diff options
-rw-r--r-- | Doc/library/cmath.rst | 120 | ||||
-rw-r--r-- | Doc/library/math.rst | 47 | ||||
-rw-r--r-- | Include/Python.h | 1 | ||||
-rw-r--r-- | Include/complexobject.h | 2 | ||||
-rw-r--r-- | Include/floatobject.h | 11 | ||||
-rw-r--r-- | Include/pymath.h | 182 | ||||
-rw-r--r-- | Include/pyport.h | 126 | ||||
-rw-r--r-- | Lib/test/cmath_testcases.txt | 2355 | ||||
-rw-r--r-- | Lib/test/ieee754.txt | 183 | ||||
-rwxr-xr-x | Lib/test/test_cmath.py | 338 | ||||
-rw-r--r-- | Lib/test/test_float.py | 21 | ||||
-rw-r--r-- | Lib/test/test_math.py | 241 | ||||
-rw-r--r-- | Makefile.pre.in | 2 | ||||
-rw-r--r-- | Modules/cmathmodule.c | 1019 | ||||
-rw-r--r-- | Modules/mathmodule.c | 449 | ||||
-rw-r--r-- | Objects/complexobject.c | 64 | ||||
-rw-r--r-- | Objects/doubledigits.c | 601 | ||||
-rw-r--r-- | Objects/floatobject.c | 201 | ||||
-rw-r--r-- | Objects/longobject.c | 12 | ||||
-rw-r--r-- | PC/VC6/pythoncore.dsp | 4 | ||||
-rw-r--r-- | PC/VS7.1/pythoncore.vcproj | 3 | ||||
-rw-r--r-- | PC/VS8.0/pythoncore.vcproj | 4 | ||||
-rw-r--r-- | PC/pyconfig.h | 5 | ||||
-rw-r--r-- | PCbuild/pythoncore.vcproj | 8 | ||||
-rw-r--r-- | Python/hypot.c | 25 | ||||
-rw-r--r-- | Python/pymath.c | 232 | ||||
-rwxr-xr-x | configure | 2 |
27 files changed, 5096 insertions, 1162 deletions
diff --git a/Doc/library/cmath.rst b/Doc/library/cmath.rst index 5a9ae05..f78f69c 100644 --- a/Doc/library/cmath.rst +++ b/Doc/library/cmath.rst @@ -14,8 +14,81 @@ method: these methods are used to convert the object to a complex or floating-point number, respectively, and the function is then applied to the result of the conversion. -The functions are: +.. note:: + On platforms with hardware and system-level support for signed + zeros, functions involving branch cuts are continuous on *both* + sides of the branch cut: the sign of the zero distinguishes one + side of the branch cut from the other. On platforms that do not + support signed zeros the continuity is as specified below. + + +Complex coordinates +------------------- + +Complex numbers can be expressed by two important coordinate systems. +Python's :class:`complex` type uses rectangular coordinates where a number +on the complex plain is defined by two floats, the real part and the imaginary +part. + +Definition:: + + z = x + 1j * y + + x := real(z) + y := imag(z) + +In engineering the polar coordinate system is popular for complex numbers. In +polar coordinates a complex number is defined by the radius *r* and the phase +angle *φ*. The radius *r* is the absolute value of the complex, which can be +viewed as distance from (0, 0). The radius *r* is always 0 or a positive float. +The phase angle *φ* is the counter clockwise angle from the positive x axis, +e.g. *1* has the angle *0*, *1j* has the angle *π/2* and *-1* the angle *-π*. + +.. note:: + While :func:`phase` and func:`polar` return *+π* for a negative real they + may return *-π* for a complex with a very small negative imaginary + part, e.g. *-1-1E-300j*. + + +Definition:: + + z = r * exp(1j * φ) + z = r * cis(φ) + + r := abs(z) := sqrt(real(z)**2 + imag(z)**2) + phi := phase(z) := atan2(imag(z), real(z)) + cis(φ) := cos(φ) + 1j * sin(φ) + + +.. function:: phase(x) + + Return phase, also known as the argument, of a complex. + + .. versionadded:: 2.6 + + +.. function:: polar(x) + + Convert a :class:`complex` from rectangular coordinates to polar + coordinates. The function returns a tuple with the two elements + *r* and *phi*. *r* is the distance from 0 and *phi* the phase + angle. + + .. versionadded:: 2.6 + + +.. function:: rect(r, phi) + + Convert from polar coordinates to rectangular coordinates and return + a :class:`complex`. + + .. versionadded:: 2.6 + + + +cmath functions +--------------- .. function:: acos(x) @@ -37,30 +110,35 @@ The functions are: .. function:: asinh(x) - Return the hyperbolic arc sine of *x*. There are two branch cuts, extending - left from ``±1j`` to ``±∞j``, both continuous from above. These branch cuts - should be considered a bug to be corrected in a future release. The correct - branch cuts should extend along the imaginary axis, one from ``1j`` up to - ``∞j`` and continuous from the right, and one from ``-1j`` down to ``-∞j`` - and continuous from the left. + Return the hyperbolic arc sine of *x*. There are two branch cuts: + One extends from ``1j`` along the imaginary axis to ``∞j``, + continuous from the right. The other extends from ``-1j`` along + the imaginary axis to ``-∞j``, continuous from the left. + + .. versionchanged:: 2.6 + branch cuts moved to match those recommended by the C99 standard .. function:: atan(x) Return the arc tangent of *x*. There are two branch cuts: One extends from - ``1j`` along the imaginary axis to ``∞j``, continuous from the left. The + ``1j`` along the imaginary axis to ``∞j``, continuous from the right. The other extends from ``-1j`` along the imaginary axis to ``-∞j``, continuous - from the left. (This should probably be changed so the upper cut becomes - continuous from the other side.) + from the left. + + .. versionchanged:: 2.6 + direction of continuity of upper cut reversed .. function:: atanh(x) Return the hyperbolic arc tangent of *x*. There are two branch cuts: One - extends from ``1`` along the real axis to ``∞``, continuous from above. The + extends from ``1`` along the real axis to ``∞``, continuous from below. The other extends from ``-1`` along the real axis to ``-∞``, continuous from - above. (This should probably be changed so the right cut becomes continuous - from the other