summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Lib/pydoc_data/topics.py4
1 files changed, 2 insertions, 2 deletions
diff --git a/Lib/pydoc_data/topics.py b/Lib/pydoc_data/topics.py
index 721ed59..b867c9e 100644
--- a/Lib/pydoc_data/topics.py
+++ b/Lib/pydoc_data/topics.py
@@ -1,4 +1,4 @@
-# Autogenerated by Sphinx on Sun Jan 30 14:58:50 2011
+# Autogenerated by Sphinx on Sun Feb 13 11:01:51 2011
topics = {'assert': '\nThe ``assert`` statement\n************************\n\nAssert statements are a convenient way to insert debugging assertions\ninto a program:\n\n assert_stmt ::= "assert" expression ["," expression]\n\nThe simple form, ``assert expression``, is equivalent to\n\n if __debug__:\n if not expression: raise AssertionError\n\nThe extended form, ``assert expression1, expression2``, is equivalent\nto\n\n if __debug__:\n if not expression1: raise AssertionError(expression2)\n\nThese equivalences assume that ``__debug__`` and ``AssertionError``\nrefer to the built-in variables with those names. In the current\nimplementation, the built-in variable ``__debug__`` is ``True`` under\nnormal circumstances, ``False`` when optimization is requested\n(command line option -O). The current code generator emits no code\nfor an assert statement when optimization is requested at compile\ntime. Note that it is unnecessary to include the source code for the\nexpression that failed in the error message; it will be displayed as\npart of the stack trace.\n\nAssignments to ``__debug__`` are illegal. The value for the built-in\nvariable is determined when the interpreter starts.\n',
'assignment': '\nAssignment statements\n*********************\n\nAssignment statements are used to (re)bind names to values and to\nmodify attributes or items of mutable objects:\n\n assignment_stmt ::= (target_list "=")+ (expression_list | yield_expression)\n target_list ::= target ("," target)* [","]\n target ::= identifier\n | "(" target_list ")"\n | "[" target_list "]"\n | attributeref\n | subscription\n | slicing\n | "*" target\n\n(See section *Primaries* for the syntax definitions for the last three\nsymbols.)\n\nAn assignment statement evaluates the expression list (remember that\nthis can be a single expression or a comma-separated list, the latter\nyielding a tuple) and assigns the single resulting object to each of\nthe target lists, from left to right.\n\nAssignment is defined recursively depending on the form of the target\n(list). When a target is part of a mutable object (an attribute\nreference, subscription or slicing), the mutable object must\nultimately perform the assignment and decide about its validity, and\nmay raise an exception if the assignment is unacceptable. The rules\nobserved by various types and the exceptions raised are given with the\ndefinition of the object types (see section *The standard type\nhierarchy*).\n\nAssignment of an object to a target list, optionally enclosed in\nparentheses or square brackets, is recursively defined as follows.\n\n* If the target list is a single target: The object is assigned to\n that target.\n\n* If the target list is a comma-separated list of targets: The object\n must be an iterable with the same number of items as there are\n targets in the target list, and the items are assigned, from left to\n right, to the corresponding targets. (This rule is relaxed as of\n Python 1.5; in earlier versions, the object had to be a tuple.\n Since strings are sequences, an assignment like ``a, b = "xy"`` is\n now legal as long as the string has the right length.)\n\n * If the target list contains one target prefixed with an asterisk,\n called a "starred" target: The object must be a sequence with at\n least as many items as there are targets in the target list, minus\n one. The first items of the sequence are assigned, from left to\n right, to the targets before the starred target. The final items\n of the sequence are assigned to the targets after the starred\n target. A list of the remaining items in the sequence is then\n assigned to the starred target (the list can be empty).\n\n * Else: The object must be a sequence with the same number of items\n as there are targets in the target list, and the items are\n assigned, from left to right, to the corresponding targets.\n\nAssignment of an object to a single target is recursively defined as\nfollows.\n\n* If the target is an identifier (name):\n\n * If the name does not occur in a ``global`` or ``nonlocal``\n statement in the current code block: the name is bound to the\n object in the current local namespace.\n\n * Otherwise: the name is bound to the object in the global namespace\n or the outer namespace determined by ``nonlocal``, respectively.\n\n The name is rebound if it was already bound. This may cause the\n reference count for the object previously bound to the name to reach\n zero, causing the object to be deallocated and its destructor (if it\n has one) to be called.\n\n* If the target is a target list enclosed in parentheses or in square\n brackets: The object must be an iterable with the same number of\n items as there are targets in the target list, and its items are\n assigned, from left to right, to the corresponding targets.\n\n* If the target is an attribute reference: The primary expression in\n the reference is evaluated. It should yield an object with\n assignable attributes; if this is not the case, ``TypeError`` is\n raised. That object is then asked to assign the assigned object to\n the given attribute; if it cannot perform the assignment, it raises\n an exception (usually but not necessarily ``AttributeError``).\n\n Note: If the object is a class instance and the attribute reference\n occurs on both sides of the assignment operator, the RHS expression,\n ``a.x`` can access either an instance attribute or (if no instance\n attribute exists) a class attribute. The LHS target ``a.x`` is\n always set as an instance attribute, creating it if necessary.\n Thus, the two occurrences of ``a.x`` do not necessarily refer to the\n same attribute: if the RHS expression refers to a class attribute,\n the LHS creates a new instance attribute as the target of the\n assignment:\n\n class Cls:\n x = 3 # class variable\n inst = Cls()\n inst.x = inst.x + 1 # writes inst.x as 4 leaving Cls.x as 3\n\n This description does not necessarily apply to descriptor\n attributes, such as properties created with ``property()``.\n\n* If the target is a subscription: The primary expression in the\n reference is evaluated. It should yield either a mutable sequence\n object (such as a list) or a mapping object (such as a dictionary).\n Next, the subscript expression is evaluated.\n\n If the primary is a mutable sequence object (such as a list), the\n subscript must yield an integer. If it is negative, the sequence\'s\n length is added to it. The resulting value must be a nonnegative\n integer less than the sequence\'s length, and the sequence is asked\n to assign the assigned object to its item with that index. If the\n index is out of range, ``IndexError`` is raised (assignment to a\n subscripted sequence cannot add new items to a list).\n\n If the primary is a mapping object (such as a dictionary), the\n subscript must have a type compatible with the mapping\'s key type,\n and the mapping is then asked to create a key/datum pair which maps\n the subscript to the assigned object. This can either replace an\n existing key/value pair with the same key value, or insert a new\n key/value pair (if no key with the same value existed).\n\n For user-defined objects, the ``__setitem__()`` method is called\n with appropriate arguments.