summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Lib/test/test_sort.py114
-rw-r--r--Misc/ACKS1
-rw-r--r--Misc/NEWS.d/next/Core and Builtins/2018-01-28-15-09-33.bpo-28685.cHThLM.rst2
-rw-r--r--Objects/listobject.c408
-rw-r--r--Objects/listsort.txt8
5 files changed, 462 insertions, 71 deletions
diff --git a/Lib/test/test_sort.py b/Lib/test/test_sort.py
index 98ccab5..f2f53cb 100644
--- a/Lib/test/test_sort.py
+++ b/Lib/test/test_sort.py
@@ -260,6 +260,120 @@ class TestDecorateSortUndecorate(unittest.TestCase):
self.assertEqual(data, copy2)
#==============================================================================
+def check_against_PyObject_RichCompareBool(self, L):
+ ## The idea here is to exploit the fact that unsafe_tuple_compare uses
+ ## PyObject_RichCompareBool for the second elements of tuples. So we have,
+ ## for (most) L, sorted(L) == [y[1] for y in sorted([(0,x) for x in L])]
+ ## This will work as long as __eq__ => not __lt__ for all the objects in L,
+ ## which holds for all the types used below.
+ ##
+ ## Testing this way ensures that the optimized implementation remains consistent
+ ## with the naive implementation, even if changes are made to any of the
+ ## richcompares.
+ ##
+ ## This function tests sorting for three lists (it randomly shuffles each one):
+ ## 1. L
+ ## 2. [(x,) for x in L]
+ ## 3. [((x,),) for x in L]
+
+ random.seed(0)
+ random.shuffle(L)
+ L_1 = L[:]
+ L_2 = [(x,) for x in L]
+ L_3 = [((x,),) for x in L]
+ for L in [L_1, L_2, L_3]:
+ optimized = sorted(L)
+ reference = [y[1] for y in sorted([(0,x) for x in L])]
+ for (opt, ref) in zip(optimized, reference):
+ self.assertIs(opt, ref)
+ #note: not assertEqual! We want to ensure *identical* behavior.
+
+class TestOptimizedCompares(unittest.TestCase):
+ def test_safe_object_compare(self):
+ heterogeneous_lists = [[0, 'foo'],
+ [0.0, 'foo'],
+ [('foo',), 'foo']]
+ for L in heterogeneous_lists:
+ self.assertRaises(TypeError, L.sort)
+ self.assertRaises(TypeError, [(x,) for x in L].sort)
+ self.assertRaises(TypeError, [((x,),) for x in L].sort)
+
+ float_int_lists = [[1,1.1],
+ [1<<70,1.1],
+ [1.1,1],
+ [1.1,1<<70]]
+ for L in float_int_lists:
+ check_against_PyObject_RichCompareBool(self, L)
+
+ def test_unsafe_object_compare(self):
+
+ # This test is by ppperry. It ensures that unsafe_object_compare is
+ # verifying ms->key_richcompare == tp->richcompare before comparing.
+
+ class WackyComparator(int):
+ def __lt__(self, other):
+ elem.__class__ = WackyList2
+ return int.__lt__(self, other)
+
+ class WackyList1(list):
+ pass
+
+ class WackyList2(list):
+ def __lt__(self, other):
+ raise ValueError
+
+ L = [WackyList1([WackyComparator(i), i]) for i in range(10)]
+ elem = L[-1]
+ with self.assertRaises(ValueError):
+ L.sort()
+
+ L = [WackyList1([WackyComparator(i), i]) for i in range(10)]
+ elem = L[-1]
+ with self.assertRaises(ValueError):
+ [(x,) for x in L].sort()
+
+ # The following test is also by ppperry. It ensures that
+ # unsafe_object_compare handles Py_NotImplemented appropriately.