side.) + above. + + .. versionchanged:: 2.6 + direction of continuity of right cut reversed .. function:: cos(x) @@ -78,6 +156,21 @@ The functions are: Return the exponential value ``e**x``. +.. function:: isinf(x) + + Return *True* if the real or the imaginary part of x is positive + or negative infinity. + + .. versionadded:: 2.6 + + +.. function:: isnan(x) + + Return *True* if the real or imaginary part of x is not a number (NaN). + + .. versionadded:: 2.6 + + .. function:: log(x[, base]) Returns the logarithm of *x* to the given *base*. If the *base* is not @@ -151,3 +244,4 @@ cuts for numerical purposes, a good reference should be the following: nothing's sign bit. In Iserles, A., and Powell, M. (eds.), The state of the art in numerical analysis. Clarendon Press (1987) pp165-211. + diff --git a/Doc/library/math.rst b/Doc/library/math.rst index f69c0a0..024897f 100644 --- a/Doc/library/math.rst +++ b/Doc/library/math.rst @@ -128,6 +128,14 @@ Power and logarithmic functions: return the natural logarithm of *x* (that is, the logarithm to base *e*). +.. function:: log1p(x) + + Return the natural logarithm of *1+x* (base *e*). The + result is calculated in a way which is accurate for *x* near zero. + + .. versionadded:: 2.6 + + .. function:: log10(x) Return the base-10 logarithm of *x*. @@ -135,7 +143,11 @@ Power and logarithmic functions: .. function:: pow(x, y) - Return ``x**y``. + Return ``x**y``. ``1.0**y`` returns *1.0*, even for ``1.0**nan``. ``0**y`` + returns *0.* for all positive *y*, *0* and *NAN*. + + .. versionchanged:: 2.6 + The outcome of ``1**nan`` and ``0**nan`` was undefined. .. function:: sqrt(x) @@ -186,6 +198,13 @@ Trigonometric functions: Return the sine of *x* radians. +.. function:: asinh(x) + + Return the inverse hyperbolic sine of *x*, in radians. + + .. versionadded:: 2.6 + + .. function:: tan(x) Return the tangent of *x* radians. @@ -210,6 +229,13 @@ Hyperbolic functions: Return the hyperbolic cosine of *x*. +.. function:: acosh(x) + + Return the inverse hyperbolic cosine of *x*, in radians. + + .. versionadded:: 2.6 + + .. function:: sinh(x) Return the hyperbolic sine of *x*. @@ -219,6 +245,14 @@ Hyperbolic functions: Return the hyperbolic tangent of *x*. + +.. function:: atanh(x) + + Return the inverse hyperbolic tangent of *x*, in radians. + + .. versionadded:: 2.6 + + The module also defines two mathematical constants: @@ -231,6 +265,7 @@ The module also defines two mathematical constants: The mathematical constant *e*. + .. note:: The :mod:`math` module consists mostly of thin wrappers around the platform C @@ -244,9 +279,17 @@ The module also defines two mathematical constants: :exc:`OverflowError` isn't defined, and in cases where ``math.log(0)`` raises :exc:`OverflowError`, ``math.log(0L)`` may raise :exc:`ValueError` instead. + All functions return a quite *NaN* if at least one of the args is *NaN*. + Signaling *NaN*s raise an exception. The exception type still depends on the + platform and libm implementation. It's usually :exc:`ValueError` for *EDOM* + and :exc:`OverflowError` for errno *ERANGE*. + + ..versionchanged:: 2.6 + In earlier versions of Python the outcome of an operation with NaN as + input depended on platform and libm implementation. + .. seealso:: Module :mod:`cmath` Complex number versions of many of these functions. - diff --git a/Include/Python.h b/Include/Python.h index b241c86..53f7f59 100644 --- a/Include/Python.h +++ b/Include/Python.h @@ -57,6 +57,7 @@ #if defined(PYMALLOC_DEBUG) && !defined(WITH_PYMALLOC) #error "PYMALLOC_DEBUG requires WITH_PYMALLOC" #endif +#include "pymath.h" #include "pymem.h" #include "object.h" diff --git a/Include/complexobject.h b/Include/complexobject.h index b036444..84b6d8b 100644 --- a/Include/complexobject.h +++ b/Include/complexobject.h @@ -19,6 +19,7 @@ typedef struct { #define c_prod _Py_c_prod #define c_quot _Py_c_quot #define c_pow _Py_c_pow +#define c_abs _Py_c_abs PyAPI_FUNC(Py_complex) c_sum(Py_complex, Py_complex); PyAPI_FUNC(Py_complex) c_diff(Py_complex, Py_complex); @@ -26,6 +27,7 @@ PyAPI_FUNC(Py_complex) c_neg(Py_complex); PyAPI_FUNC(Py_complex) c_prod(Py_complex, Py_complex); PyAPI_FUNC(Py_complex) c_quot(Py_complex, Py_complex); PyAPI_FUNC(Py_complex) c_pow(Py_complex, Py_complex); +PyAPI_FUNC(double) c_abs(Py_complex); /* Complex object interface */ diff --git a/Include/floatobject.h b/Include/floatobject.h index 459b029..2021313 100644 --- a/Include/floatobject.h +++ b/Include/floatobject.h @@ -21,6 +21,17 @@ PyAPI_DATA(PyTypeObject) PyFloat_Type; #define PyFloat_Check(op) PyObject_TypeCheck(op, &PyFloat_Type) #define PyFloat_CheckExact(op) (Py_TYPE(op) == &PyFloat_Type) +#ifdef Py_NAN +#define Py_RETURN_NAN return PyFloat_FromDouble(Py_NAN) +#endif + +#define Py_RETURN_INF(sign) do \ + if (copysign(1., sign) == 1.) { \ + return PyFloat_FromDouble(Py_HUGE_VAL); \ + } else { \ + return PyFloat_FromDouble(-Py_HUGE_VAL); \ + } while(0) + PyAPI_FUNC(double) PyFloat_GetMax(void); PyAPI_FUNC(double) PyFloat_GetMin(void); PyAPI_FUNC(PyObject *) PyFloat_GetInfo(void); diff --git a/Include/pymath.h b/Include/pymath.h new file mode 100644 index 0000000..a3735c2 --- /dev/null +++ b/Include/pymath.h @@ -0,0 +1,182 @@ +#ifndef Py_PYMATH_H +#define Py_PYMATH_H + +#include "pyconfig.h" /* include for defines */ + +#ifdef HAVE_STDINT_H +#include <stdint.h> +#endif + +/************************************************************************** +Symbols and macros to supply platform-independent interfaces to mathematical +functions and constants +**************************************************************************/ + +/* Python provides implementations for copysign, acosh, asinh, atanh, + * log1p and hypot in Python/pymath.c just in case your math library doesn't + * provide the functions. + * + *Note: PC/pyconfig.h defines copysign as _copysign + */ +#ifndef HAVE_COPYSIGN +extern double copysign(doube, double); +#endif + +#ifndef HAVE_ACOSH +extern double acosh(double); +#endif + +#ifndef HAVE_ASINH +extern double asinh(double); +#endif + +#ifndef HAVE_ATANH +extern double atanh(double); +#endif + +#ifndef HAVE_LOG1P +extern double log1p(double); +#endif + +#ifndef HAVE_HYPOT +extern double hypot(double, double); +#endif + +/* extra declarations */ +#ifndef _MSC_VER +#ifndef __STDC__ +extern double fmod (double, double); +extern double frexp (double, int *); +extern double ldexp (double, int); +extern double modf (double, double *); +extern double pow(double, double); +#endif /* __STDC__ */ +#endif /* _MSC_VER */ + +#ifdef _OSF_SOURCE +/* OSF1 5.1 doesn't make these available with XOPEN_SOURCE_EXTENDED defined */ +extern int finite(double); +extern double copysign(double, double); +#endif + +/* High precision defintion of pi and e (Euler) + * The values are taken from libc6's math.h. + */ +#ifndef Py_MATH_PIl +#define Py_MATH_PIl 3.1415926535897932384626433832795029L +#endif +#ifndef Py_MATH_PI +#define Py_MATH_PI 3.14159265358979323846 +#endif + +#ifndef Py_MATH_El +#define Py_MATH_El 2.7182818284590452353602874713526625L +#endif + +#ifndef Py_MATH_E +#define Py_MATH_E 2.7182818284590452354 +#endif + +/* Py_IS_NAN(X) + * Return 1 if float or double arg is a NaN, else 0. + * Caution: + * X is evaluated more than once. + * This may not work on all platforms. Each platform has *some* + * way to spell this, though -- override in pyconfig.h if you have + * a platform where it doesn't work. + * Note: PC/pyconfig.h defines Py_IS_NAN as _isnan + */ +#ifndef Py_IS_NAN +#ifdef HAVE_ISNAN +#define Py_IS_NAN(X) isnan(X) +#else +#define Py_IS_NAN(X) ((X) != (X)) +#endif +#endif + +/* Py_IS_INFINITY(X) + * Return 1 if float or double arg is an infinity, else 0. + * Caution: + * X is evaluated more than once. + * This implementation may set the underflow flag if |X| is very small; + * it really can't be implemented correctly (& easily) before C99. + * Override in pyconfig.h if you have a better spelling on your platform. + * Note: PC/pyconfig.h defines Py_IS_INFINITY as _isinf + */ +#ifndef Py_IS_INFINITY +#ifdef HAVE_ISINF +#define Py_IS_INFINITY(X) isinf(X) +#else +#define Py_IS_INFINITY(X) ((X) && (X)*0.5 == (X)) +#endif +#endif + +/* Py_IS_FINITE(X) + * Return 1 if float or double arg is neither infinite nor NAN, else 0. + * Some compilers (e.g. VisualStudio) have intrisics for this, so a special + * macro for this particular test is useful + * Note: PC/pyconfig.h defines Py_IS_FINITE as _finite + */ +#ifndef Py_IS_FINITE +#ifdef HAVE_FINITE +#define Py_IS_FINITE(X) finite(X) +#else +#define Py_IS_FINITE(X) (!Py_IS_INFINITY(X) && !Py_IS_NAN(X)) +#endif +#endif + +/* HUGE_VAL is supposed to expand to a positive double infinity. Python + * uses Py_HUGE_VAL instead because some platforms are broken in this + * respect. We used to embed code in pyport.h to try to worm around that, + * but different platforms are broken in conflicting ways. If you're on + * a platform where HUGE_VAL is defined incorrectly, fiddle your Python + * config to #define Py_HUGE_VAL to something that works on your platform. + */ +#ifndef Py_HUGE_VAL +#define Py_HUGE_VAL HUGE_VAL +#endif + +/* Py_NAN + * A value that evaluates to a NaN. On IEEE 754 platforms INF*0 or + * INF/INF works. Define Py_NO_NAN in pyconfig.h if your platform + * doesn't support NaNs. + */ +#if !defined(Py_NAN) && !defined(Py_NO_NAN) +#define Py_NAN (Py_HUGE_VAL * 0.) +#endif + +/* Py_OVERFLOWED(X) + * Return 1 iff a libm function overflowed. Set errno to 0 before calling + * a libm function, and invoke this macro after, passing the function + * result. + * Caution: + * This isn't reliable. C99 no longer requires libm to set errno under + * any exceptional condition, but does require +- HUGE_VAL return + * values on overflow. A 754 box *probably* maps HUGE_VAL to a + * double infinity, and we're cool if that's so, unless the input + * was an infinity and an infinity is the expected result. A C89 + * system sets errno to ERANGE, so we check for that too. We're + * out of luck if a C99 754 box doesn't map HUGE_VAL to +Inf, or + * if the returned result is a NaN, or if a C89 box returns HUGE_VAL + * in non-overflow cases. + * X is evaluated more than once. + * Some platforms have better way to spell this, so expect some #ifdef'ery. + * + * OpenBSD uses 'isinf()' because a compiler bug on that platform causes + * the longer macro version to be mis-compiled. This isn't optimal, and + * should be removed once a newer compiler is available on that platform. + * The system that had the failure was running OpenBSD 3.2 on Intel, with + * gcc 2.95.3. + * + * According to Tim's checkin, the FreeBSD systems use isinf() to work + * around a FPE bug on that platform. + */ +#if defined(__FreeBSD__) || defined(__OpenBSD__) +#define Py_OVERFLOWED(X) isinf(X) +#else +#define Py_OVERFLOWED(X) ((X) != 0.0 && (errno == ERANGE || \ + (X) == Py_HUGE_VAL || \ + (X) == -Py_HUGE_VAL)) +#endif + +#endif /* Py_PYMATH_H */ diff --git a/Include/pyport.h b/Include/pyport.h index 3755e38..18bdb0c 100644 --- a/Include/pyport.h +++ b/Include/pyport.h @@ -336,123 +336,6 @@ extern "C" { #define Py_SAFE_DOWNCAST(VALUE, WIDE, NARROW) (NARROW)(VALUE) #endif -/* High precision defintion of pi and e (Euler) - * The values are taken from libc6's math.h. - */ -#ifndef Py_MATH_PIl -#define Py_MATH_PIl 3.1415926535897932384626433832795029L -#endif -#ifndef Py_MATH_PI -#define Py_MATH_PI 3.14159265358979323846 -#endif - -#ifndef Py_MATH_El -#define Py_MATH_El 2.7182818284590452353602874713526625L -#endif - -#ifndef Py_MATH_E -#define Py_MATH_E 2.7182818284590452354 -#endif - -/* Py_IS_NAN(X) - * Return 1 if float or double arg is a NaN, else 0. - * Caution: - * X is evaluated more than once. - * This may not work on all platforms. Each platform has *some* - * way to spell this, though -- override in pyconfig.h if you have - * a platform where it doesn't work. - */ -#ifndef Py_IS_NAN -#ifdef HAVE_ISNAN -#define Py_IS_NAN(X) isnan(X) -#else -#define Py_IS_NAN(X) ((X) != (X)) -#endif -#endif - -/* Py_IS_INFINITY(X) - * Return 1 if float or double arg is an infinity, else 0. - * Caution: - * X is evaluated more than once. - * This implementation may set the underflow flag if |X| is very small; - * it really can't be implemented correctly (& easily) before C99. - * Override in pyconfig.h if you have a better spelling on your platform. - */ -#ifndef Py_IS_INFINITY -#ifdef HAVE_ISINF -#define Py_IS_INFINITY(X) isinf(X) -#else -#define Py_IS_INFINITY(X) ((X) && (X)*0.5 == (X)) -#endif -#endif - -/* Py_IS_FINITE(X) - * Return 1 if float or double arg is neither infinite nor NAN, else 0. - * Some compilers (e.g. VisualStudio) have intrisics for this, so a special - * macro for this particular test is useful - */ -#ifndef Py_IS_FINITE -#ifdef HAVE_FINITE -#define Py_IS_FINITE(X) finite(X) -#else -#define Py_IS_FINITE(X) (!Py_IS_INFINITY(X) && !Py_IS_NAN(X)) -#endif -#endif - -/* HUGE_VAL is supposed to expand to a positive double infinity. Python - * uses Py_HUGE_VAL instead because some platforms are broken in this - * respect. We used to embed code in pyport.h to try to worm around that, - * but different platforms are broken in conflicting ways. If you're on - * a platform where HUGE_VAL is defined incorrectly, fiddle your Python - * config to #define Py_HUGE_VAL to something that works on your platform. - */ -#ifndef Py_HUGE_VAL -#define Py_HUGE_VAL HUGE_VAL -#endif - -/* Py_NAN - * A value that evaluates to a NaN. On IEEE 754 platforms INF*0 or - * INF/INF works. Define Py_NO_NAN in pyconfig.h if your platform - * doesn't support NaNs. - */ -#if !defined(Py_NAN) && !defined(Py_NO_NAN) -#define Py_NAN (Py_HUGE_VAL * 0.) -#endif - -/* Py_OVERFLOWED(X) - * Return 1 iff a libm function overflowed. Set errno to 0 before calling - * a libm function, and invoke this macro after, passing the function - * result. - * Caution: - * This isn't reliable. C99 no longer requires libm to set errno under - * any exceptional condition, but does require +- HUGE_VAL return - * values on overflow. A 754 box *probably* maps HUGE_VAL to a - * double infinity, and we're cool if that's so, unless the input - * was an infinity and an infinity is the expected result. A C89 - * system sets errno to ERANGE, so we check for that too. We're - * out of luck if a C99 754 box doesn't map HUGE_VAL to +Inf, or - * if the returned result is a NaN, or if a C89 box returns HUGE_VAL - * in non-overflow cases. - * X is evaluated more than once. - * Some platforms have better way to spell this, so expect some #ifdef'ery. - * - * OpenBSD uses 'isinf()' because a compiler bug on that platform causes - * the longer macro version to be mis-compiled. This isn't optimal, and - * should be removed once a newer compiler is available on that platform. - * The system that had the failure was running OpenBSD 3.2 on Intel, with - * gcc 2.95.3. - * - * According to Tim's checkin, the FreeBSD systems use isinf() to work - * around a FPE bug on that platform. - */ -#if defined(__FreeBSD__) || defined(__OpenBSD__) -#define Py_OVERFLOWED(X) isinf(X) -#else -#define Py_OVERFLOWED(X) ((X) != 0.0 && (errno == ERANGE || \ - (X) == Py_HUGE_VAL || \ - (X) == -Py_HUGE_VAL)) -#endif - /* Py_SET_ERRNO_ON_MATH_ERROR(x) * If a libm function did not set errno, but it looks like the result * overflowed or not-a-number, set errno to ERANGE or EDOM. Set errno @@ -559,15 +442,6 @@ extern pid_t forkpty(int *, char *, struct termios *, struct winsize *); #endif /* defined(HAVE_OPENPTY) || defined(HAVE_FORKPTY) */ -/************************ - * WRAPPER FOR <math.h> * - ************************/ - -#ifndef HAVE_HYPOT -extern double hypot(double, double); -#endif - - /* On 4.4BSD-descendants, ctype functions serves the whole range of * wchar_t character set rather than single byte code points only. * This characteristic can break some operations of string object diff --git a/Lib/test/cmath_testcases.txt b/Lib/test/cmath_testcases.txt new file mode 100644 index 0000000..2fabebf --- /dev/null +++ b/Lib/test/cmath_testcases.txt @@ -0,0 +1,2355 @@ +-- Testcases for functions in cmath. +-- +-- Each line takes the form: +-- +-- <testid> <function> <input_value> -> <output_value> <flags> +-- +-- where: +-- +-- <testid> is a short name identifying the test, +-- +-- <function> is the function to be tested (exp, cos, asinh, ...), +-- +-- <input_value> is a pair of floats separated by whitespace +-- representing real and imaginary parts of a complex number, and +-- +-- <output_value> is the expected (ideal) output value, again +-- represented as a pair of floats. +-- +-- <flags> is a list of the floating-point flags required by C99 +-- +-- The possible flags are: +-- +-- divide-by-zero : raised when