\n\n* If the target is a slicing: The primary expression in the reference\n is evaluated. It should yield a mutable sequence object (such as a\n list). The assigned object should be a sequence object of the same\n type. Next, the lower and upper bound expressions are evaluated,\n insofar they are present; defaults are zero and the sequence\'s\n length. The bounds should evaluate to integers. If either bound is\n negative, the sequence\'s length is added to it. The resulting\n bounds are clipped to lie between zero and the sequence\'s length,\n inclusive. Finally, the sequence object is asked to replace the\n slice with the items of the assigned sequence. The length of the\n slice may be different from the length of the assigned sequence,\n thus changing the length of the target sequence, if the object\n allows it.\n\n**CPython implementation detail:** In the current implementation, the\nsyntax for targets is taken to be the same as for expressions, and\ninvalid syntax is rejected during the code generation phase, causing\nless detailed error messages.\n\nWARNING: Although the definition of assignment implies that overlaps\nbetween the left-hand side and the right-hand side are \'safe\' (for\nexample ``a, b = b, a`` swaps two variables), overlaps *within* the\ncollection of assigned-to variables are not safe! For instance, the\nfollowing program prints ``[0, 2]``:\n\n x = [0, 1]\n i = 0\n i, x[i] = 1, 2\n print(x)\n\nSee also:\n\n **PEP 3132** - Extended Iterable Unpacking\n The specification for the ``*target`` feature.\n\n\nAugmented assignment statements\n===============================\n\nAugmented assignment is the combination, in a single statement, of a\nbinary operation and an assignment statement:\n\n augmented_assignment_stmt ::= augtarget augop (expression_list | yield_expression)\n augtarget ::= identifier | attributeref | subscription | slicing\n augop ::= "+=" | "-=" | "*=" | "/=" | "//=" | "%=" | "**="\n | ">>=" | "<<=" | "&=" | "^=" | "|="\n\n(See section *Primaries* for the syntax definitions for the last three\nsymbols.)\n\nAn augmented assignment evaluates the target (which, unlike normal\nassignment statements, cannot be an unpacking) and the expression\nlist, performs the binary operation specific to the type of assignment\non the two operands, and assigns the result to the original target.\nThe target is only evaluated once.\n\nAn augmented assignment expression like ``x += 1`` can be rewritten as\n``x = x + 1`` to achieve a similar, but not exactly equal effect. In\nthe augmented version, ``x`` is only evaluated once. Also, when\npossible, the actual operation is performed *in-place*, meaning that\nrather than creating a new object and assigning that to the target,\nthe old object is modified instead.\n\nWith the exception of assigning to tuples and multiple targets in a\nsingle statement, the assignment done by augmented assignment\nstatements is handled the same way as normal assignments. Similarly,\nwith the exception of the possible *in-place* behavior, the binary\noperation performed by augmented assignment is the same as the normal\nbinary operations.\n\nFor targets which are attribute references, the same *caveat about\nclass and instance attributes* applies as for regular assignments.\n',
'atom-identifiers': '\nIdentifiers (Names)\n*******************\n\nAn identifier occurring as an atom is a name. See section\n*Identifiers and keywords* for lexical definition and section *Naming\nand binding* for documentation of naming and binding.\n\nWhen the name is bound to an object, evaluation of the atom yields\nthat object. When a name is not bound, an attempt to evaluate it\nraises a ``NameError`` exception.\n\n**Private name mangling:** When an identifier that textually occurs in\na class definition begins with two or more underscore characters and\ndoes not end in two or more underscores, it is considered a *private\nname* of that class. Private names are transformed to a longer form\nbefore code is generated for them. The transformation inserts the\nclass name in front of the name, with leading underscores removed, and\na single underscore inserted in front of the class name. For example,\nthe identifier ``__spam`` occurring in a class named ``Ham`` will be\ntransformed to ``_Ham__spam``. This transformation is independent of\nthe syntactical context in which the identifier is used. If the\ntransformed name is extremely long (longer than 255 characters),\nimplementation defined truncation may happen. If the class name\nconsists only of underscores, no transformation is done.\n',
@@ -33,7 +33,7 @@ topics = {'assert': '\nThe ``assert`` statement\n************************\n\nAss
'exprlists': '\nExpression lists\n****************\n\n expression_list ::= expression ( "," expression )* [","]\n\nAn expression list containing at least one comma yields a tuple. The\nlength of the tuple is the number of expressions in the list. The\nexpressions are evaluated from left to right.\n\nThe trailing comma is required only to create a single tuple (a.k.a. a\n*singleton*); it is optional in all other cases. A single expression\nwithout a trailing comma doesn\'t create a tuple, but rather yields the\nvalue of that expression. (To create an empty tuple, use an empty pair\nof parentheses: ``()``.)\n',
'floating': '\nFloating point literals\n***********************\n\nFloating point literals are described by the following lexical\ndefinitions:\n\n floatnumber ::= pointfloat | exponentfloat\n pointfloat ::= [intpart] fraction | intpart "."\n exponentfloat ::= (intpart | pointfloat) exponent\n intpart ::= digit+\n fraction ::= "." digit+\n exponent ::= ("e" | "E") ["+" | "-"] digit+\n\nNote that the integer and exponent parts are always interpreted using\nradix 10. For example, ``077e010`` is legal, and denotes the same\nnumber as ``77e10``. The allowed range of floating point literals is\nimplementation-dependent. Some examples of floating point literals:\n\n 3.14 10. .001 1e100 3.14e-10 0e0\n\nNote that numeric literals do not include a sign; a phrase like ``-1``\nis actually an expression composed of the unary operator ``-`` and the\nliteral ``1``.\n',
'for': '\nThe ``for`` statement\n*********************\n\nThe ``for`` statement is used to iterate over the elements of a\nsequence (such as a string, tuple or list) or other iterable object:\n\n for_stmt ::= "for" target_list "in" expression_list ":" suite\n ["else" ":" suite]\n\nThe expression list is evaluated once; it should yield an iterable\nobject. An iterator is created for the result of the\n``expression_list``. The suite is then executed once for each item\nprovided by the iterator, in the order of ascending indices. Each\nitem in turn is assigned to the target list using the standard rules\nfor assignments (see *Assignment statements*), and then the suite is\nexecuted. When the items are exhausted (which is immediately when the\nsequence is empty or an iterator raises a ``StopIteration``\nexception), the suite in the ``else`` clause, if present, is executed,\nand the loop terminates.\n\nA ``break`` statement executed in the first suite terminates the loop\nwithout executing the ``else`` clause\'s suite. A ``continue``\nstatement executed in the first suite skips the rest of the suite and\ncontinues with the next item, or with the ``else`` clause if there was\nno next item.\n\nThe suite may assign to the variable(s) in the target list; this does\nnot affect the next item assigned to it.\n\nNames in the target list are not deleted when the loop is finished,\nbut if the sequence is empty, it will not have been assigned to at all\nby the loop. Hint: the built-in function ``range()`` returns an\niterator of integers suitable to emulate the effect of Pascal\'s ``for\ni := a to b do``; e.g., ``list(range(3))`` returns the list ``[0, 1,\n2]``.\n\nNote: There is a subtlety when the sequence is being modified by the loop\n (this can only occur for mutable sequences, i.e. lists). An\n internal counter is used to keep track of which item is used next,\n and this is incremented on each iteration. When this counter has\n reached the length of the sequence the loop terminates. This means\n that if the suite deletes the current (or a previous) item from the\n sequence, the next item will be skipped (since it gets the index of\n the current item which has already been treated). Likewise, if the\n suite inserts an item in the sequence before the current item, the\n current item will be treated again the next time through the loop.\n This can lead to nasty bugs that can be avoided by making a\n temporary copy using a slice of the whole sequence, e.g.,\n\n for x in a[:]:\n if x < 0: a.remove(x)\n',
