summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Doc/library/math.rst18
-rw-r--r--Lib/test/math_testcases.txt82
-rw-r--r--Misc/NEWS2
-rw-r--r--Modules/mathmodule.c142
4 files changed, 242 insertions, 2 deletions
diff --git a/Doc/library/math.rst b/Doc/library/math.rst
index 39aea29..fce4d49 100644
--- a/Doc/library/math.rst
+++ b/Doc/library/math.rst
@@ -161,6 +161,8 @@ Power and logarithmic functions
>>> expm1(1e-5) # result accurate to full precision
1.0000050000166668e-05
+ .. versionadded:: 3.2
+
.. function:: log(x[, base])
@@ -295,6 +297,20 @@ Hyperbolic functions
Special functions
-----------------
+.. function:: erf(x)
+
+ Return the error function at *x*.
+
+ .. versionadded:: 3.2
+
+
+.. function:: erfc(x)
+
+ Return the complementary error function at *x*.
+
+ .. versionadded:: 3.2
+
+
.. function:: gamma(x)
Return the Gamma function at *x*.
@@ -307,7 +323,7 @@ Special functions
Return the natural logarithm of the absolute value of the Gamma
function at *x*.
- .. versionadded:: 2.7
+ .. versionadded:: 3.2
Constants
diff --git a/Lib/test/math_testcases.txt b/Lib/test/math_testcases.txt
index bb99290..bd8813e 100644
--- a/Lib/test/math_testcases.txt
+++ b/Lib/test/math_testcases.txt
@@ -47,6 +47,87 @@
-- MPFR homepage at http://www.mpfr.org for more information about the
-- MPFR project.
+
+-------------------------
+-- erf: error function --
+-------------------------
+
+erf0000 erf 0.0 -> 0.0
+erf0001 erf -0.0 -> -0.0
+erf0002 erf inf -> 1.0
+erf0003 erf -inf -> -1.0
+erf0004 erf nan -> nan
+
+-- tiny values
+erf0010 erf 1e-308 -> 1.1283791670955125e-308
+erf0011 erf 5e-324 -> 4.9406564584124654e-324
+erf0012 erf 1e-10 -> 1.1283791670955126e-10
+
+-- small integers
+erf0020 erf 1 -> 0.84270079294971489
+erf0021 erf 2 -> 0.99532226501895271
+erf0022 erf 3 -> 0.99997790950300136
+erf0023 erf 4 -> 0.99999998458274209
+erf0024 erf 5 -> 0.99999999999846256
+erf0025 erf 6 -> 1.0
+
+erf0030 erf -1 -> -0.84270079294971489
+erf0031 erf -2 -> -0.99532226501895271
+erf0032 erf -3 -> -0.99997790950300136
+erf0033 erf -4 -> -0.99999998458274209
+erf0034 erf -5 -> -0.99999999999846256
+erf0035 erf -6 -> -1.0
+
+-- huge values should all go to +/-1, depending on sign
+erf0040 erf -40 -> -1.0
+erf0041 erf 1e16 -> 1.0
+erf0042 erf -1e150 -> -1.0
+erf0043 erf 1.7e308 -> 1.0
+
+
+----------------------------------------
+-- erfc: complementary error function --
+----------------------------------------
+
+erfc0000 erfc 0.0 -> 1.0
+erfc0001 erfc -0.0 -> 1.0
+erfc0002 erfc inf -> 0.0
+erfc0003 erfc -inf -> 2.0
+erfc0004 erfc nan -> nan
+
+-- tiny values
+erfc0010 erfc 1e-308 -> 1.0
+erfc0011 erfc 5e-324 -> 1.0
+erfc0012 erfc 1e-10 -> 0.99999999988716204
+
+-- small integers
+erfc0020 erfc 1 -> 0.15729920705028513
+erfc0021 erfc 2 -> 0.0046777349810472662
+erfc0022 erfc 3 -> 2.2090496998585441e-05
+erfc0023 erfc 4 -> 1.541725790028002e-08
+erfc0024 erfc 5 -> 1.5374597944280349e-12
+erfc0025 erfc 6 -> 2.1519736712498913e-17
+
+erfc0030 erfc -1 -> 1.8427007929497148
+erfc0031 erfc -2 -> 1.9953222650189528
+erfc0032 erfc -3 -> 1.9999779095030015
+erfc0033 erfc -4 -> 1.9999999845827421
+erfc0034 erfc -5 -> 1.9999999999984626
+erfc0035 erfc -6 -> 2.0
+
+-- as x -> infinity, erfc(x) behaves like exp(-x*x)/x/sqrt(pi)
+erfc0040 erfc 20 -> 5.3958656116079012e-176
+erfc0041 erfc 25 -> 8.3001725711965228e-274
