diff options
-rw-r--r-- | Doc/library/random.rst | 61 |
1 files changed, 31 insertions, 30 deletions
diff --git a/Doc/library/random.rst b/Doc/library/random.rst index 10c2f3c..ba369e1 100644 --- a/Doc/library/random.rst +++ b/Doc/library/random.rst @@ -233,41 +233,18 @@ be found in any statistics text. parameter. -Alternative Generators: +Alternative Generator: .. class:: SystemRandom([seed]) Class that uses the :func:`os.urandom` function for generating random numbers from sources provided by the operating system. Not available on all systems. - Does not rely on software state and sequences are not reproducible. Accordingly, + Does not rely on software state, and sequences are not reproducible. Accordingly, the :meth:`seed` method has no effect and is ignored. The :meth:`getstate` and :meth:`setstate` methods raise :exc:`NotImplementedError` if called. -Examples of basic usage:: - - >>> random.random() # Random float x, 0.0 <= x < 1.0 - 0.37444887175646646 - >>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0 - 1.1800146073117523 - >>> random.randint(1, 10) # Integer from 1 to 10, endpoints included - 7 - >>> random.randrange(0, 101, 2) # Even integer from 0 to 100 - 26 - >>> random.choice('abcdefghij') # Choose a random element - 'c' - - >>> items = [1, 2, 3, 4, 5, 6, 7] - >>> random.shuffle(items) - >>> items - [7, 3, 2, 5, 6, 4, 1] - - >>> random.sample([1, 2, 3, 4, 5], 3) # Choose 3 elements - [4, 1, 5] - - - .. seealso:: M. Matsumoto and T. Nishimura, "Mersenne Twister: A 623-dimensionally @@ -280,6 +257,7 @@ Examples of basic usage:: random number generator with a long period and comparatively simple update operations. + Notes on Reproducibility ======================== @@ -297,11 +275,34 @@ change across Python versions, but two aspects are guaranteed not to change: sequence when the compatible seeder is given the same seed. -.. _random-examples: - Examples and Recipes ==================== +Basic usage:: + + >>> random.random() # Random float x, 0.0 <= x < 1.0 + 0.37444887175646646 + + >>> random.uniform(1, 10) # Random float x, 1.0 <= x < 10.0 + 1.1800146073117523 + + >>> random.randrange(10) # Integer from 0 to 9 + 7 + + >>> random.randrange(0, 101, 2) # Even integer from 0 to 100 + 26 + + >>> random.choice('abcdefghij') # Single random element + 'c' + + >>> items = [1, 2, 3, 4, 5, 6, 7] + >>> random.shuffle(items) + >>> items + [7, 3, 2, 5, 6, 4, 1] + + >>> random.sample([1, 2, 3, 4, 5], 3) # Three samples without replacement + [4, 1, 5] + A common task is to make a :func:`random.choice` with weighted probababilites. If the weights are small integer ratios, a simple technique is to build a sample @@ -312,9 +313,9 @@ population with repeats:: >>> random.choice(population) 'Green' -A more general approach is to arrange the weights in a cumulative probability -distribution with :func:`itertools.accumulate`, and then locate the random value -with :func:`bisect.bisect`:: +A more general approach is to arrange the weights in a cumulative distribution +with :func:`itertools.accumulate`, and then locate the random value with +:func:`bisect.bisect`:: >>> choices, weights = zip(*weighted_choices) >>> cumdist = list(itertools.accumulate(weights)) |