- 'formatstrings': '\nFormat String Syntax\n********************\n\nThe ``str.format()`` method and the ``Formatter`` class share the same\nsyntax for format strings (although in the case of ``Formatter``,\nsubclasses can define their own format string syntax).\n\nFormat strings contain "replacement fields" surrounded by curly braces\n``{}``. Anything that is not contained in braces is considered literal\ntext, which is copied unchanged to the output. If you need to include\na brace character in the literal text, it can be escaped by doubling:\n``{{`` and ``}}``.\n\nThe grammar for a replacement field is as follows:\n\n replacement_field ::= "{" [field_name] ["!" conversion] [":" format_spec] "}"\n field_name ::= arg_name ("." attribute_name | "[" element_index "]")*\n arg_name ::= [identifier | integer]\n attribute_name ::= identifier\n element_index ::= integer | index_string\n index_string ::= <any source character except "]"> +\n conversion ::= "r" | "s" | "a"\n format_spec ::= <described in the next section>\n\nIn less formal terms, the replacement field can start with a\n*field_name* that specifies the object whose value is to be formatted\nand inserted into the output instead of the replacement field. The\n*field_name* is optionally followed by a *conversion* field, which is\npreceded by an exclamation point ``\'!\'``, and a *format_spec*, which\nis preceded by a colon ``\':\'``. These specify a non-default format\nfor the replacement value.\n\nSee also the *Format Specification Mini-Language* section.\n\nThe *field_name* itself begins with an *arg_name* that is either\neither a number or a keyword. If it\'s a number, it refers to a\npositional argument, and if it\'s a keyword, it refers to a named\nkeyword argument. If the numerical arg_names in a format string are\n0, 1, 2, ... in sequence, they can all be omitted (not just some) and\nthe numbers 0, 1, 2, ... will be automatically inserted in that order.\nThe *arg_name* can be followed by any number of index or attribute\nexpressions. An expression of the form ``\'.name\'`` selects the named\nattribute using ``getattr()``, while an expression of the form\n``\'[index]\'`` does an index lookup using ``__getitem__()``.\n\nChanged in version 3.1: The positional argument specifiers can be\nomitted, so ``\'{} {}\'`` is equivalent to ``\'{0} {1}\'``.\n\nSome simple format string examples:\n\n "First, thou shalt count to {0}" # References first positional argument\n "Bring me a {}" # Implicitly references the first positional argument\n "From {} to {}" # Same as "From {0} to {1}"\n "My quest is {name}" # References keyword argument \'name\'\n "Weight in tons {0.weight}" # \'weight\' attribute of first positional arg\n "Units destroyed: {players[0]}" # First element of keyword argument \'players\'.\n\nThe *conversion* field causes a type coercion before formatting.\nNormally, the job of formatting a value is done by the\n``__format__()`` method of the value itself. However, in some cases\nit is desirable to force a type to be formatted as a string,\noverriding its own definition of formatting. By converting the value\nto a string before calling ``__format__()``, the normal formatting\nlogic is bypassed.\n\nThree conversion flags are currently supported: ``\'!s\'`` which calls\n``str()`` on the value, ``\'!r\'`` which calls ``repr()`` and ``\'!a\'``\nwhich calls ``ascii()``.\n\nSome examples:\n\n "Harold\'s a clever {0!s}" # Calls str() on the argument first\n "Bring out the holy {name!r}" # Calls repr() on the argument first\n "More {!a}" # Calls ascii() on the argument first\n\nThe *format_spec* field contains a specification of how the value\nshould be presented, including such details as field width, alignment,\npadding, decimal precision and so on. Each value type can define its\nown "formatting mini-language" or interpretation of the *format_spec*.\n\nMost built-in types support a common formatting mini-language, which\nis described in the next section.\n\nA *format_spec* field can also include nested replacement fields\nwithin it. These nested replacement fields can contain only a field\nname; conversion flags and format specifications are not allowed. The\nreplacement fields within the format_spec are substituted before the\n*format_spec* string is interpreted. This allows the formatting of a\nvalue to be dynamically specified.\n\nSee the *Format examples* section for some examples.\n\n\nFormat Specification Mini-Language\n==================================\n\n"Format specifications" are used within replacement fields contained\nwithin a format string to define how individual values are presented\n(see *Format String Syntax*). They can also be passed directly to the\nbuilt-in ``format()`` function. Each formattable type may define how\nthe format specification is to be interpreted.\n\nMost built-in types implement the following options for format\nspecifications, although some of the formatting options are only\nsupported by the numeric types.\n\nA general convention is that an empty format string (``""``) produces\nthe same result as if you had called ``str()`` on the value. A non-\nempty format string typically modifies the result.\n\nThe general form of a *standard format specifier* is:\n\n format_spec ::= [[fill]align][sign][#][0][width][,][.precision][type]\n fill ::= <a character other than \'}\'>\n align ::= "<" | ">" | "=" | "^"\n sign ::= "+" | "-" | " "\n width ::= integer\n precision ::= integer\n type ::= "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"\n\nThe *fill* character can be any character other than \'{\' or \'}\'. The\npresence of a fill character is signaled by the character following\nit, which must be one of the alignment options. If the second\ncharacter of *format_spec* is not a valid alignment option, then it is\nassumed that both the fill character and the alignment option are\nabsent.\n\nThe meaning of the various alignment options is as follows:\n\n +-----------+------------------------------------------------------------+\n | Option | Meaning |\n +===========+============================================================+\n | ``\'<\'`` | Forces the field to be left-aligned within the available |\n | | space (this is the default). |\n +-----------+------------------------------------------------------------+\n | ``\'>\'`` | Forces the field to be right-aligned within the available |\n | | space. |\n +-----------+------------------------------------------------------------+\n | ``\'=\'`` | Forces the padding to be placed after the sign (if any) |\n | | but before the digits. This is used for printing fields |\n | | in the form \'+000000120\'. This alignment option is only |\n | | valid for numeric types. |\n +-----------+------------------------------------------------------------+\n | ``\'^\'`` | Forces the field to be centered within the available |\n | | space. |\n +-----------+------------------------------------------------------------+\n\nNote that unless a minimum field width is defined, the field width\nwill always be the same size as the data to fill it, so that the\nalignment option has no meaning in this case.