+ class PointlessComparator:
+ def __lt__(self, other):
+ return NotImplemented
+ L = [PointlessComparator(), PointlessComparator()]
+ self.assertRaises(TypeError, L.sort)
+ self.assertRaises(TypeError, [(x,) for x in L].sort)
+
+ # The following tests go through various types that would trigger
+ # ms->key_compare = unsafe_object_compare
+ lists = [list(range(100)) + [(1<<70)],
+ [str(x) for x in range(100)] + ['\uffff'],
+ [bytes(x) for x in range(100)],
+ [cmp_to_key(lambda x,y: x<y)(x) for x in range(100)]]
+ for L in lists:
+ check_against_PyObject_RichCompareBool(self, L)
+
+ def test_unsafe_latin_compare(self):
+ check_against_PyObject_RichCompareBool(self, [str(x) for
+ x in range(100)])
+
+ def test_unsafe_long_compare(self):
+ check_against_PyObject_RichCompareBool(self, [x for
+ x in range(100)])
+
+ def test_unsafe_float_compare(self):
+ check_against_PyObject_RichCompareBool(self, [float(x) for
+ x in range(100)])
+
+ def test_unsafe_tuple_compare(self):
+ # This test was suggested by Tim Peters. It verifies that the tuple
+ # comparison respects the current tuple compare semantics, which do not
+ # guarantee that x < x <=> (x,) < (x,)
+ #
+ # Note that we don't have to put anything in tuples here, because
+ # the check function does a tuple test automatically.
+
+ check_against_PyObject_RichCompareBool(self, [float('nan')]*100)
+ check_against_PyObject_RichCompareBool(self, [float('nan') for
+ _ in range(100)])
+#==============================================================================
if __name__ == "__main__":
unittest.main()
diff --git a/Misc/ACKS b/Misc/ACKS
index 20210e8..bfcdd33 100644
--- a/Misc/ACKS
+++ b/Misc/ACKS
@@ -554,6 +554,7 @@ Tiago Gonçalves
Chris Gonnerman
Shelley Gooch
David Goodger
+Elliot Gorokhovsky
Hans de Graaff
Tim Graham
Kim Gräsman
diff --git a/Misc/NEWS.d/next/Core and Builtins/2018-01-28-15-09-33.bpo-28685.cHThLM.rst b/Misc/NEWS.d/next/Core and Builtins/2018-01-28-15-09-33.bpo-28685.cHThLM.rst
new file mode 100644
index 0000000..ccc3c08
--- /dev/null
+++ b/Misc/NEWS.d/next/Core and Builtins/2018-01-28-15-09-33.bpo-28685.cHThLM.rst
@@ -0,0 +1,2 @@
+Optimize list.sort() and sorted() by using type specialized comparisons when
+possible.
diff --git a/Objects/listobject.c b/Objects/listobject.c
index 8794e37..9e32137 100644
--- a/Objects/listobject.c
+++ b/Objects/listobject.c
@@ -1081,11 +1081,12 @@ sortslice_advance(sortslice *slice, Py_ssize_t n)
slice->values += n;
}
-/* Comparison function: PyObject_RichCompareBool with Py_LT.
+/* Comparison function: ms->key_compare, which is set at run-time in
+ * listsort_impl to optimize for various special cases.
* Returns -1 on error, 1 if x < y, 0 if x >= y.
*/
-#define ISLT(X, Y) (PyObject_RichCompareBool(X, Y, Py_LT))
+#define ISLT(X, Y) (*(ms->key_compare))(X, Y, ms)
/* Compare X to Y via "<". Goto "fail" if the comparison raises an
error. Else "k" is set to true iff X<Y, and an "if (k)" block is
@@ -1094,6 +1095,75 @@ sortslice_advance(sortslice *slice, Py_ssize_t n)
#define IFLT(X, Y) if ((k = ISLT(X, Y)) < 0) goto fail; \
if (k)
+/* The maximum number of entries in a MergeState's pending-runs stack.
+ * This is enough to sort arrays of size up to about
+ * 32 * phi ** MAX_MERGE_PENDING
+ * where phi ~= 1.618. 85 is ridiculouslylarge enough, good for an array
+ * with 2**64 elements.
+ */
+#define MAX_MERGE_PENDING 85
+
+/* When we get into galloping mode, we stay there until both runs win less
+ * often than MIN_GALLOP consecutive times. See listsort.txt for more info.
+ */
+#define MIN_GALLOP 7
+
+/* Avoid malloc for small temp arrays. */
+#define MERGESTATE_TEMP_SIZE 256
+
+/* One MergeState exists on the stack per invocation of mergesort. It's just
+ * a convenient way to pass state around among the helper functions.
+ */
+struct s_slice {
+ sortslice base;
+ Py_ssize_t len;
+};
+
+typedef struct s_MergeState MergeState;
+struct s_MergeState {
+ /* This controls when we get *into* galloping mode. It's initialized
+ * to MIN_GALLOP. merge_lo and merge_hi tend to nudge it higher for
+ * random data, and lower for highly structured data.