+erfc0042 erfc 27 -> 5.2370464393526292e-319
+erfc0043 erfc 28 -> 0.0
+
+-- huge values
+erfc0050 erfc -40 -> 2.0
+erfc0051 erfc 1e16 -> 0.0
+erfc0052 erfc -1e150 -> 2.0
+erfc0053 erfc 1.7e308 -> 0.0
+
+
---------------------------------------------------------
-- lgamma: log of absolute value of the gamma function --
---------------------------------------------------------
@@ -250,6 +331,7 @@ gam0132 gamma -4503599627370495.5 -> 0.0
gam0140 gamma -63.349078729022985 -> 4.1777971677761880e-88
gam0141 gamma -127.45117632943295 -> 1.1831110896236810e-214
+
-----------------------------------------------------------
-- expm1: exp(x) - 1, without precision loss for small x --
-----------------------------------------------------------
diff --git a/Misc/NEWS b/Misc/NEWS
index d4121d1..2b8dc6b 100644
--- a/Misc/NEWS
+++ b/Misc/NEWS
@@ -457,7 +457,7 @@ Extension Modules
- Issue #7078: Set struct.__doc__ from _struct.__doc__.
-- Issue #3366: Add expm1, gamma, lgamma functions to math module.
+- Issue #3366: Add erf, erfc, expm1, gamma, lgamma functions to math module.
- Issue #6877: It is now possible to link the readline extension to the
libedit readline emulation on OSX 10.5 or later.
diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c
index ef84298..f835005 100644
--- a/Modules/mathmodule.c
+++ b/Modules/mathmodule.c
@@ -69,6 +69,7 @@ extern double copysign(double, double);
*/
static const double pi = 3.141592653589793238462643383279502884197;
+static const double sqrtpi = 1.772453850905516027298167483341145182798;
static double
sinpi(double x)
@@ -375,6 +376,141 @@ m_lgamma(double x)
return r;
}
+/*
+ Implementations of the error function erf(x) and the complementary error
+ function erfc(x).
+
+ Method: following 'Numerical Recipes' by Flannery, Press et. al. (2nd ed.,
+ Cambridge University Press), we use a series approximation for erf for
+ small x, and a continued fraction approximation for erfc(x) for larger x;
+ combined with the relations erf(-x) = -erf(x) and erfc(x) = 1.0 - erf(x),
+ this gives us erf(x) and erfc(x) for all x.
+
+ The series expansion used is:
+
+ erf(x) = x*exp(-x*x)/sqrt(pi) * [
+ 2/1 + 4/3 x**2 + 8/15 x**4 + 16/105 x**6 + ...]
+
+ The coefficient of x**(2k-2) here is 4**k*factorial(k)/factorial(2*k).
+ This series converges well for smallish x, but slowly for larger x.
+
+ The continued fraction expansion used is:
+
+ erfc(x) = x*exp(-x*x)/sqrt(pi) * [1/(0.5 + x**2 -) 0.5/(2.5 + x**2 - )
+ 3.0/(4.5 + x**2 - ) 7.5/(6.5 + x**2 - ) ...]
+
+ after the first term, the general term has the form:
+
+ k*(k-0.5)/(2*k+0.5 + x**2 - ...).
+
+ This expansion converges fast for larger x, but convergence becomes
+ infinitely slow as x approaches 0.0. The (somewhat naive) continued
+ fraction evaluation algorithm used below also risks overflow for large x;
+ but for large x, erfc(x) == 0.0 to within machine precision. (For
+ example, erfc(30.0) is approximately 2.56e-393).
+
+ Parameters: use series expansion for abs(x) < ERF_SERIES_CUTOFF and
+ continued fraction expansion for ERF_SERIES_CUTOFF <= abs(x) <
+ ERFC_CONTFRAC_CUTOFF. ERFC_SERIES_TERMS and ERFC_CONTFRAC_TERMS are the
+ numbers of terms to use for the relevant expansions. */
+
+#define ERF_SERIES_CUTOFF 1.5
+#define ERF_SERIES_TERMS 25
+#define ERFC_CONTFRAC_CUTOFF 30.0
+#define ERFC_CONTFRAC_TERMS 50
+
+/*
+ Error function, via power series.
