diff options
-rw-r--r-- | Doc/howto/index.rst | 1 | ||||
-rw-r--r-- | Doc/howto/sorting.rst | 281 |
2 files changed, 282 insertions, 0 deletions
diff --git a/Doc/howto/index.rst b/Doc/howto/index.rst index 0335a80..417ae00 100644 --- a/Doc/howto/index.rst +++ b/Doc/howto/index.rst @@ -21,6 +21,7 @@ Currently, the HOWTOs are: functional.rst regex.rst sockets.rst + sorting.rst unicode.rst urllib2.rst webservers.rst diff --git a/Doc/howto/sorting.rst b/Doc/howto/sorting.rst new file mode 100644 index 0000000..2260d9b --- /dev/null +++ b/Doc/howto/sorting.rst @@ -0,0 +1,281 @@ +Sorting HOW TO +************** + +:Author: Andrew Dalke and Raymond Hettinger +:Release: 0.1 + + +Python lists have a built-in :meth:`list.sort` method that modifies the list +in-place and a :func:`sorted` built-in function that builds a new sorted list +from an iterable. + +In this document, we explore the various techniques for sorting data using Python. + + +Sorting Basics +============== + +A simple ascending sort is very easy: just call the :func:`sorted` function. It +returns a new sorted list:: + + >>> sorted([5, 2, 3, 1, 4]) + [1, 2, 3, 4, 5] + +You can also use the :meth:`list.sort` method of a list. It modifies the list +in-place (and returns *None* to avoid confusion). Usually it's less convenient +than :func:`sorted` - but if you don't need the original list, it's slightly +more efficient. + + >>> a = [5, 2, 3, 1, 4] + >>> a.sort() + >>> a + [1, 2, 3, 4, 5] + +Another difference is that the :meth:`list.sort` method is only defined for +lists. In contrast, the :func:`sorted` function accepts any iterable. + + >>> sorted({1: 'D', 2: 'B', 3: 'B', 4: 'E', 5: 'A'}) + [1, 2, 3, 4, 5] + +Key Functions +============= + +Both :meth:`list.sort` and :func:`sorted` have *key* parameter to specify a +function to be called on each list element prior to making comparisons. + +For example, here's a case-insensitive string comparison: + + >>> sorted("This is a test string from Andrew".split(), key=str.lower) + ['a', 'Andrew', 'from', 'is', 'string', 'test', 'This'] + +The value of the *key* parameter should be a function that takes a single argument +and returns a key to use for sorting purposes. This technique is fast because +the key function is called exactly once for each input record. + +A common pattern is to sort complex objects using some of the object's indices +as keys. For example: + + >>> student_tuples = [ + ('john', 'A', 15), + ('jane', 'B', 12), + ('dave', 'B', 10), + ] + >>> sorted(student_tuples, key=lambda student: student[2]) # sort by age + [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)] + +The same technique works for objects with named attributes. For example: + + >>> class Student: + def __init__(self, name, grade, age): + self.name = name + self.grade = grade + self.age = age + def __repr__(self): + return repr((self.name, self.grade, self.age)) + + >>> student_objects = [ + Student('john', 'A', 15), + Student('jane', 'B', 12), + Student('dave', 'B', 10), + ] + >>> sorted(student_objects, key=lambda student: student.age) # sort by age + [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)] + +Operator Module Functions +========================= + +The key-function patterns shown above are very common, so Python provides +convenience functions to make accessor functions easier and faster. The operator +module has :func:`operator.itemgetter`, :func:`operator.attrgetter`, and +an :func:`operator.methodcaller` function. + +Using those functions, the above examples become simpler and faster: + + >>> from operator import itemgetter, attrgetter + + >>> sorted(student_tuples, key=itemgetter(2)) + [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)] + + >>> sorted(student_objects, key=attrgetter('age')) + [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)] + +The operator module functions allow multiple levels of sorting. For example, to +sort by *grade* then by *age*: + + >>> sorted(student_tuples, key=itemgetter(1,2)) + [('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)] + + >>> sorted(student_objects, key=attrgetter('grade', 'age')) + [('john', 'A', 15), ('dave', 'B', 10), ('jane', 'B', 12)] + +Ascending and Descending +======================== + +Both :meth:`list.sort` and :func:`sorted` accept a *reverse* parameter with a +boolean value. This is using to flag descending sorts. For example, to get the +student data in reverse *age* order: + + >>> sorted(student_tuples, key=itemgetter(2), reverse=True) + [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)] + + >>> sorted(student_objects, key=attrgetter('age'), reverse=True) + [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)] + +Sort Stability and Complex Sorts +================================ + +Sorts are guaranteed to be `stable +<http://en.wikipedia.org/wiki/Sorting_algorithm#Stability>`_\. That means that +when multiple records have the same key, their original order is preserved. + + >>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)] + >>> sorted(data, key=itemgetter(0)) + [('blue', 1), ('blue', 2), ('red', 1), ('red', 2)] + +Notice how the two records for *blue* retain their original order so that +``('blue', 1)`` is guaranteed to precede ``('blue', 2)``. + +This wonderful property lets you build complex sorts in a series of sorting +steps. For example, to sort the student data by descending *grade* and then +ascending *age*, do the *age* sort first and then sort again using *grade*: + + >>> s = sorted(student_objects, key=attrgetter('age')) # sort on secondary key + >>> sorted(s, key=attrgetter('grade'), reverse=True) # now sort on primary key, descending + [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)] + +The `Timsort <http://en.wikipedia.org/wiki/Timsort>`_ algorithm used in Python +does multiple sorts efficiently because it can take advantage of any ordering +already present in a dataset. + +The Old Way Using Decorate-Sort-Undecorate +========================================== + +This idiom is called Decorate-Sort-Undecorate after its three steps: + +* First, the initial list is decorated with new values that control the sort order. + +* Second, the decorated list is sorted. + +* Finally, the decorations are removed, creating a list that contains only the + initial values in the new order. + +For example, to sort the student data by *grade* using the DSU approach: + + >>> decorated = [(student.grade, i, student) for i, student in enumerate(student_objects)] + >>> decorated.sort() + >>> [student for grade, i, student in decorated] # undecorate + [('john', 'A', 15), ('jane', 'B', 12), ('dave', 'B', 10)] + +This idiom works because tuples are compared lexicographically; the first items +are compared; if they are the same then the second items are compared, and so +on. + +It is not strictly necessary in all cases to include the index *i* in the +decorated list, but including it gives two benefits: + +* The sort is stable -- if two items have the same key, their order will be + preserved in the sorted list. + +* The original items do not have to be comparable because the ordering of the + decorated tuples will be determined by at most the first two items. So for + example the original list could contain complex numbers which cannot be sorted + directly. + +Another name for this idiom is +`Schwartzian transform <http://en.wikipedia.org/wiki/Schwartzian_transform>`_\, +after Randal L. Schwartz, who popularized it among Perl programmers. + +Now that Python sorting provides key-functions, this technique is not often needed. + + +The Old Way Using the *cmp* Parameter +===================================== + +Many constructs given in this HOWTO assume Python 2.4 or later. Before that, +there was no :func:`sorted` builtin and :meth:`list.sort` took no keyword +arguments. Instead, all of the Py2.x versions supported a *cmp* parameter to +handle user specified comparison functions. + +In Py3.0, the *cmp* parameter was removed entirely (as part of a larger effort to +simplify and unify the language, eliminating the conflict between rich +comparisons and the :meth:`__cmp__` magic method). + +In Py2.x, sort allowed an optional function which can be called for doing the +comparisons. That function should take two arguments to be compared and then +return a negative value for less-than, return zero if they are equal, or return +a positive value for greater-than. For example, we can do: + + >>> def numeric_compare(x, y): + return x - y + >>> sorted([5, 2, 4, 1, 3], cmp=numeric_compare) + [1, 2, 3, 4, 5] + +Or you can reverse the order of comparison with: + + >>> def reverse_numeric(x, y): + return y - x + >>> sorted([5, 2, 4, 1, 3], cmp=reverse_numeric) + [5, 4, 3, 2, 1] + +When porting code from Python 2.x to 3.x, the situation can arise when you have +the user supplying a comparison function and you need to convert that to a key +function. The following wrapper makes that easy to do:: + + def cmp_to_key(mycmp): + 'Convert a cmp= function into a key= function' + class K(object): + def __init__(self, obj, *args): + self.obj = obj + def __lt__(self, other): + return mycmp(self.obj, other.obj) < 0 + def __gt__(self, other): + return mycmp(self.obj, other.obj) > 0 + def __eq__(self, other): + return mycmp(self.obj, other.obj) == 0 + def __le__(self, other): + return mycmp(self.obj, other.obj) <= 0 + def __ge__(self, other): + return mycmp(self.obj, other.obj) >= 0 + def __ne__(self, other): + return mycmp(self.obj, other.obj) != 0 + return K + +To convert to a key function, just wrap the old comparison function: + + >>> sorted([5, 2, 4, 1, 3], key=cmp_to_key(reverse_numeric)) + [5, 4, 3, 2, 1] + +In Python 3.2, the :func:`functools.cmp_to_key` function was added to the +functools module in the standard library. + +Odd and Ends +============ + +* For locale aware sorting, use :func:`locale.strxfrm` for a key function or + :func:`locale.strcoll` for a comparison function. + +* The *reverse* parameter still maintains sort stability (i.e. records with + equal keys retain the original order). Interestingly, that effect can be + simulated without the parameter by using the builtin :func:`reversed` function + twice: + + >>> data = [('red', 1), ('blue', 1), ('red', 2), ('blue', 2)] + >>> assert sorted(data, reverse=True) == list(reversed(sorted(reversed(data)))) + +* The sort routines are guaranteed to use :meth:`__lt__` when making comparisons + between two objects. So, it is easy to add a standard sort order to a class by + defining an :meth:`__lt__` method:: + + >>> Student.__lt__ = lambda self, other: self.age < other.age + >>> sorted(student_objects) + [('dave', 'B', 10), ('jane', 'B', 12), ('john', 'A', 15)] + +* Key functions need not depend directly on the objects being sorted. A key + function can also access external resources. For instance, if the student grades + are stored in a dictionary, they can be used to sort a separate list of student + names: + + >>> students = ['dave', 'john', 'jane'] + >>> newgrades = {'john': 'F', 'jane':'A', 'dave': 'C'} + >>> sorted(students, key=newgrades.__getitem__) + ['jane', 'dave', 'john'] |