+ */
+ Py_ssize_t min_gallop;
+
+ /* 'a' is temp storage to help with merges. It contains room for
+ * alloced entries.
+ */
+ sortslice a; /* may point to temparray below */
+ Py_ssize_t alloced;
+
+ /* A stack of n pending runs yet to be merged. Run #i starts at
+ * address base[i] and extends for len[i] elements. It's always
+ * true (so long as the indices are in bounds) that
+ *
+ * pending[i].base + pending[i].len == pending[i+1].base
+ *
+ * so we could cut the storage for this, but it's a minor amount,
+ * and keeping all the info explicit simplifies the code.
+ */
+ int n;
+ struct s_slice pending[MAX_MERGE_PENDING];
+
+ /* 'a' points to this when possible, rather than muck with malloc. */
+ PyObject *temparray[MERGESTATE_TEMP_SIZE];
+
+ /* This is the function we will use to compare two keys,
+ * even when none of our special cases apply and we have to use
+ * safe_object_compare. */
+ int (*key_compare)(PyObject *, PyObject *, MergeState *);
+
+ /* This function is used by unsafe_object_compare to optimize comparisons
+ * when we know our list is type-homogeneous but we can't assume anything else.
+ * In the pre-sort check it is set equal to key->ob_type->tp_richcompare */
+ PyObject *(*key_richcompare)(PyObject *, PyObject *, int);
+
+ /* This function is used by unsafe_tuple_compare to compare the first elements
+ * of tuples. It may be set to safe_object_compare, but the idea is that hopefully
+ * we can assume more, and use one of the special-case compares. */
+ int (*tuple_elem_compare)(PyObject *, PyObject *, MergeState *);
+};
+
/* binarysort is the best method for sorting small arrays: it does
few compares, but can do data movement quadratic in the number of
elements.
@@ -1106,7 +1176,7 @@ sortslice_advance(sortslice *slice, Py_ssize_t n)
the input (nothing is lost or duplicated).
*/
static int
-binarysort(sortslice lo, PyObject **hi, PyObject **start)
+binarysort(MergeState *ms, sortslice lo, PyObject **hi, PyObject **start)
{
Py_ssize_t k;
PyObject **l, **p, **r;
@@ -1180,7 +1250,7 @@ elements to get out of order).
Returns -1 in case of error.
*/
static Py_ssize_t
-count_run(PyObject **lo, PyObject **hi, int *descending)
+count_run(MergeState *ms, PyObject **lo, PyObject **hi, int *descending)
{
Py_ssize_t k;
Py_ssize_t n;
@@ -1235,7 +1305,7 @@ key, and the last n-k should follow key.
Returns -1 on error. See listsort.txt for info on the method.
*/
static Py_ssize_t
-gallop_left(PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint)
+gallop_left(MergeState *ms, PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint)
{
Py_ssize_t ofs;
Py_ssize_t lastofs;
@@ -1326,7 +1396,7 @@ we're sticking to "<" comparisons that it's much harder to follow if
written as one routine with yet another "left or right?" flag.
*/
static Py_ssize_t
-gallop_right(PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint)
+gallop_right(MergeState *ms, PyObject *key, PyObject **a, Py_ssize_t n, Py_ssize_t hint)
{
Py_ssize_t ofs;
Py_ssize_t lastofs;
@@ -1402,59 +1472,6 @@ fail:
return -1;
}
-/* The maximum number of entries in a MergeState's pending-runs stack.
- * This is enough to sort arrays of size up to about
- * 32 * phi ** MAX_MERGE_PENDING
- * where phi ~= 1.618. 85 is ridiculouslylarge enough, good for an array
- * with 2**64 elements.
- */
-#define MAX_MERGE_PENDING 85
-
-/* When we get into galloping mode, we stay there until both runs win less
- * often than MIN_GALLOP consecutive times. See listsort.txt for more info.
- */
-#define MIN_GALLOP 7
-
-/* Avoid malloc for small temp arrays. */
-#define MERGESTATE_TEMP_SIZE 256
-
-/* One MergeState exists on the stack per invocation of mergesort. It's just
- * a convenient way to pass state around among the helper functions.