a finite input gives a +-- mathematically infinite result. +-- +-- overflow : raised when a finite input gives a finite result whose +-- real or imaginary part is too large to fit in the usual range +-- of an IEEE 754 double. +-- +-- invalid : raised for invalid inputs. +-- +-- ignore-real-sign : indicates that the sign of the real part of +-- the result is unspecified; if the real part of the result is +-- given as inf, then both -inf and inf should be accepted as +-- correct. +-- +-- ignore-imag-sign : indicates that the sign of the imaginary part +-- of the result is unspecified. +-- +-- Flags may appear in any order. +-- +-- Lines beginning with '--' (like this one) start a comment, and are +-- ignored. Blank lines, or lines containing only whitespace, are also +-- ignored. + + +-------------------------- +-- acos: Inverse cosine -- +-------------------------- + +-- zeros +acos0000 acos 0.0 0.0 -> 1.5707963267948966 -0.0 +acos0001 acos 0.0 -0.0 -> 1.5707963267948966 0.0 +acos0002 acos -0.0 0.0 -> 1.5707963267948966 -0.0 +acos0003 acos -0.0 -0.0 -> 1.5707963267948966 0.0 + +-- branch points: +/-1 +acos0010 acos 1.0 0.0 -> 0.0 -0.0 +acos0011 acos 1.0 -0.0 -> 0.0 0.0 +acos0012 acos -1.0 0.0 -> 3.1415926535897931 -0.0 +acos0013 acos -1.0 -0.0 -> 3.1415926535897931 0.0 + +-- values along both sides of real axis +acos0020 acos -9.8813129168249309e-324 0.0 -> 1.5707963267948966 -0.0 +acos0021 acos -9.8813129168249309e-324 -0.0 -> 1.5707963267948966 0.0 +acos0022 acos -1e-305 0.0 -> 1.5707963267948966 -0.0 +acos0023 acos -1e-305 -0.0 -> 1.5707963267948966 0.0 +acos0024 acos -1e-150 0.0 -> 1.5707963267948966 -0.0 +acos0025 acos -1e-150 -0.0 -> 1.5707963267948966 0.0 +acos0026 acos -9.9999999999999998e-17 0.0 -> 1.5707963267948968 -0.0 +acos0027 acos -9.9999999999999998e-17 -0.0 -> 1.5707963267948968 0.0 +acos0028 acos -0.001 0.0 -> 1.5717963269615634 -0.0 +acos0029 acos -0.001 -0.0 -> 1.5717963269615634 0.0 +acos0030 acos -0.57899999999999996 0.0 -> 2.1882979816120667 -0.0 +acos0031 acos -0.57899999999999996 -0.0 -> 2.1882979816120667 0.0 +acos0032 acos -0.99999999999999989 0.0 -> 3.1415926386886319 -0.0 +acos0033 acos -0.99999999999999989 -0.0 -> 3.1415926386886319 0.0 +acos0034 acos -1.0000000000000002 0.0 -> 3.1415926535897931 -2.1073424255447014e-08 +acos0035 acos -1.0000000000000002 -0.0 -> 3.1415926535897931 2.1073424255447014e-08 +acos0036 acos -1.0009999999999999 0.0 -> 3.1415926535897931 -0.044717633608306849 +acos0037 acos -1.0009999999999999 -0.0 -> 3.1415926535897931 0.044717633608306849 +acos0038 acos -2.0 0.0 -> 3.1415926535897931 -1.3169578969248168 +acos0039 acos -2.0 -0.0 -> 3.1415926535897931 1.3169578969248168 +acos0040 acos -23.0 0.0 -> 3.1415926535897931 -3.8281684713331012 +acos0041 acos -23.0 -0.0 -> 3.1415926535897931 3.8281684713331012 +acos0042 acos -10000000000000000.0 0.0 -> 3.1415926535897931 -37.534508668464674 +acos0043 acos -10000000000000000.0 -0.0 -> 3.1415926535897931 37.534508668464674 +acos0044 acos -9.9999999999999998e+149 0.0 -> 3.1415926535897931 -346.08091112966679 +acos0045 acos -9.9999999999999998e+149 -0.0 -> 3.1415926535897931 346.08091112966679 +acos0046 acos -1.0000000000000001e+299 0.0 -> 3.1415926535897931 -689.16608998577965 +acos0047 acos -1.0000000000000001e+299 -0.0 -> 3.1415926535897931 689.16608998577965 +acos0048 acos 9.8813129168249309e-324 0.0 -> 1.5707963267948966 -0.0 +acos0049 acos 9.8813129168249309e-324 -0.0 -> 1.5707963267948966 0.0 +acos0050 acos 1e-305 0.0 -> 1.5707963267948966 -0.0 +acos0051 acos 1e-305 -0.0 -> 1.5707963267948966 0.0 +acos0052 acos 1e-150 0.0 -> 1.5707963267948966 -0.0 +acos0053 acos 1e-150 -0.0 -> 1.5707963267948966 0.0 +acos0054 acos 9.9999999999999998e-17 0.0 -> 1.5707963267948966 -0.0 +acos0055 acos 9.9999999999999998e-17 -0.0 -> 1.5707963267948966 0.0 +acos0056 acos 0.001 0.0 -> 1.56979632662823 -0.0 +acos0057 acos 0.001 -0.0 -> 1.56979632662823 0.0 +acos0058 acos 0.57899999999999996 0.0 -> 0.95329467197772655 -0.0 +acos0059 acos 0.57899999999999996 -0.0 -> 0.95329467197772655 0.0 +acos0060 acos 0.99999999999999989 0.0 -> 1.4901161193847656e-08 -0.0 +acos0061 acos 0.99999999999999989 -0.0 -> 1.4901161193847656e-08 0.0 +acos0062 acos 1.0000000000000002 0.0 -> 0.0 -2.1073424255447014e-08 +acos0063 acos 1.0000000000000002 -0.0 -> 0.0 2.1073424255447014e-08 +acos0064 acos 1.0009999999999999 0.0 -> 0.0 -0.044717633608306849 +acos0065 acos 1.0009999999999999 -0.0 -> 0.0 0.044717633608306849 +acos0066 acos 2.0 0.0 -> 0.0 -1.3169578969248168 +acos0067 acos 2.0 -0.0 -> 0.0 1.3169578969248168 +acos0068 acos 23.0 0.0 -> 0.0 -3.8281684713331012 +acos0069 acos 23.0 -0.0 -> 0.0 3.8281684713331012 +acos0070 acos 10000000000000000.0 0.0 -> 0.0 -37.534508668464674 +acos0071 acos 10000000000000000.0 -0.0 -> 0.0 37.534508668464674 +acos0072 acos 9.9999999999999998e+149 0.0 -> 0.0 -346.08091112966679 +acos0073 acos 9.9999999999999998e+149 -0.0 -> 0.0 346.08091112966679 +acos0074 acos 1.0000000000000001e+299 0.0 -> 0.0 -689.16608998577965 +acos0075 acos 1.0000000000000001e+299 -0.0 -> 0.0 689.16608998577965 + +-- random inputs +acos0100 acos -3.3307113324596682 -10.732007530863266 -> 1.8706085694482339 3.113986806554613 +acos0101 acos -2863.952991743291 -2681013315.2571239 -> 1.5707973950301699 22.402607843274758 +acos0102 acos -0.33072639793220088 -0.85055464658253055 -> 1.8219426895922601 0.79250166729311966 +acos0103 acos -2.5722325842097802 -12.703940809821574 -> 1.7699942413107408 3.2565170156527325 +acos0104 acos -42.495233785459583 -0.54039320751337161 -> 3.1288732573153304 4.4424815519735601 +acos0105 acos -1.1363818625856401 9641.1325498630376 -> 1.5709141948820049 -9.8669410553254284 +acos0106 acos -2.4398426824157866e-11 0.33002051890266165 -> 1.570796326818066 -0.32430578041578667 +acos0107 acos -1.3521340428186552 2.9369737912076772 -> 1.9849059192339338 -1.8822893674117942 +acos0108 acos -1.827364706477915 1.0355459232147557 -> 2.5732246307960032 -1.4090688267854969 +acos0109 acos -0.25978373706403546 10.09712669185833 -> 1.5963940386378306 -3.0081673050196063 +acos0110 acos 0.33561778471072551 -4587350.6823999118 -> 1.5707962536333251 16.031960402579539 +acos0111 acos 0.49133444610998445 -0.8071422362990015 -> 1.1908761712801788 0.78573345813187867 +acos0112 acos 0.42196734507823974 -2.4812965431745115 -> 1.414091186100692 1.651707260988172 +acos0113 acos 2.961426210100655 -219.03295695248664 -> 1.5572768319822778 6.0824659885827304 +acos0114 acos 2.886209063652641 -20.38011207220606 -> 1.4302765252297889 3.718201853147642 +acos0115 acos 0.4180568075276509 1.4833433990823484 -> 1.3393834558303042 -1.2079847758301576 +acos0116 acos 52.376111405924718 0.013930429001941001 -> 0.00026601761804024188 -4.6515066691204714 +acos0117 acos 41637948387.625969 1.563418292894041 -> 3.7547918507883548e-11 -25.145424989809381 +acos0118 acos 0.061226659122249526 0.8447234394615154 -> 1.5240280306367315 -0.76791798971140812 +acos0119 acos 2.4480466420442959e+26 0.18002339201384662 -> 7.353756620564798e-28 -61.455650015996376 + +-- values near infinity +acos0200 acos 1.6206860518683021e+308 1.0308426226285283e+308 -> 0.56650826093826223 -710.54206874241561 +acos0201 acos 1.2067735875070062e+308 -1.3429173724390276e+308 -> 0.83874369390864889 710.48017794027498 +acos0202 acos -7.4130145132549047e+307 1.1759130543927645e+308 -> 2.1332729346478536 -710.21871115698752 +acos0203 acos -8.6329426442257249e+307 -1.2316282952184133e+308 -> 2.1821511032444838 710.29752145697148 +acos0204 acos 0.0 1.4289713855849746e+308 -> 1.5707963267948966 -710.24631069738996 +acos0205 acos -0.0 1.3153524545987432e+308 -> 1.5707963267948966 -710.1634604787539 +acos0206 acos 0.0 -9.6229037669269321e+307 -> 1.5707963267948966 709.85091679573691 +acos0207 acos -0.0 -4.9783616421107088e+307 -> 1.5707963267948966 709.19187157911233 +acos0208 acos 1.3937541925739389e+308 0.0 -> 0.0 -710.22135678707264 +acos0209 acos 9.1362388967371536e+307 -0.0 -> 0.0 709.79901953124613 +acos0210 acos -1.3457361220697436e+308 0.0 -> 3.1415926535897931 -710.18629698871848 +acos0211 acos -5.4699090056144284e+307 -0.0 -> 3.1415926535897931 709.28603271085649 +acos0212 acos 1.5880716932358901e+308 5.5638401252339929 -> 3.503519487773873e-308 -710.35187633140583 +acos0213 acos 1.2497211663463164e+308 -3.0456477717911024 -> 2.4370618453197486e-308 710.11227628223412 +acos0214 acos -9.9016224006029528e+307 4.9570427340789056 -> 3.1415926535897931 -709.87946935229468 +acos0215 acos -1.5854071066874139e+308 -4.4233577741497783 -> 3.1415926535897931 710.35019704672004 +acos0216 acos 9.3674623083647628 1.5209559051877979e+308 -> 1.5707963267948966 -710.30869484491086 +acos0217 acos 8.1773832021784383 -6.6093445795000056e+307 -> 1.5707963267948966 709.4752552227792 +acos0218 acos -3.1845935000665104 1.5768856396650893e+308 -> 1.5707963267948966 -710.34480761042687 +acos0219 acos -1.0577303880953903 -6.4574626815735613e+307 -> 1.5707963267948966 709.45200719662046 + +-- values near 0 +acos0220 acos 1.8566986970714045e-320 3.1867234156760402e-321 -> 1.5707963267948966 -3.1867234156760402e-321 +acos0221 acos 7.9050503334599447e-323 -8.8931816251424378e-323 -> 1.5707963267948966 8.8931816251424378e-323 +acos0222 acos -4.4465908125712189e-323 2.4654065097222727e-311 -> 1.5707963267948966 -2.4654065097222727e-311 +acos0223 acos -6.1016916408192619e-311 -2.4703282292062327e-323 -> 1.5707963267948966 2.4703282292062327e-323 +acos0224 acos 0.0 3.4305783621842729e-311 -> 1.5707963267948966 -3.4305783621842729e-311 +acos0225 acos -0.0 1.6117409498633145e-319 -> 1.5707963267948966 -1.6117409498633145e-319 +acos0226 acos 0.0 -4.9900630229965901e-322 -> 1.5707963267948966 4.9900630229965901e-322 +acos0227 acos -0.0 -4.4889279210592818e-311 -> 1.5707963267948966 4.4889279210592818e-311 +acos0228 acos 5.3297678681477214e-312 0.0 -> 1.5707963267948966 -0.0 +acos0229 acos 6.2073425897211614e-313 -0.0 -> 1.5707963267948966 0.0 +acos0230 acos -4.9406564584124654e-324 0.0 -> 1.5707963267948966 -0.0 +acos0231 acos -1.7107517052899003e-318 -0.0 -> 1.5707963267948966 0.0 + +-- special values +acos1000 acos 0.0 0.0 -> 1.5707963267948966 -0.0 +acos1001 acos 0.0 -0.0 -> 1.5707963267948966 0.0 +acos1002 acos -0.0 0.0 -> 1.5707963267948966 -0.0 +acos1003 acos -0.0 -0.0 -> 1.5707963267948966 0.0 +acos1004 acos 0.0 nan -> 1.5707963267948966 nan +acos1005 acos -0.0 nan -> 1.5707963267948966 nan +acos1006 acos -2.3 inf -> 1.5707963267948966 -inf +acos1007 acos -0.0 inf -> 1.5707963267948966 -inf +acos1008 acos 0.0 inf -> 1.5707963267948966 -inf +acos1009 acos 2.3 inf -> 1.5707963267948966 -inf +acos1010 acos -2.3 nan -> nan nan +acos1011 acos 2.3 nan -> nan nan +acos1012 acos -inf 2.3 -> 3.1415926535897931 -inf +acos1013 acos -inf 0.0 -> 3.1415926535897931 -inf +acos1014 acos inf 2.3 -> 0.0 -inf +acos1015 acos inf 0.0 -> 0.0 -inf +acos1016 acos -inf inf -> 2.3561944901923448 -inf +acos1017 acos inf inf -> 0.78539816339744828 -inf +acos1018 acos inf nan -> nan inf ignore-imag-sign +acos1019 acos -inf nan -> nan inf ignore-imag-sign +acos1020 acos nan 0.0 -> nan nan +acos1021 acos nan 2.3 -> nan nan +acos1022 acos nan inf -> nan -inf +acos1023 acos nan