fraction.from_float(cos(pi/3)).limit_denominator()
+ Fraction(1, 2)
+
+
.. method:: Fraction.__floor__()
Returns the greatest :class:`int` ``<= self``. Will be accessible
diff --git a/Lib/fractions.py b/Lib/fractions.py
index 123ecb6..8593e7e 100755
--- a/Lib/fractions.py
+++ b/Lib/fractions.py
@@ -140,42 +140,60 @@ class Fraction(Rational):
else:
return Fraction(digits, 10 ** -exp)
- @staticmethod
- def from_continued_fraction(seq):
- 'Build a Fraction from a continued fraction expessed as a sequence'
- n, d = 1, 0
- for e in reversed(seq):
- n, d = d, n
- n += e * d
- return Fraction(n, d) if seq else Fraction(0)
-
- def as_continued_fraction(self):
- 'Return continued fraction expressed as a list'
- n = self.numerator
- d = self.denominator
- cf = []
- while d:
- e = int(n // d)
- cf.append(e)
- n -= e * d
- n, d = d, n
- return cf
-
- def approximate(self, max_denominator):
- 'Best rational approximation with a denominator <= max_denominator'
- # XXX First cut at algorithm
- # Still needs rounding rules as specified at
- # http://en.wikipedia.org/wiki/Continued_fraction
+ def limit_denominator(self, max_denominator=1000000):
+ """Closest Fraction to self with denominator at most max_denominator.
+
+ >>> Fraction('3.141592653589793').limit_denominator(10)
+ Fraction(22, 7)
+ >>> Fraction('3.141592653589793').limit_denominator(100)
+ Fraction(311, 99)
+ >>> Fraction(1234, 5678).limit_denominator(10000)
+ Fraction(1234, 5678)
+
+ """
+ # Algorithm notes: For any real number x, define a *best upper
+ # approximation* to x to be a rational number p/q such that:
+ #
+ # (1) p/q >= x, and
+ # (2) if p/q > r/s >= x then s > q, for any rational r/s.
+ #
+ # Define *best lower approximation* similarly. Then it can be
+ # proved that a rational number is a best upper or lower
+ # approximation to x if, and only if, it is a convergent or
+ # semiconvergent of the (unique shortest) continued fraction
+ # associated to x.
+ #
+ # To find a best rational approximation with denominator <= M,
+ # we find the best upper and lower approximations with
+ # denominator <= M and take whichever of these is closer to x.
+ # In the event of a tie, the bound with smaller denominator is
+ # chosen. If both denominators are equal (which can happen
+ # only when max_denominator == 1 and self is midway between
+ # two integers) the lower bound---i.e., the floor of self, is
+ # taken.
+
+ if max_denominator < 1:
+ raise ValueError("max_denominator should be at least 1")
if self.denominator <= max_denominator:
- return self
- cf = self.as_continued_fraction()
- result = Fraction(0)
- for i in range(1, len(cf)):
- new = self.from_continued_fraction(cf[:i])
- if new.denominator > max_denominator:
+ return Fraction(self)
+
+ p0, q0, p1, q1 = 0, 1, 1, 0
+ n, d = self.numerator, self.denominator
+ while True:
+ a = n//d
+ q2 = q0+a*q1
+ if q2 > max_denominator:
break
- result = new
- return result
+ p0, q0, p1, q1 = p1, q1, p0+a*p1, q2
+ n, d = d, n-a*d
+
+ k = (max_denominator-q0)//q1
+ bound1 = Fraction(p0+k*p1, q0+k*q1)
+ bound2 = Fraction(p1, q1)
+ if abs(bound2 - self) <= abs(bound1-self):
+ return bound2
+ else:
+ return bound1
@property
def numerator(a):
diff --git a/Lib/test/test_fractions.py b/Lib/test/test_fractions.py
index a79fedd..14dd868 100644
--- a/Lib/test/test_fractions.py
+++ b/Lib/test/test_fractions.py
@@ -188,28 +188,15 @@ class FractionTest(unittest.TestCase):
TypeError, "Cannot convert sNaN to Fraction.",
R.from_decimal, Decimal("snan"))
- def testFromContinuedFraction(self):
- self.assertRaises(TypeError, R.from_continued_fraction, None)
- phi = R.from_continued_fraction([1]*100)
- self.assertEquals(round(phi - (1 + 5 ** 0.5) / 2, 10), 0.0)
-
- minusphi = R.from_continued_fraction([-1]*100)
- self.assertEquals(round(minusphi + (1 + 5 ** 0.5) / 2, 10), 0.0)
-
- self.assertEquals(R.from_continued_fraction([0]), R(0))
- self.assertEquals(R.from_continued_fraction([]), R(0))
-
- def testAsContinuedFraction(self):
- self.assertEqual(R.from_float(math.pi).as_continued_fraction()[:15],
- [3, 7, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 3, 3])
- self.assertEqual(R.from_float(-math.pi).as_continued_fraction()[:16],
- [-4, 1, 6, 15, 1, 292, 1, 1, 1, 2, 1, 3, 1, 14, 3, 3])
- self.assertEqual(R(0).as_continued_fraction(), [0])
-
- def testApproximateFrom(self):
- self.assertEqual(R.from_float(math.pi).approximate(10000), R(355, 113))
- self.assertEqual(R.from_float(-math.pi).approximate(10000), R(-355, 113))
- self.assertEqual(R.from_float(0.0).approximate(10000), R(0))
+ def testLimitDenominator(self):
+ rpi = R('3.1415926535897932')
+ self.assertEqual(rpi.limit_denominator(10000), R(355, 113))
+ self.assertEqual(-rpi.limit_denominator(10000), R(-355, 113))
+ self.assertEqual(rpi.limit_denominator(113), R(355, 113))
+ self.assertEqual(rpi.limit_denominator(112), R(333, 106))
+ self.assertEqual(R(201, 200).limit_denominator(100), R(1))
+ self.assertEqual(R(201, 200).limit_denominator(101), R(102, 101))
+ self.assertEqual(R(0).limit_denominator(10000), R(0))
def testConversions(self):
self.assertTypedEquals(-1, math.trunc(R(-11, 10)))