- */
-struct s_slice {
- sortslice base;
- Py_ssize_t len;
-};
-
-typedef struct s_MergeState {
- /* This controls when we get *into* galloping mode. It's initialized
- * to MIN_GALLOP. merge_lo and merge_hi tend to nudge it higher for
- * random data, and lower for highly structured data.
- */
- Py_ssize_t min_gallop;
-
- /* 'a' is temp storage to help with merges. It contains room for
- * alloced entries.
- */
- sortslice a; /* may point to temparray below */
- Py_ssize_t alloced;
-
- /* A stack of n pending runs yet to be merged. Run #i starts at
- * address base[i] and extends for len[i] elements. It's always
- * true (so long as the indices are in bounds) that
- *
- * pending[i].base + pending[i].len == pending[i+1].base
- *
- * so we could cut the storage for this, but it's a minor amount,
- * and keeping all the info explicit simplifies the code.
- */
- int n;
- struct s_slice pending[MAX_MERGE_PENDING];
-
- /* 'a' points to this when possible, rather than muck with malloc. */
- PyObject *temparray[MERGESTATE_TEMP_SIZE];
-} MergeState;
-
/* Conceptually a MergeState's constructor. */
static void
merge_init(MergeState *ms, Py_ssize_t list_size, int has_keyfunc)
@@ -1514,11 +1531,11 @@ merge_getmem(MergeState *ms, Py_ssize_t need)
* we don't care what's in the block.
*/
merge_freemem(ms);
- if ((size_t)need > PY_SSIZE_T_MAX / sizeof(PyObject*) / multiplier) {
+ if ((size_t)need > PY_SSIZE_T_MAX / sizeof(PyObject *) / multiplier) {
PyErr_NoMemory();
return -1;
}
- ms->a.keys = (PyObject**)PyMem_Malloc(multiplier * need
+ ms->a.keys = (PyObject **)PyMem_Malloc(multiplier * need
* sizeof(PyObject *));
if (ms->a.keys != NULL) {
ms->alloced = need;
@@ -1607,7 +1624,7 @@ merge_lo(MergeState *ms, sortslice ssa, Py_ssize_t na,
assert(na > 1 && nb > 0);
min_gallop -= min_gallop > 1;
ms->min_gallop = min_gallop;
- k = gallop_right(ssb.keys[0], ssa.keys, na, 0);
+ k = gallop_right(ms, ssb.keys[0], ssa.keys, na, 0);
acount = k;
if (k) {
if (k < 0)
@@ -1630,7 +1647,7 @@ merge_lo(MergeState *ms, sortslice ssa, Py_ssize_t na,
if (nb == 0)
goto Succeed;
- k = gallop_left(ssa.keys[0], ssb.keys, nb, 0);
+ k = gallop_left(ms, ssa.keys[0], ssb.keys, nb, 0);
bcount = k;
if (k) {
if (k < 0)
@@ -1745,7 +1762,7 @@ merge_hi(MergeState *ms, sortslice ssa, Py_ssize_t na,
assert(na > 0 && nb > 1);
min_gallop -= min_gallop > 1;
ms->min_gallop = min_gallop;
- k = gallop_right(ssb.keys[0], basea.keys, na, na-1);
+ k = gallop_right(ms, ssb.keys[0], basea.keys, na, na-1);
if (k < 0)
goto Fail;
k = na - k;
@@ -1763,7 +1780,7 @@ merge_hi(MergeState *ms, sortslice ssa, Py_ssize_t na,
if (nb == 1)
goto CopyA;
- k = gallop_left(ssa.keys[0], baseb.keys, nb, nb-1);
+ k = gallop_left(ms, ssa.keys[0], baseb.keys, nb, nb-1);
if (k < 0)
goto Fail;
k = nb - k;
@@ -1840,7 +1857,7 @@ merge_at(MergeState *ms, Py_ssize_t i)
/* Where does b start in a? Elements in a before that can be
* ignored (already in place).
*/
- k = gallop_right(*ssb.keys, ssa.keys, na, 0);
+ k = gallop_right(ms, *ssb.keys, ssa.keys, na, 0);
if (k < 0)
return -1;
sortslice_advance(&ssa, k);
@@ -1851,7 +1868,7 @@ merge_at(MergeState *ms, Py_ssize_t i)
/* Where does a end in b? Elements in b after that can be
* ignored (already in place).