\n\nThe *sign* option is only valid for number types, and can be one of\nthe following:\n\n +-----------+------------------------------------------------------------+\n | Option | Meaning |\n +===========+============================================================+\n | ``\'+\'`` | indicates that a sign should be used for both positive as |\n | | well as negative numbers. |\n +-----------+------------------------------------------------------------+\n | ``\'-\'`` | indicates that a sign should be used only for negative |\n | | numbers (this is the default behavior). |\n +-----------+------------------------------------------------------------+\n | space | indicates that a leading space should be used on positive |\n | | numbers, and a minus sign on negative numbers. |\n +-----------+------------------------------------------------------------+\n\nThe ``\'#\'`` option causes the "alternate form" to be used for the\nconversion. The alternate form is defined differently for different\ntypes. This option is only valid for integer, float, complex and\nDecimal types. For integers, when binary, octal, or hexadecimal output\nis used, this option adds the prefix respective ``\'0b\'``, ``\'0o\'``, or\n``\'0x\'`` to the output value. For floats, complex and Decimal the\nalternate form causes the result of the conversion to always contain a\ndecimal-point character, even if no digits follow it. Normally, a\ndecimal-point character appears in the result of these conversions\nonly if a digit follows it. In addition, for ``\'g\'`` and ``\'G\'``\nconversions, trailing zeros are not removed from the result.\n\nThe ``\',\'`` option signals the use of a comma for a thousands\nseparator. For a locale aware separator, use the ``\'n\'`` integer\npresentation type instead.\n\nChanged in version 3.1: Added the ``\',\'`` option (see also **PEP\n378**).\n\n*width* is a decimal integer defining the minimum field width. If not\nspecified, then the field width will be determined by the content.\n\nIf the *width* field is preceded by a zero (``\'0\'``) character, this\nenables zero-padding. This is equivalent to an *alignment* type of\n``\'=\'`` and a *fill* character of ``\'0\'``.\n\nThe *precision* is a decimal number indicating how many digits should\nbe displayed after the decimal point for a floating point value\nformatted with ``\'f\'`` and ``\'F\'``, or before and after the decimal\npoint for a floating point value formatted with ``\'g\'`` or ``\'G\'``.\nFor non-number types the field indicates the maximum field size - in\nother words, how many characters will be used from the field content.\nThe *precision* is not allowed for integer values.\n\nFinally, the *type* determines how the data should be presented.\n\nThe available string presentation types are:\n\n +-----------+------------------------------------------------------------+\n | Type | Meaning |\n +===========+============================================================+\n | ``\'s\'`` | String format. This is the default type for strings and |\n | | may be omitted. |\n +-----------+------------------------------------------------------------+\n | None | The same as ``\'s\'``. |\n +-----------+------------------------------------------------------------+\n\nThe available integer presentation types are:\n\n +-----------+------------------------------------------------------------+\n | Type | Meaning |\n +===========+============================================================+\n | ``\'b\'`` | Binary format. Outputs the number in base 2. |\n +-----------+------------------------------------------------------------+\n | ``\'c\'`` | Character. Converts the integer to the corresponding |\n | | unicode character before printing. |\n +-----------+------------------------------------------------------------+\n | ``\'d\'`` | Decimal Integer. Outputs the number in base 10. |\n +-----------+------------------------------------------------------------+\n | ``\'o\'`` | Octal format. Outputs the number in base 8. |\n +-----------+------------------------------------------------------------+\n | ``\'x\'`` | Hex format. Outputs the number in base 16, using lower- |\n | | case letters for the digits above 9. |\n +-----------+------------------------------------------------------------+\n | ``\'X\'`` | Hex format. Outputs the number in base 16, using upper- |\n | | case letters for the digits above 9. |\n +-----------+------------------------------------------------------------+\n | ``\'n\'`` | Number. This is the same as ``\'d\'``, except that it uses |\n | | the current locale setting to insert the appropriate |\n | | number separator characters. |\n +-----------+------------------------------------------------------------+\n | None | The same as ``\'d\'``. |\n +-----------+------------------------------------------------------------+\n\nIn addition to the above presentation types, integers can be formatted\nwith the floating point presentation types listed below (except\n``\'n\'`` and None). When doing so, ``float()`` is used to convert the\ninteger to a floating point number before formatting.\n\nThe available presentation types for floating point and decimal values\nare:\n\n +-----------+------------------------------------------------------------+\n | Type | Meaning |\n +===========+============================================================+\n | ``\'e\'`` | Exponent notation. Prints the number in scientific |\n | | notation using the letter \'e\' to indicate the exponent. |\n +-----------+------------------------------------------------------------+\n | ``\'E\'`` | Exponent notation. Same as ``\'e\'`` except it uses an upper |\n | | case \'E\' as the separator character. |\n +-----------+------------------------------------------------------------+\n | ``\'f\'`` | Fixed point. Displays the number as a fixed-point number. |\n +-----------+------------------------------------------------------------+\n | ``\'F\'`` | Fixed point. Same as ``\'f\'``, but converts ``nan`` to |\n | | ``NAN`` and ``inf`` to ``INF``. |\n +-----------+------------------------------------------------------------+\n | ``\'g\'`` | General format. For a given precision ``p >= 1``, this |\n | | rounds the number to ``p`` significant digits and then |\n | | formats the result in either fixed-point format or in |\n | | scientific notation, depending on its magnitude. The |\n | | precise rules are as follows: suppose that the result |\n | | formatted with presentation type ``\'e\'`` and precision |\n | | ``p-1`` would have exponent ``exp``. Then if ``-4 <= exp |\n | | < p``, the number is formatted with presentation type |\n | | ``\'f\'`` and precision ``p-1-exp``. Otherwise, the number |\n | | is formatted with presentation type ``\'e\'`` and precision |\n | | ``p-1``. In both cases insignificant trailing zeros are |\n | | removed from the significand, and the decimal point is |\n | | also removed if there are no remaining digits following |\n | | it. Positive and negative infinity, positive and negative |\n | | zero, and nans, are formatted as ``inf``, ``-inf``, ``0``, |\n | | ``-0`` and ``nan`` respectively, regardless of the |\n | | precision. A precision of ``0`` is treated as equivalent |\n | | to a precision of ``1``. |\n +-----------+------------------------------------------------------------+\n | ``\'G\'`` | General format. Same as ``\'g\'`` except switches to ``\'E\'`` |\n | | if the number gets too large. The representations of |\n | | infinity and NaN are uppercased, too. |\n +-----------+------------------------------------------------------------+\n | ``\'n\'`` | Number. This is the same as ``\'g\'``, except that it uses |\n | | the current locale setting to insert the appropriate |\n | | number separator characters. |\n +-----------+------------------------------------------------------------+\n | ``\'%\'`` | Percentage. Multiplies the number by 100 and displays in |\n | | fixed (``\'f\'``) format, followed by a percent sign. |\n +-----------+------------------------------------------------------------+\n | None | Similar to ``\'g\'``, except with at least one digit past |\n | | the decimal point and a default precision of 12. This is |\n | | intended to match ``str()``, except you can add the other |\n | | format modifiers. |\n +-----------+------------------------------------------------------------+\n\n\nFormat examples\n===============\n\nThis section contains examples of the new format syntax and comparison\nwith the old ``%``-formatting.