+
+ Given a finite float x, return an approximation to erf(x).
+ Converges reasonably fast for small x.
+*/
+
+static double
+m_erf_series(double x)
+{
+ double x2, acc, fk;
+ int i;
+
+ x2 = x * x;
+ acc = 0.0;
+ fk = (double)ERF_SERIES_TERMS + 0.5;
+ for (i = 0; i < ERF_SERIES_TERMS; i++) {
+ acc = 2.0 + x2 * acc / fk;
+ fk -= 1.0;
+ }
+ return acc * x * exp(-x2) / sqrtpi;
+}
+
+/*
+ Complementary error function, via continued fraction expansion.
+
+ Given a positive float x, return an approximation to erfc(x). Converges
+ reasonably fast for x large (say, x > 2.0), and should be safe from
+ overflow if x and nterms are not too large. On an IEEE 754 machine, with x
+ <= 30.0, we're safe up to nterms = 100. For x >= 30.0, erfc(x) is smaller
+ than the smallest representable nonzero float. */
+
+static double
+m_erfc_contfrac(double x)
+{
+ double x2, a, da, p, p_last, q, q_last, b;
+ int i;
+
+ if (x >= ERFC_CONTFRAC_CUTOFF)
+ return 0.0;
+
+ x2 = x*x;
+ a = 0.0;
+ da = 0.5;
+ p = 1.0; p_last = 0.0;
+ q = da + x2; q_last = 1.0;
+ for (i = 0; i < ERFC_CONTFRAC_TERMS; i++) {
+ double temp;
+ a += da;
+ da += 2.0;
+ b = da + x2;
+ temp = p; p = b*p - a*p_last; p_last = temp;
+ temp = q; q = b*q - a*q_last; q_last = temp;
+ }
+ return p / q * x * exp(-x2) / sqrtpi;
+}
+
+/* Error function erf(x), for general x */
+
+static double
+m_erf(double x)
+{
+ double absx, cf;
+
+ if (Py_IS_NAN(x))
+ return x;
+ absx = fabs(x);
+ if (absx < ERF_SERIES_CUTOFF)
+ return m_erf_series(x);
+ else {
+ cf = m_erfc_contfrac(absx);
+ return x > 0.0 ? 1.0 - cf : cf - 1.0;
+ }
+}
+
+/* Complementary error function erfc(x), for general x. */
+
+static double
+m_erfc(double x)
+{
+ double absx, cf;
+
+ if (Py_IS_NAN(x))
+ return x;
+ absx = fabs(x);
+ if (absx < ERF_SERIES_CUTOFF)
+ return 1.0 - m_erf_series(x);
+ else {
+ cf = m_erfc_contfrac(absx);
+ return x > 0.0 ? cf : 2.0 - cf;
+ }
+}
/*
wrapper for atan2 that deals directly with special cases before
@@ -721,6 +857,10 @@ FUNC1(cos, cos, 0,
"cos(x)\n\nReturn the cosine of x (measured in radians).")
FUNC1(cosh, cosh, 1,
"cosh(x)\n\nReturn the hyperbolic cosine of x.")
+FUNC1A(erf, m_erf,
+ "erf(x)\n\nError function at x.")
+FUNC1A(erfc, m_erfc,
+ "erfc(x)\n\nComplementary error function at x.")
FUNC1(exp, exp, 1,
"exp(x)\n\nReturn e raised to the power of x.")
FUNC1(expm1, m_expm1, 1,
@@ -1497,6 +1637,8 @@ static PyMethodDef math_methods[] = {
{"cos", math_cos, METH_O, math_cos_doc},
{"cosh", math_cosh, METH_O, math_cosh_doc},
{"degrees", math_degrees, METH_O, math_degrees_doc},
+ {"erf", math_erf, METH_O, math_erf_doc},
+ {"erfc", math_erfc, METH_O, math_erfc_doc},
{"exp", math_exp, METH_O, math_exp_doc},
{"expm1", math_expm1, METH_O, math_expm1_doc},
{"fabs", math_fabs, METH_O, math_fabs_doc},