*/
- nb = gallop_left(ssa.keys[na-1], ssb.keys, nb, nb-1);
+ nb = gallop_left(ms, ssa.keys[na-1], ssb.keys, nb, nb-1);
if (nb <= 0)
return nb;
@@ -1890,8 +1907,8 @@ merge_collapse(MergeState *ms)
return -1;
}
else if (p[n].len <= p[n+1].len) {
- if (merge_at(ms, n) < 0)
- return -1;
+ if (merge_at(ms, n) < 0)
+ return -1;
}
else
break;
@@ -1951,6 +1968,170 @@ reverse_sortslice(sortslice *s, Py_ssize_t n)
reverse_slice(s->values, &s->values[n]);
}
+/* Here we define custom comparison functions to optimize for the cases one commonly
+ * encounters in practice: homogeneous lists, often of one of the basic types. */
+
+/* This struct holds the comparison function and helper functions
+ * selected in the pre-sort check. */
+
+/* These are the special case compare functions.
+ * ms->key_compare will always point to one of these: */
+
+/* Heterogeneous compare: default, always safe to fall back on. */
+static int
+safe_object_compare(PyObject *v, PyObject *w, MergeState *ms)
+{
+ /* No assumptions necessary! */
+ return PyObject_RichCompareBool(v, w, Py_LT);
+}
+
+/* Homogeneous compare: safe for any two compareable objects of the same type.
+ * (ms->key_richcompare is set to ob_type->tp_richcompare in the
+ * pre-sort check.)
+ */
+static int
+unsafe_object_compare(PyObject *v, PyObject *w, MergeState *ms)
+{
+ PyObject *res_obj; int res;
+
+ /* No assumptions, because we check first: */
+ if (v->ob_type->tp_richcompare != ms->key_richcompare)
+ return PyObject_RichCompareBool(v, w, Py_LT);
+
+ assert(ms->key_richcompare != NULL);
+ res_obj = (*(ms->key_richcompare))(v, w, Py_LT);
+
+ if (res_obj == Py_NotImplemented) {
+ Py_DECREF(res_obj);
+ return PyObject_RichCompareBool(v, w, Py_LT);
+ }
+ if (res_obj == NULL)
+ return -1;
+
+ if (PyBool_Check(res_obj)) {
+ res = (res_obj == Py_True);
+ }
+ else {
+ res = PyObject_IsTrue(res_obj);
+ }
+ Py_DECREF(res_obj);
+
+ /* Note that we can't assert
+ * res == PyObject_RichCompareBool(v, w, Py_LT);
+ * because of evil compare functions like this:
+ * lambda a, b: int(random.random() * 3) - 1)
+ * (which is actually in test_sort.py) */
+ return res;
+}
+
+/* Latin string compare: safe for any two latin (one byte per char) strings. */
+static int
+unsafe_latin_compare(PyObject *v, PyObject *w, MergeState *ms)
+{
+ int len, res;
+
+ /* Modified from Objects/unicodeobject.c:unicode_compare, assuming: */
+ assert(v->ob_type == w->ob_type);
+ assert(v->ob_type == &PyUnicode_Type);
+ assert(PyUnicode_KIND(v) == PyUnicode_KIND(w));
+ assert(PyUnicode_KIND(v) == PyUnicode_1BYTE_KIND);
+
+ len = Py_MIN(PyUnicode_GET_LENGTH(v), PyUnicode_GET_LENGTH(w));
+ res = memcmp(PyUnicode_DATA(v), PyUnicode_DATA(w), len);
+
+ res = (res != 0 ?