\n\nIn most of the cases the syntax is similar to the old\n``%``-formatting, with the addition of the ``{}`` and with ``:`` used\ninstead of ``%``. For example, ``\'%03.2f\'`` can be translated to\n``\'{:03.2f}\'``.\n\nThe new format syntax also supports new and different options, shown\nin the follow examples.\n\nAccessing arguments by position:\n\n >>> \'{0}, {1}, {2}\'.format(\'a\', \'b\', \'c\')\n \'a, b, c\'\n >>> \'{}, {}, {}\'.format(\'a\', \'b\', \'c\') # 3.1+ only\n \'a, b, c\'\n >>> \'{2}, {1}, {0}\'.format(\'a\', \'b\', \'c\')\n \'c, b, a\'\n >>> \'{2}, {1}, {0}\'.format(*\'abc\') # unpacking argument sequence\n \'c, b, a\'\n >>> \'{0}{1}{0}\'.format(\'abra\', \'cad\') # arguments\' indices can be repeated\n \'abracadabra\'\n\nAccessing arguments by name:\n\n >>> \'Coordinates: {latitude}, {longitude}\'.format(latitude=\'37.24N\', longitude=\'-115.81W\')\n \'Coordinates: 37.24N, -115.81W\'\n >>> coord = {\'latitude\': \'37.24N\', \'longitude\': \'-115.81W\'}\n >>> \'Coordinates: {latitude}, {longitude}\'.format(**coord)\n \'Coordinates: 37.24N, -115.81W\'\n\nAccessing arguments\' attributes:\n\n >>> c = 3-5j\n >>> (\'The complex number {0} is formed from the real part {0.real} \'\n ... \'and the imaginary part {0.imag}.\').format(c)\n \'The complex number (3-5j) is formed from the real part 3.0 and the imaginary part -5.0.\'\n >>> class Point:\n ... def __init__(self, x, y):\n ... self.x, self.y = x, y\n ... def __str__(self):\n ... return \'Point({self.x}, {self.y})\'.format(self=self)\n ...\n >>> str(Point(4, 2))\n \'Point(4, 2)\'\n\nAccessing arguments\' items:\n\n >>> coord = (3, 5)\n >>> \'X: {0[0]}; Y: {0[1]}\'.format(coord)\n \'X: 3; Y: 5\'\n\nReplacing ``%s`` and ``%r``:\n\n >>> "repr() shows quotes: {!r}; str() doesn\'t: {!s}".format(\'test1\', \'test2\')\n "repr() shows quotes: \'test1\'; str() doesn\'t: test2"\n\nAligning the text and specifying a width:\n\n >>> \'{:<30}\'.format(\'left aligned\')\n \'left aligned \'\n >>> \'{:>30}\'.format(\'right aligned\')\n \' right aligned\'\n >>> \'{:^30}\'.format(\'centered\')\n \' centered \'\n >>> \'{:*^30}\'.format(\'centered\') # use \'*\' as a fill char\n \'***********centered***********\'\n\nReplacing ``%+f``, ``%-f``, and ``% f`` and specifying a sign:\n\n >>> \'{:+f}; {:+f}\'.format(3.14, -3.14) # show it always\n \'+3.140000; -3.140000\'\n >>> \'{: f}; {: f}\'.format(3.14, -3.14) # show a space for positive numbers\n \' 3.140000; -3.140000\'\n >>> \'{:-f}; {:-f}\'.format(3.14, -3.14) # show only the minus -- same as \'{:f}; {:f}\'\n \'3.140000; -3.140000\'\n\nReplacing ``%x`` and ``%o`` and converting the value to different\nbases:\n\n >>> # format also supports binary numbers\n >>> "int: {0:d}; hex: {0:x}; oct: {0:o}; bin: {0:b}".format(42)\n \'int: 42; hex: 2a; oct: 52; bin: 101010\'\n >>> # with 0x, 0o, or 0b as prefix:\n >>> "int: {0:d}; hex: {0:#x}; oct: {0:#o}; bin: {0:#b}".format(42)\n \'int: 42; hex: 0x2a; oct: 0o52; bin: 0b101010\'\n\nUsing the comma as a thousands separator:\n\n >>> \'{:,}\'.format(1234567890)\n \'1,234,567,890\'\n\nExpressing a percentage:\n\n >>> points = 19\n >>> total = 22\n >>> \'Correct answers: {:.2%}.\'.format(points/total)\n \'Correct answers: 86.36%\'\n\nUsing type-specific formatting:\n\n >>> import datetime\n >>> d = datetime.datetime(2010, 7, 4, 12, 15, 58)\n >>> \'{:%Y-%m-%d %H:%M:%S}\'.format(d)\n \'2010-07-04 12:15:58\'\n\nNesting arguments and more complex examples:\n\n >>> for align, text in zip(\'<^>\', [\'left\', \'center\', \'right\']):\n ... \'{0:{align}{fill}16}\'.format(text, fill=align, align=align)\n ...\n \'left<<<<<<<<<<<<\'\n \'^^^^^center^^^^^\'\n \'>>>>>>>>>>>right\'\n >>>\n >>> octets = [192, 168, 0, 1]\n >>> \'{:02X}{:02X}{:02X}{:02X}\'.format(*octets)\n \'C0A80001\'\n >>> int(_, 16)\n 3232235521\n >>>\n >>> width = 5\n >>> for num in range(5,12):\n ... for base in \'dXob\':\n ... print(\'{0:{width}{base}}\'.format(num, base=base, width=width), end=\' \')\n ... print()\n ...\n 5 5 5 101\n 6 6 6 110\n 7 7 7 111\n 8 8 10 1000\n 9 9 11 1001\n 10 A 12 1010\n 11 B 13 1011\n',
+ 'formatstrings': '\nFormat String Syntax\n********************\n\nThe ``str.format()`` method and the ``Formatter`` class share the same\nsyntax for format strings (although in the case of ``Formatter``,\nsubclasses can define their own format string syntax).\n\nFormat strings contain "replacement fields" surrounded by curly braces\n``{}``. Anything that is not contained in braces is considered literal\ntext, which is copied unchanged to the output. If you need to include\na brace character in the literal text, it can be escaped by doubling:\n``{{`` and ``}}``.\n\nThe grammar for a replacement field is as follows:\n\n replacement_field ::= "{" [field_name] ["!" conversion] [":" format_spec] "}"\n field_name ::= arg_name ("." attribute_name | "[" element_index "]")*\n arg_name ::= [identifier | integer]\n attribute_name ::= identifier\n element_index ::= integer | index_string\n index_string ::= <any source character except "]"> +\n conversion ::= "r" | "s" | "a"\n format_spec ::= <described in the next section>\n\nIn less formal terms, the replacement field can start with a\n*field_name* that specifies the object whose value is to be formatted\nand inserted into the output instead of the replacement field. The\n*field_name* is optionally followed by a *conversion* field, which is\npreceded by an exclamation point ``\'!\'``, and a *format_spec*, which\nis preceded by a colon ``\':\'``. These specify a non-default format\nfor the replacement value.\n\nSee also the *Format Specification Mini-Language* section.\n\nThe *field_name* itself begins with an *arg_name* that is either\neither a number or a keyword. If it\'s a number, it refers to a\npositional argument, and if it\'s a keyword, it refers to a named\nkeyword argument. If the numerical arg_names in a format string are\n0, 1, 2, ... in sequence, they can all be omitted (not just some) and\nthe numbers 0, 1, 2, ... will be automatically inserted in that order.\nThe *arg_name* can be followed by any number of index or attribute\nexpressions. An expression of the form ``\'.name\'`` selects the named\nattribute using ``getattr()``, while an expression of the form\n``\'[index]\'`` does an index lookup using ``__getitem__()``.\n\nChanged in version 3.1: The positional argument specifiers can be\nomitted, so ``\'{} {}\'`` is equivalent to ``\'{0} {1}\'``.\n\nSome simple format string examples:\n\n "First, thou shalt count to {0}" # References first positional argument\n "Bring me a {}" # Implicitly references the first positional argument\n "From {} to {}" # Same as "From {0} to {1}"\n "My quest is {name}" # References keyword argument \'name\'\n "Weight in tons {0.weight}" # \'weight\' attribute of first positional arg\n "Units destroyed: {players[0]}" # First element of keyword argument \'players\'.\n\nThe *conversion* field causes a type coercion before formatting.\nNormally, the job of formatting a value is done by the\n``__format__()`` method of the value itself. However, in some cases\nit is desirable to force a type to be formatted as a string,\noverriding its own definition of formatting. By converting the value\nto a string before calling ``__format__()``, the normal formatting\nlogic is bypassed.\n\nThree conversion flags are currently supported: ``\'!s\'`` which calls\n``str()`` on the value, ``\'!r\'`` which calls ``repr()`` and ``\'!a\'``\nwhich calls ``ascii()``.\n\nSome examples:\n\n "Harold\'s a clever {0!s}" # Calls str() on the argument first\n "Bring out the holy {name!r}" # Calls repr() on the argument first\n "More {!a}" # Calls ascii() on the argument first\n\nThe *format_spec* field contains a specification of how the value\nshould be presented, including such details as field width, alignment,\npadding, decimal precision and so on. Each value type can define its\nown "formatting mini-language" or interpretation of the *format_spec*.\n\nMost built-in types support a common formatting mini-language, which\nis described in the next section.