+ res < 0 :
+ PyUnicode_GET_LENGTH(v) < PyUnicode_GET_LENGTH(w));
+
+ assert(res == PyObject_RichCompareBool(v, w, Py_LT));;
+ return res;
+}
+
+/* Bounded int compare: compare any two longs that fit in a single machine word. */
+static int
+unsafe_long_compare(PyObject *v, PyObject *w, MergeState *ms)
+{
+ PyLongObject *vl, *wl; sdigit v0, w0; int res;
+
+ /* Modified from Objects/longobject.c:long_compare, assuming: */
+ assert(v->ob_type == w->ob_type);
+ assert(v->ob_type == &PyLong_Type);
+ assert(Py_ABS(Py_SIZE(v)) <= 1);
+ assert(Py_ABS(Py_SIZE(w)) <= 1);
+
+ vl = (PyLongObject*)v;
+ wl = (PyLongObject*)w;
+
+ v0 = Py_SIZE(vl) == 0 ? 0 : (sdigit)vl->ob_digit[0];
+ w0 = Py_SIZE(wl) == 0 ? 0 : (sdigit)wl->ob_digit[0];
+
+ if (Py_SIZE(vl) < 0)
+ v0 = -v0;
+ if (Py_SIZE(wl) < 0)
+ w0 = -w0;
+
+ res = v0 < w0;
+ assert(res == PyObject_RichCompareBool(v, w, Py_LT));
+ return res;
+}
+
+/* Float compare: compare any two floats. */
+static int
+unsafe_float_compare(PyObject *v, PyObject *w, MergeState *ms)
+{
+ int res;
+
+ /* Modified from Objects/floatobject.c:float_richcompare, assuming: */
+ assert(v->ob_type == w->ob_type);
+ assert(v->ob_type == &PyFloat_Type);
+
+ res = PyFloat_AS_DOUBLE(v) < PyFloat_AS_DOUBLE(w);
+ assert(res == PyObject_RichCompareBool(v, w, Py_LT));
+ return res;
+}
+
+/* Tuple compare: compare *any* two tuples, using
+ * ms->tuple_elem_compare to compare the first elements, which is set
+ * using the same pre-sort check as we use for ms->key_compare,
+ * but run on the list [x[0] for x in L]. This allows us to optimize compares
+ * on two levels (as long as [x[0] for x in L] is type-homogeneous.) The idea is
+ * that most tuple compares don't involve x[1:]. */
+static int
+unsafe_tuple_compare(PyObject *v, PyObject *w, MergeState *ms)
+{
+ PyTupleObject *vt, *wt;
+ Py_ssize_t i, vlen, wlen;
+ int k;
+
+ /* Modified from Objects/tupleobject.c:tuplerichcompare, assuming: */
+ assert(v->ob_type == w->ob_type);
+ assert(v->ob_type == &PyTuple_Type);
+ assert(Py_SIZE(v) > 0);
+ assert(Py_SIZE(w) > 0);
+
+ vt = (PyTupleObject *)v;
+ wt = (PyTupleObject *)w;
+
+ vlen = Py_SIZE(vt);
+ wlen = Py_SIZE(wt);
+
+ for (i = 0; i < vlen && i < wlen; i++) {
+ k = PyObject_RichCompareBool(vt->ob_item[i], wt->ob_item[i], Py_EQ);
+ if (k < 0)
+ return -1;
+ if (!k)
+ break;
+ }
+
+ if (i >= vlen || i >= wlen)
+ return vlen < wlen;
+
+ if (i == 0)
+ return ms->tuple_elem_compare(vt->ob_item[i], wt->ob_item[i], ms);
+ else
+ return PyObject_RichCompareBool(vt->ob_item[i], wt->ob_item[i], Py_LT);
+}
+
/* An adaptive, stable, natural mergesort. See listsort.txt.
* Returns Py_None on success, NULL on error. Even in case of error, the
* list will be some permutation of its input state (nothing is lost or
@@ -2031,6 +2212,91 @@ list_sort_impl(PyListObject *self, PyObject *keyfunc, int reverse)
lo.values = saved_ob_item;
}
+
+ /* The pre-sort check: here's where we decide which compare function to use.
+ * How much optimization is safe? We test for homogeneity with respect to
+ * several properties that are expensive to check at compare-time, and
+ * set ms appropriately. */
+ if (saved_ob_size > 1) {
+ /* Assume the first element is representative of the whole list. */
+ int keys_are_in_tuples = (lo.keys[0]->ob_type == &PyTuple_Type &&
+ Py_SIZE(lo.keys[0]) > 0);
+
+ PyTypeObject* key_type = (keys_are_in_tuples ?