\n\nA *format_spec* field can also include nested replacement fields\nwithin it. These nested replacement fields can contain only a field\nname; conversion flags and format specifications are not allowed. The\nreplacement fields within the format_spec are substituted before the\n*format_spec* string is interpreted. This allows the formatting of a\nvalue to be dynamically specified.\n\nSee the *Format examples* section for some examples.\n\n\nFormat Specification Mini-Language\n==================================\n\n"Format specifications" are used within replacement fields contained\nwithin a format string to define how individual values are presented\n(see *Format String Syntax*). They can also be passed directly to the\nbuilt-in ``format()`` function. Each formattable type may define how\nthe format specification is to be interpreted.\n\nMost built-in types implement the following options for format\nspecifications, although some of the formatting options are only\nsupported by the numeric types.\n\nA general convention is that an empty format string (``""``) produces\nthe same result as if you had called ``str()`` on the value. A non-\nempty format string typically modifies the result.\n\nThe general form of a *standard format specifier* is:\n\n format_spec ::= [[fill]align][sign][#][0][width][,][.precision][type]\n fill ::= <a character other than \'}\'>\n align ::= "<" | ">" | "=" | "^"\n sign ::= "+" | "-" | " "\n width ::= integer\n precision ::= integer\n type ::= "b" | "c" | "d" | "e" | "E" | "f" | "F" | "g" | "G" | "n" | "o" | "s" | "x" | "X" | "%"\n\nThe *fill* character can be any character other than \'{\' or \'}\'. The\npresence of a fill character is signaled by the character following\nit, which must be one of the alignment options. If the second\ncharacter of *format_spec* is not a valid alignment option, then it is\nassumed that both the fill character and the alignment option are\nabsent.\n\nThe meaning of the various alignment options is as follows:\n\n +-----------+------------------------------------------------------------+\n | Option | Meaning |\n +===========+============================================================+\n | ``\'<\'`` | Forces the field to be left-aligned within the available |\n | | space (this is the default for most objects). |\n +-----------+------------------------------------------------------------+\n | ``\'>\'`` | Forces the field to be right-aligned within the available |\n | | space (this is the default for numbers). |\n +-----------+------------------------------------------------------------+\n | ``\'=\'`` | Forces the padding to be placed after the sign (if any) |\n | | but before the digits. This is used for printing fields |\n | | in the form \'+000000120\'. This alignment option is only |\n | | valid for numeric types. |\n +-----------+------------------------------------------------------------+\n | ``\'^\'`` | Forces the field to be centered within the available |\n | | space. |\n +-----------+------------------------------------------------------------+\n\nNote that unless a minimum field width is defined, the field width\nwill always be the same size as the data to fill it, so that the\nalignment option has no meaning in this case.\n\nThe *sign* option is only valid for number types, and can be one of\nthe following:\n\n +-----------+------------------------------------------------------------+\n | Option | Meaning |\n +===========+============================================================+\n | ``\'+\'`` | indicates that a sign should be used for both positive as |\n | | well as negative numbers. |\n +-----------+------------------------------------------------------------+\n | ``\'-\'`` | indicates that a sign should be used only for negative |\n | | numbers (this is the default behavior). |\n +-----------+------------------------------------------------------------+\n | space | indicates that a leading space should be used on positive |\n | | numbers, and a minus sign on negative numbers. |\n +-----------+------------------------------------------------------------+\n\nThe ``\'#\'`` option causes the "alternate form" to be used for the\nconversion. The alternate form is defined differently for different\ntypes. This option is only valid for integer, float, complex and\nDecimal types. For integers, when binary, octal, or hexadecimal output\nis used, this option adds the prefix respective ``\'0b\'``, ``\'0o\'``, or\n``\'0x\'`` to the output value. For floats, complex and Decimal the\nalternate form causes the result of the conversion to always contain a\ndecimal-point character, even if no digits follow it. Normally, a\ndecimal-point character appears in the result of these conversions\nonly if a digit follows it. In addition, for ``\'g\'`` and ``\'G\'``\nconversions, trailing zeros are not removed from the result.\n\nThe ``\',\'`` option signals the use of a comma for a thousands\nseparator. For a locale aware separator, use the ``\'n\'`` integer\npresentation type instead.\n\nChanged in version 3.1: Added the ``\',\'`` option (see also **PEP\n378**).\n\n*width* is a decimal integer defining the minimum field width. If not\nspecified, then the field width will be determined by the content.\n\nIf the *width* field is preceded by a zero (``\'0\'``) character, this\nenables zero-padding. This is equivalent to an *alignment* type of\n``\'=\'`` and a *fill* character of ``\'0\'``.\n\nThe *precision* is a decimal number indicating how many digits should\nbe displayed after the decimal point for a floating point value\nformatted with ``\'f\'`` and ``\'F\'``, or before and after the decimal\npoint for a floating point value formatted with ``\'g\'`` or ``\'G\'``.\nFor non-number types the field indicates the maximum field size - in\nother words, how many characters will be used from the field content.\nThe *precision* is not allowed for integer values.\n\nFinally, the *type* determines how the data should be presented.\n\nThe available string presentation types are:\n\n +-----------+------------------------------------------------------------+\n | Type | Meaning |\n +===========+============================================================+\n | ``\'s\'`` | String format. This is the default type for strings and |\n | | may be omitted. |\n +-----------+------------------------------------------------------------+\n | None | The same as ``\'s\'``. |\n +-----------+------------------------------------------------------------+\n\nThe available integer presentation types are:\n\n +-----------+------------------------------------------------------------+\n | Type | Meaning |\n +===========+============================================================+\n | ``\'b\'`` | Binary format. Outputs the number in base 2. |\n +-----------+------------------------------------------------------------+\n | ``\'c\'`` | Character. Converts the integer to the corresponding |\n | | unicode character before printing. |\n +-----------+------------------------------------------------------------+\n | ``\'d\'`` | Decimal Integer. Outputs the number in base 10. |\n +-----------+------------------------------------------------------------+\n | ``\'o\'`` | Octal format. Outputs the number in base 8. |\n +-----------+------------------------------------------------------------+\n | ``\'x\'`` | Hex format. Outputs the number in base 16, using lower- |\n | | case letters for the digits above 9. |\n +-----------+------------------------------------------------------------+\n | ``\'X\'`` | Hex format. Outputs the number in base 16, using upper- |\n | | case letters for the digits above 9. |\n +-----------+------------------------------------------------------------+\n | ``\'n\'`` | Number. This is the same as ``\'d\'``, except that it uses |\n | | the current locale setting to insert the appropriate |\n | | number separator characters. |\n +-----------+------------------------------------------------------------+\n | None | The same as ``\'d\'``. |\n +-----------+------------------------------------------------------------+\n\nIn addition to the above presentation types, integers can be formatted\nwith the floating point presentation types listed below (except\n``\'n\'`` and None). When doing so, ``float()`` is used to convert the\ninteger to a floating point number before formatting.\n\nThe available presentation types for floating point and decimal values\nare:\n\n +-----------+------------------------------------------------------------+\n | Type | Meaning |\n +===========+============================================================+\n | ``\'e\'`` | Exponent notation. Prints the number in scientific |\n | | notation using the letter \'e\' to indicate the exponent. |\n +-----------+------------------------------------------------------------+\n | ``\'E\'`` | Exponent notation. Same as ``\'e\'`` except it uses an upper |\n | | case \'E\' as the separator character. |\n +-----------+------------------------------------------------------------+\n | ``\'f\'`` | Fixed point. Displays the number as a fixed-point number. |\n +-----------+------------------------------------------------------------+\n | ``\'F\'`` | Fixed point. Same as ``\'f\'``, but converts ``nan`` to |\n | | ``NAN`` and ``inf`` to ``INF``. |\n +-----------+------------------------------------------------------------+\n | ``\'g\'`` | General format. For a given precision ``p >= 1``, this |\n | | rounds the number to ``p`` significant digits and then |\n | | formats the result in either fixed-point format or in |\n | | scientific notation, depending on its magnitude. The |\n | | precise rules are as follows: suppose that the result |\n | | formatted with presentation type ``\'e\'`` and precision |\n | | ``p-1`` would have exponent ``exp``. Then if ``-4 <= exp |\n | | < p``, the number is formatted with presentation type |\n | | ``\'f\'`` and precision ``p-1-exp``. Otherwise, the number |\n | | is formatted with presentation type ``\'e\'`` and precision |\n | | ``p-1``. In both cases insignificant trailing zeros are |\n | | removed from the significand, and the decimal point is |\n | | also removed if there are no remaining digits following |\n | | it. Positive and negative infinity, positive and negative |\n | | zero, and nans, are formatted as ``inf``, ``-inf``, ``0``, |\n | | ``-0`` and ``nan`` respectively, regardless of the |\n | | precision. A precision of ``0`` is treated as equivalent |\n | | to a precision of ``1``. |\n +-----------+------------------------------------------------------------+\n | ``\'G\'`` | General format. Same as ``\'g\'`` except switches to ``\'E\'`` |\n | | if the number gets too large. The representations of |\n | | infinity and NaN are uppercased, too. |\n +-----------+------------------------------------------------------------+\n | ``\'n\'`` | Number. This is the same as ``\'g\'``, except that it uses |\n | | the current locale setting to insert the appropriate |\n | | number separator characters. |\n +-----------+------------------------------------------------------------+\n | ``\'%\'`` | Percentage. Multiplies the number by 100 and displays in |\n | | fixed (``\'f\'``) format, followed by a percent sign. |\n +-----------+------------------------------------------------------------+\n | None | Similar to ``\'g\'``, except with at least one digit past |\n | | the decimal point and a default precision of 12. This is |\n | | intended to match ``str()``, except you can add the other |\n | | format modifiers. |\n +-----------+------------------------------------------------------------+\n\n\nFormat examples\n===============\n\nThis section contains examples of the new format syntax and comparison\nwith the old ``%``-formatting.\n\nIn most of the cases the syntax is similar to the old\n``%``-formatting, with the addition of the ``{}`` and with ``:`` used\ninstead of ``%``. For example, ``\'%03.2f\'`` can be translated to\n``\'{:03.2f}\'``.\n\nThe new format syntax also supports new and different options, shown\nin the follow examples.\n\nAccessing arguments by position:\n\n >>> \'{0}, {1}, {2}\'.format(\'a\', \'b\', \'c\')\n \'a, b, c\'\n >>> \'{}, {}, {}\'.format(\'a\', \'b\', \'c\') # 3.1+ only\n \'a, b, c\'\n >>> \'{2}, {1}, {0}\'.format(\'a\', \'b\', \'c\')\n \'c, b, a\'\n >>> \'{2}, {1}, {0}\'.format(*\'abc\') # unpacking argument sequence\n \'c, b, a\'\n >>> \'{0}{1}{0}\'.format(\'abra\', \'cad\') # arguments\' indices can be repeated\n \'abracadabra\'\n\nAccessing arguments by name:\n\n >>> \'Coordinates: {latitude}, {longitude}\'.format(latitude=\'37.24N\', longitude=\'-115.81W\')\n \'Coordinates: 37.24N, -115.81W\'\n >>> coord = {\'latitude\': \'37.24N\', \'longitude\': \'-115.81W\'}\n >>> \'Coordinates: {latitude}, {longitude}\'.format(**coord)\n \'Coordinates: 37.24N, -115.81W\'\n\nAccessing arguments\' attributes:\n\n >>> c = 3-5j\n >>> (\'The complex number {0} is formed from the real part {0.real} \'\n ... \'and the imaginary part {0.imag}.\').format(c)\n \'The complex number (3-5j) is formed from the real part 3.0 and the imaginary part -5.0.\'\n >>> class Point:\n ... def __init__(self, x, y):\n ... self.x, self.y = x, y\n ... def __str__(self):\n ... return \'Point({self.x}, {self.y})\'.format(self=self)\n ...\n >>> str(Point(4, 2))\n \'Point(4, 2)\'\n\nAccessing arguments\' items:\n\n >>> coord = (3, 5)\n >>> \'X: {0[0]}; Y: {0[1]}\'.format(coord)\n \'X: 3; Y: 5\'\n\nReplacing ``%s`` and ``%r``:\n\n >>> "repr() shows quotes: {!r}; str() doesn\'t: {!s}".format(\'test1\', \'test2\')\n "repr() shows quotes: \'test1\'; str() doesn\'t: test2"\n\nAligning the text and specifying a width:\n\n >>> \'{:<30}\'.format(\'left aligned\')\n \'left aligned \'\n >>> \'{:>30}\'.format(\'right aligned\')\n \' right aligned\'\n >>> \'{:^30}\'.format(\'centered\')\n \' centered \'\n >>> \'{:*^30}\'.format(\'centered\') # use \'*\' as a fill char\n \'***********centered***********\'\n\nReplacing ``%+f``, ``%-f``, and ``% f`` and specifying a sign:\n\n >>> \'{:+f}; {:+f}\'.format(3.14, -3.14) # show it always\n \'+3.140000; -3.140000\'\n >>> \'{: f}; {: f}\'.format(3.14, -3.14) # show a space for positive numbers\n \' 3.140000; -3.140000\'\n >>> \'{:-f}; {:-f}\'.format(3.14, -3.14) # show only the minus -- same as \'{:f}; {:f}\'\n \'3.140000; -3.140000\'\n\nReplacing ``%x`` and ``%o`` and converting the value to different\nbases:\n\n >>> # format also supports binary numbers\n >>> "int: {0:d}; hex: {0:x}; oct: {0:o}; bin: {0:b}".format(42)\n \'int: 42; hex: 2a; oct: 52; bin: 101010\'\n >>> # with 0x, 0o, or 0b as prefix:\n >>> "int: {0:d}; hex: {0:#x}; oct: {0:#o}; bin: {0:#b}".format(42)\n \'int: 42; hex: 0x2a; oct: 0o52; bin: 0b101010\'\n\nUsing the comma as a thousands separator:\n\n >>> \'{:,}\'.format(1234567890)\n \'1,234,567,890\'\n\nExpressing a percentage:\n\n >>> points = 19\n >>> total = 22\n >>> \'Correct answers: {:.2%}.\'.format(points/total)\n \'Correct answers: 86.36%\'\n\nUsing type-specific formatting:\n\n >>> import datetime\n >>> d = datetime.datetime(2010, 7, 4, 12, 15, 58)\n >>> \'{:%Y-%m-%d %H:%M:%S}\'.format(d)\n \'2010-07-04 12:15:58\'\n\nNesting arguments and more complex examples:\n\n >>> for align, text in zip(\'<^>\', [\'left\', \'center\', \'right\']):\n ... \'{0:{fill}{align}16}\'.format(text, fill=align, align=align)\n ...\n \'left<<<<<<<<<<<<\'\n \'^^^^^center^^^^^\'\n \'>>>>>>>>>>>right\'\n >>>\n >>> octets = [192, 168, 0, 1]\n >>> \'{:02X}{:02X}{:02X}{:02X}\'.format(*octets)\n \'C0A80001\'\n >>> int(_, 16)\n 3232235521\n >>>\n >>> width = 5\n >>> for num in range(5,12):\n ... for base in \'dXob\':\n ... print(\'{0:{width}{base}}\'.format(num, base=base, width=width), end=\' \')\n ... print()\n ...\n 5 5 5 101\n 6 6 6 110\n 7 7 7 111\n 8 8 10 1000\n 9 9 11 1001\n 10 A 12 1010\n 11 B 13 1011\n',