+ PyTuple_GET_ITEM(lo.keys[0], 0)->ob_type :
+ lo.keys[0]->ob_type);
+
+ int keys_are_all_same_type = 1;
+ int strings_are_latin = 1;
+ int ints_are_bounded = 1;
+
+ /* Prove that assumption by checking every key. */
+ int i;
+ for (i=0; i < saved_ob_size; i++) {
+
+ if (keys_are_in_tuples &&
+ !(lo.keys[i]->ob_type == &PyTuple_Type && Py_SIZE(lo.keys[i]) != 0)) {
+ keys_are_in_tuples = 0;
+ keys_are_all_same_type = 0;
+ break;
+ }
+
+ /* Note: for lists of tuples, key is the first element of the tuple
+ * lo.keys[i], not lo.keys[i] itself! We verify type-homogeneity
+ * for lists of tuples in the if-statement directly above. */
+ PyObject *key = (keys_are_in_tuples ?
+ PyTuple_GET_ITEM(lo.keys[i], 0) :
+ lo.keys[i]);
+
+ if (key->ob_type != key_type) {
+ keys_are_all_same_type = 0;
+ break;
+ }
+
+ if (key_type == &PyLong_Type) {
+ if (ints_are_bounded && Py_ABS(Py_SIZE(key)) > 1)
+ ints_are_bounded = 0;
+ }
+ else if (key_type == &PyUnicode_Type){
+ if (strings_are_latin &&
+ PyUnicode_KIND(key) != PyUnicode_1BYTE_KIND)
+ strings_are_latin = 0;
+ }
+ }
+
+ /* Choose the best compare, given what we now know about the keys. */
+ if (keys_are_all_same_type) {
+
+ if (key_type == &PyUnicode_Type && strings_are_latin) {
+ ms.key_compare = unsafe_latin_compare;
+ }
+ else if (key_type == &PyLong_Type && ints_are_bounded) {
+ ms.key_compare = unsafe_long_compare;
+ }
+ else if (key_type == &PyFloat_Type) {
+ ms.key_compare = unsafe_float_compare;
+ }
+ else if ((ms.key_richcompare = key_type->tp_richcompare) != NULL) {
+ ms.key_compare = unsafe_object_compare;
+ }
+ }
+ else {
+ ms.key_compare = safe_object_compare;
+ }
+
+ if (keys_are_in_tuples) {
+ /* Make sure we're not dealing with tuples of tuples
+ * (remember: here, key_type refers list [key[0] for key in keys]) */
+ if (key_type == &PyTuple_Type)
+ ms.tuple_elem_compare = safe_object_compare;
+ else
+ ms.tuple_elem_compare = ms.key_compare;
+
+ ms.key_compare = unsafe_tuple_compare;
+ }
+ }
+ /* End of pre-sort check: ms is now set properly! */
+
merge_init(&ms, saved_ob_size, keys != NULL);
nremaining = saved_ob_size;
@@ -2054,7 +2320,7 @@ list_sort_impl(PyListObject *self, PyObject *keyfunc, int reverse)
Py_ssize_t n;
/* Identify next run. */
- n = count_run(lo.keys, lo.keys + nremaining, &descending);
+ n = count_run(&ms, lo.keys, lo.keys + nremaining, &descending);
if (n < 0)
goto fail;
if (descending)
@@ -2063,7 +2329,7 @@ list_sort_impl(PyListObject *self, PyObject *keyfunc, int reverse)
if (n < minrun) {
const Py_ssize_t force = nremaining <= minrun ?
nremaining : minrun;
- if (binarysort(lo, lo.keys + force, lo.keys + n) < 0)
+ if (binarysort(&ms, lo, lo.keys + force, lo.keys + n) < 0)
goto fail;
n = force;
}
diff --git a/Objects/listsort.txt b/Objects/listsort.txt
index 17d2797..8c87751 100644
--- a/Objects/listsort.txt
+++ b/Objects/listsort.txt
@@ -753,3 +753,11 @@ example, with the region of uncertainty B[4], B[5], B[6], there are 4
locations: before B[4], between B[4] and B[5], between B[5] and B[6], and
after B[6]. In general, across 2**(k-1)-1 elements, there are 2**(k-1)
locations. That's why k-1 binary searches are necessary and sufficient.
+
+OPTIMIZATION OF INDIVIDUAL COMPARISONS
+As noted above, even the simplest Python comparison triggers a large pile of
+C-level pointer dereferences, conditionals, and function calls. This can be
+partially mitigated by pre-scanning the data to determine whether the data is
+homogenous with respect to type. If so, it is sometimes possible to
+substitute faster type-specific comparisons for the slower, generic
+PyObject_RichCompareBool.