'function': '\nFunction definitions\n********************\n\nA function definition defines a user-defined function object (see\nsection *The standard type hierarchy*):\n\n funcdef ::= [decorators] "def" funcname "(" [parameter_list] ")" ["->" expression] ":" suite\n decorators ::= decorator+\n decorator ::= "@" dotted_name ["(" [argument_list [","]] ")"] NEWLINE\n dotted_name ::= identifier ("." identifier)*\n parameter_list ::= (defparameter ",")*\n ( "*" [parameter] ("," defparameter)*\n [, "**" parameter]\n | "**" parameter\n | defparameter [","] )\n parameter ::= identifier [":" expression]\n defparameter ::= parameter ["=" expression]\n funcname ::= identifier\n\nA function definition is an executable statement. Its execution binds\nthe function name in the current local namespace to a function object\n(a wrapper around the executable code for the function). This\nfunction object contains a reference to the current global namespace\nas the global namespace to be used when the function is called.\n\nThe function definition does not execute the function body; this gets\nexecuted only when the function is called. [3]\n\nA function definition may be wrapped by one or more *decorator*\nexpressions. Decorator expressions are evaluated when the function is\ndefined, in the scope that contains the function definition. The\nresult must be a callable, which is invoked with the function object\nas the only argument. The returned value is bound to the function name\ninstead of the function object. Multiple decorators are applied in\nnested fashion. For example, the following code\n\n @f1(arg)\n @f2\n def func(): pass\n\nis equivalent to\n\n def func(): pass\n func = f1(arg)(f2(func))\n\nWhen one or more parameters have the form *parameter* ``=``\n*expression*, the function is said to have "default parameter values."\nFor a parameter with a default value, the corresponding argument may\nbe omitted from a call, in which case the parameter\'s default value is\nsubstituted. If a parameter has a default value, all following\nparameters up until the "``*``" must also have a default value ---\nthis is a syntactic restriction that is not expressed by the grammar.\n\n**Default parameter values are evaluated when the function definition\nis executed.** This means that the expression is evaluated once, when\nthe function is defined, and that that same "pre-computed" value is\nused for each call. This is especially important to understand when a\ndefault parameter is a mutable object, such as a list or a dictionary:\nif the function modifies the object (e.g. by appending an item to a\nlist), the default value is in effect modified. This is generally not\nwhat was intended. A way around this is to use ``None`` as the\ndefault, and explicitly test for it in the body of the function, e.g.:\n\n def whats_on_the_telly(penguin=None):\n if penguin is None:\n penguin = []\n penguin.append("property of the zoo")\n return penguin\n\nFunction call semantics are described in more detail in section\n*Calls*. A function call always assigns values to all parameters\nmentioned in the parameter list, either from position arguments, from\nkeyword arguments, or from default values. If the form\n"``*identifier``" is present, it is initialized to a tuple receiving\nany excess positional parameters, defaulting to the empty tuple. If\nthe form "``**identifier``" is present, it is initialized to a new\ndictionary receiving any excess keyword arguments, defaulting to a new\nempty dictionary. Parameters after "``*``" or "``*identifier``" are\nkeyword-only parameters and may only be passed used keyword arguments.\n\nParameters may have annotations of the form "``: expression``"\nfollowing the parameter name. Any parameter may have an annotation\neven those of the form ``*identifier`` or ``**identifier``. Functions\nmay have "return" annotation of the form "``-> expression``" after the\nparameter list. These annotations can be any valid Python expression\nand are evaluated when the function definition is executed.\nAnnotations may be evaluated in a different order than they appear in\nthe source code. The presence of annotations does not change the\nsemantics of a function. The annotation values are available as\nvalues of a dictionary keyed by the parameters\' names in the\n``__annotations__`` attribute of the function object.\n\nIt is also possible to create anonymous functions (functions not bound\nto a name), for immediate use in expressions. This uses lambda forms,\ndescribed in section *Lambdas*. Note that the lambda form is merely a\nshorthand for a simplified function definition; a function defined in\na "``def``" statement can be passed around or assigned to another name\njust like a function defined by a lambda form. The "``def``" form is\nactually more powerful since it allows the execution of multiple\nstatements and annotations.\n\n**Programmer\'s note:** Functions are first-class objects. A "``def``"\nform executed inside a function definition defines a local function\nthat can be returned or passed around. Free variables used in the\nnested function can access the local variables of the function\ncontaining the def. See section *Naming and binding* for details.\n',
'global': '\nThe ``global`` statement\n************************\n\n global_stmt ::= "global" identifier ("," identifier)*\n\nThe ``global`` statement is a declaration which holds for the entire\ncurrent code block. It means that the listed identifiers are to be\ninterpreted as globals. It would be impossible to assign to a global\nvariable without ``global``, although free variables may refer to\nglobals without being declared global.\n\nNames listed in a ``global`` statement must not be used in the same\ncode block textually preceding that ``global`` statement.\n\nNames listed in a ``global`` statement must not be defined as formal\nparameters or in a ``for`` loop control target, ``class`` definition,\nfunction definition, or ``import`` statement.\n\n**CPython implementation detail:** The current implementation does not\nenforce the latter two restrictions, but programs should not abuse\nthis freedom, as future implementations may enforce them or silently\nchange the meaning of the program.\n\n**Programmer\'s note:** the ``global`` is a directive to the parser.\nIt applies only to code parsed at the same time as the ``global``\nstatement. In particular, a ``global`` statement contained in a string\nor code object supplied to the built-in ``exec()`` function does not\naffect the code block *containing* the function call, and code\ncontained in such a string is unaffected by ``global`` statements in\nthe code containing the function call. The same applies to the\n``eval()`` and ``compile()`` functions.\n',
'id-classes': '\nReserved classes of identifiers\n*******************************\n\nCertain classes of identifiers (besides keywords) have special\nmeanings. These classes are identified by the patterns of leading and\ntrailing underscore characters:\n\n``_*``\n Not imported by ``from module import *``. The special identifier\n ``_`` is used in the interactive interpreter to store the result of\n the last evaluation; it is stored in the ``builtins`` module. When\n not in interactive mode, ``_`` has no special meaning and is not\n defined. See section *The import statement*.\n\n Note: The name ``_`` is often used in conjunction with\n internationalization; refer to the documentation for the\n ``gettext`` module for more information on this convention.\n\n``__*__``\n System-defined names. These names are defined by the interpreter\n and its implementation (including the standard library). Current\n system names are discussed in the *Special method names* section\n and elsewhere. More will likely be defined in future versions of\n Python. *Any* use of ``__*__`` names, in any context, that does\n not follow explicitly documented use, is subject to breakage\n without warning.\n\n``__*``\n Class-private names. Names in this category, when used within the\n context of a class definition, are re-written to use a mangled form\n to help avoid name clashes between "private" attributes of base and\n derived classes. See section *Identifiers (Names)*.\n',