nan -> nan nan +acos1024 acos -2.3 -inf -> 1.5707963267948966 inf +acos1025 acos -0.0 -inf -> 1.5707963267948966 inf +acos1026 acos 0.0 -inf -> 1.5707963267948966 inf +acos1027 acos 2.3 -inf -> 1.5707963267948966 inf +acos1028 acos -inf -2.3 -> 3.1415926535897931 inf +acos1029 acos -inf -0.0 -> 3.1415926535897931 inf +acos1030 acos inf -2.3 -> 0.0 inf +acos1031 acos inf -0.0 -> 0.0 inf +acos1032 acos -inf -inf -> 2.3561944901923448 inf +acos1033 acos inf -inf -> 0.78539816339744828 inf +acos1034 acos nan -0.0 -> nan nan +acos1035 acos nan -2.3 -> nan nan +acos1036 acos nan -inf -> nan inf + + +-------------------------------------- +-- acosh: Inverse hyperbolic cosine -- +-------------------------------------- + +-- zeros +acosh0000 acosh 0.0 0.0 -> 0.0 1.5707963267948966 +acosh0001 acosh 0.0 -0.0 -> 0.0 -1.5707963267948966 +acosh0002 acosh -0.0 0.0 -> 0.0 1.5707963267948966 +acosh0003 acosh -0.0 -0.0 -> 0.0 -1.5707963267948966 + +-- branch points: +/-1 +acosh0010 acosh 1.0 0.0 -> 0.0 0.0 +acosh0011 acosh 1.0 -0.0 -> 0.0 -0.0 +acosh0012 acosh -1.0 0.0 -> 0.0 3.1415926535897931 +acosh0013 acosh -1.0 -0.0 -> 0.0 -3.1415926535897931 + +-- values along both sides of real axis +acosh0020 acosh -9.8813129168249309e-324 0.0 -> 0.0 1.5707963267948966 +acosh0021 acosh -9.8813129168249309e-324 -0.0 -> 0.0 -1.5707963267948966 +acosh0022 acosh -1e-305 0.0 -> 0.0 1.5707963267948966 +acosh0023 acosh -1e-305 -0.0 -> 0.0 -1.5707963267948966 +acosh0024 acosh -1e-150 0.0 -> 0.0 1.5707963267948966 +acosh0025 acosh -1e-150 -0.0 -> 0.0 -1.5707963267948966 +acosh0026 acosh -9.9999999999999998e-17 0.0 -> 0.0 1.5707963267948968 +acosh0027 acosh -9.9999999999999998e-17 -0.0 -> 0.0 -1.5707963267948968 +acosh0028 acosh -0.001 0.0 -> 0.0 1.5717963269615634 +acosh0029 acosh -0.001 -0.0 -> 0.0 -1.5717963269615634 +acosh0030 acosh -0.57899999999999996 0.0 -> 0.0 2.1882979816120667 +acosh0031 acosh -0.57899999999999996 -0.0 -> 0.0 -2.1882979816120667 +acosh0032 acosh -0.99999999999999989 0.0 -> 0.0 3.1415926386886319 +acosh0033 acosh -0.99999999999999989 -0.0 -> 0.0 -3.1415926386886319 +acosh0034 acosh -1.0000000000000002 0.0 -> 2.1073424255447014e-08 3.1415926535897931 +acosh0035 acosh -1.0000000000000002 -0.0 -> 2.1073424255447014e-08 -3.1415926535897931 +acosh0036 acosh -1.0009999999999999 0.0 -> 0.044717633608306849 3.1415926535897931 +acosh0037 acosh -1.0009999999999999 -0.0 -> 0.044717633608306849 -3.1415926535897931 +acosh0038 acosh -2.0 0.0 -> 1.3169578969248168 3.1415926535897931 +acosh0039 acosh -2.0 -0.0 -> 1.3169578969248168 -3.1415926535897931 +acosh0040 acosh -23.0 0.0 -> 3.8281684713331012 3.1415926535897931 +acosh0041 acosh -23.0 -0.0 -> 3.8281684713331012 -3.1415926535897931 +acosh0042 acosh -10000000000000000.0 0.0 -> 37.534508668464674 3.1415926535897931 +acosh0043 acosh -10000000000000000.0 -0.0 -> 37.534508668464674 -3.1415926535897931 +acosh0044 acosh -9.9999999999999998e+149 0.0 -> 346.08091112966679 3.1415926535897931 +acosh0045 acosh -9.9999999999999998e+149 -0.0 -> 346.08091112966679 -3.1415926535897931 +acosh0046 acosh -1.0000000000000001e+299 0.0 -> 689.16608998577965 3.1415926535897931 +acosh0047 acosh -1.0000000000000001e+299 -0.0 -> 689.16608998577965 -3.1415926535897931 +acosh0048 acosh 9.8813129168249309e-324 0.0 -> 0.0 1.5707963267948966 +acosh0049 acosh 9.8813129168249309e-324 -0.0 -> 0.0 -1.5707963267948966 +acosh0050 acosh 1e-305 0.0 -> 0.0 1.5707963267948966 +acosh0051 acosh 1e-305 -0.0 -> 0.0 -1.5707963267948966 +acosh0052 acosh 1e-150 0.0 -> 0.0 1.5707963267948966 +acosh0053 acosh 1e-150 -0.0 -> 0.0 -1.5707963267948966 +acosh0054 acosh 9.9999999999999998e-17 0.0 -> 0.0 1.5707963267948966 +acosh0055 acosh 9.9999999999999998e-17 -0.0 -> 0.0 -1.5707963267948966 +acosh0056 acosh 0.001 0.0 -> 0.0 1.56979632662823 +acosh0057 acosh 0.001 -0.0 -> 0.0 -1.56979632662823 +acosh0058 acosh 0.57899999999999996 0.0 -> 0.0 0.95329467197772655 +acosh0059 acosh 0.57899999999999996 -0.0 -> 0.0 -0.95329467197772655 +acosh0060 acosh 0.99999999999999989 0.0 -> 0.0 1.4901161193847656e-08 +acosh0061 acosh 0.99999999999999989 -0.0 -> 0.0 -1.4901161193847656e-08 +acosh0062 acosh 1.0000000000000002 0.0 -> 2.1073424255447014e-08 0.0 +acosh0063 acosh 1.0000000000000002 -0.0 -> 2.1073424255447014e-08 -0.0 +acosh0064 acosh 1.0009999999999999 0.0 -> 0.044717633608306849 0.0 +acosh0065 acosh 1.0009999999999999 -0.0 -> 0.044717633608306849 -0.0 +acosh0066 acosh 2.0 0.0 -> 1.3169578969248168 0.0 +acosh0067 acosh 2.0 -0.0 -> 1.3169578969248168 -0.0 +acosh0068 acosh 23.0 0.0 -> 3.8281684713331012 0.0 +acosh0069 acosh 23.0 -0.0 -> 3.8281684713331012 -0.0 +acosh0070 acosh 10000000000000000.0 0.0 -> 37.534508668464674 0.0 +acosh0071 acosh 10000000000000000.0 -0.0 -> 37.534508668464674 -0.0 +acosh0072 acosh 9.9999999999999998e+149 0.0 -> 346.08091112966679 0.0 +acosh0073 acosh 9.9999999999999998e+149 -0.0 -> 346.08091112966679 -0.0 +acosh0074 acosh 1.0000000000000001e+299 0.0 -> 689.16608998577965 0.0 +acosh0075 acosh 1.0000000000000001e+299 -0.0 -> 689.16608998577965 -0.0 + +-- random inputs +acosh0100 acosh -1.4328589581250843 -1.8370347775558309 -> 1.5526962646549587 -2.190250168435786 +acosh0101 acosh -0.31075819156220957 -1.0772555786839297 -> 0.95139168286193709 -1.7812228089636479 +acosh0102 acosh -1.9044776578070453 -20.485370158932124 -> 3.7177411088932359 -1.6633888745861227 +acosh0103 acosh -0.075642506000858742 -21965976320.873051 -> 24.505907742881991 -1.5707963267983402 +acosh0104 acosh -1.6162271181056307 -3.0369343458696099 -> 1.9407057262861227 -2.0429549461750209 +acosh0105 acosh -0.3103780280298063 0.00018054880018078987 -> 0.00018992877058761416 1.886386995096728 +acosh0106 acosh -9159468751.5897655 5.8014747664273649 -> 23.631201197959193 3.1415926529564078 +acosh0107 acosh -0.037739157550933884 0.21841357493510705 -> 0.21685844960602488 1.6076735133449402 +acosh0108 acosh -8225991.0508394297 0.28318543008913644 -> 16.615956520420287 3.1415926191641019 +acosh0109 acosh -35.620070502302639 0.31303237005015 -> 4.2658980006943965 3.1328013255541873 +acosh0110 acosh 96.729939906820917 -0.029345228372365334 -> 5.2650434775863548 -0.00030338895866972843 +acosh0111 acosh 0.59656024007966491 -2.0412294654163978 -> 1.4923002024287835 -1.312568421900338 +acosh0112 acosh 109.29384112677828 -0.00015454863061533812 -> 5.3871662961545477 -1.4141245154061214e-06 +acosh0113 acosh 8.6705651969361597 -3.6723631649787465 -> 2.9336180958363545 -0.40267362031872861 +acosh0114 acosh 1.8101646445052686 -0.012345132721855478 -> 1.1997148566285769 -0.0081813912760150265 +acosh0115 acosh 52.56897195025288 0.001113916065985443 -> 4.6551827622264135 2.1193445872040307e-05 +acosh0116 acosh 0.28336786164214739 355643992457.40485 -> 27.290343226816528 1.5707963267940999 +acosh0117 acosh 0.73876621291911437 2.8828594541104322e-20 -> 4.2774820978159067e-20 0.73955845836827927 +acosh0118 acosh 0.025865471781718878 37125746064318.492 -> 31.938478989418012 1.5707963267948959 +acosh0119 acosh 2.2047353511780132 0.074712248143489271 -> 1.4286403248698021 0.037997904971626598 + +-- values near infinity +acosh0200 acosh 8.1548592876467785e+307 9.0943779335951128e+307 -> 710.08944620800605 0.83981165425478954 +acosh0201 acosh 1.4237229680972531e+308 -1.0336966617874858e+308 -> 710.4543331094759 -0.6279972876348755 +acosh0202 acosh -1.5014526899738939e+308 1.5670700378448792e+308 -> 710.66420706795464 2.3348137299106697 +acosh0203 acosh -1.0939040375213928e+308 -1.0416960351127978e+308 -> 710.30182863115886 -2.380636147787027 +acosh0204 acosh 0.0 1.476062433559588e+308 -> 710.27873384716929 1.5707963267948966 +acosh0205 acosh -0.0 6.2077210326221094e+307 -> 709.41256457484769 1.5707963267948966 +acosh0206 acosh 0.0 -1.5621899909968308e+308 -> 710.33544449990734 -1.5707963267948966 +acosh0207 acosh -0.0 -8.3556624833839122e+307 -> 709.70971018048317 -1.5707963267948966 +acosh0208 acosh 1.3067079752499342e+308 0.0 -> 710.15686680107228 0.0 +acosh0209 acosh 1.5653640340214026e+308 -0.0 -> 710.33747422926706 -0.0 +acosh0210 acosh -6.9011375992290636e+307 0.0 -> 709.51845699719922 3.1415926535897931 +acosh0211 acosh -9.9539576809926973e+307 -0.0 -> 709.88474095870185 -3.1415926535897931 +acosh0212 acosh 7.6449598518914925e+307 9.5706540768268358 -> 709.62081731754802 1.2518906916769345e-307 +acosh0213 acosh 5.4325410972602197e+307 -7.8064807816522706 -> 709.279177727925 -1.4369851312471974e-307 +acosh0214 acosh -1.1523626112360465e+308 7.0617510038869336 -> 710.03117010216909 3.1415926535897931 +acosh0215 acosh -1.1685027786862599e+308 -5.1568558357925625 -> 710.04507907571417 -3.1415926535897931 +acosh0216 acosh 3.0236370339788721 1.7503248720096417e+308 -> 710.44915723458064 1.5707963267948966 +acosh0217 acosh 6.6108007926031149 -9.1469968225806149e+307 -> 709.80019633903328 -1.5707963267948966 +acosh0218 acosh -5.1096262905623959 6.4484926785412395e+307 -> 709.45061713997973 1.5707963267948966 +acosh0219 acosh -2.8080920608735846 -1.7716118836519368e+308 -> 710.46124562363445 -1.5707963267948966 + +-- values near 0 +acosh0220 acosh 4.5560530326699304e-317 7.3048989121436657e-318 -> 7.3048989121436657e-318 1.5707963267948966 +acosh0221 acosh 4.8754274133585331e-314 -9.8469794897684199e-315 -> 9.8469794897684199e-315 -1.5707963267948966 +acosh0222 acosh -4.6748876009960097e-312 9.7900342887557606e-318 -> 9.7900342887557606e-318 1.5707963267948966 +acosh0223 acosh -4.3136871538399236e-320 -4.9406564584124654e-323 -> 4.9406564584124654e-323 -1.5707963267948966 +acosh0224 acosh 0.0 4.3431013866496774e-314 -> 4.3431013866496774e-314 1.5707963267948966 +acosh0225 acosh -0.0 6.0147334335829184e-317 -> 6.0147334335829184e-317 1.5707963267948966 +acosh0226 acosh 0.0 -1.2880291387081297e-320 -> 1.2880291387081297e-320 -1.5707963267948966 +acosh0227 acosh -0.0 -1.4401563976534621e-317 -> 1.4401563976534621e-317 -1.5707963267948966 +acosh0228 acosh 1.3689680570863091e-313 0.0 -> 0.0 1.5707963267948966 +acosh0229 acosh 1.5304346893494371e-312 -0.0 -> 0.0 -1.5707963267948966 +acosh0230 acosh -3.7450175954766488e-320 0.0 -> 0.0 1.5707963267948966 +acosh0231 acosh -8.4250563080885801e-311 -0.0 -> 0.0 -1.5707963267948966 + +-- special values +acosh1000 acosh 0.0 0.0 -> 0.0 1.5707963267948966 +acosh1001 acosh -0.0 0.0 -> 0.0 1.5707963267948966 +acosh1002 acosh 0.0 inf -> inf 1.5707963267948966 +acosh1003 acosh 2.3 inf -> inf 1.5707963267948966 +acosh1004 acosh -0.0 inf -> inf 1.5707963267948966 +acosh1005 acosh -2.3 inf -> inf 1.5707963267948966 +acosh1006 acosh 0.0 nan -> nan nan +acosh1007 acosh 2.3 nan -> nan nan +acosh1008 acosh -0.0 nan -> nan nan +acosh1009 acosh -2.3 nan -> nan nan +acosh1010 acosh -inf 0.0 -> inf 3.1415926535897931 +acosh1011 acosh -inf 2.3 -> inf 3.1415926535897931 +acosh1012 acosh inf 0.0 -> inf 0.0 +acosh1013 acosh inf 2.3 -> inf 0.0 +acosh1014 acosh -inf inf -> inf 2.3561944901923448 +acosh1015 acosh inf inf -> inf 0.78539816339744828 +acosh1016 acosh inf nan -> inf nan +acosh1017 acosh -inf nan -> inf nan +acosh1018 acosh nan 0.0 -> nan nan +acosh1019 acosh nan 2.3 -> nan nan +acosh1020 acosh nan inf -> inf nan +acosh1021 acosh nan nan -> nan nan +acosh1022 acosh 0.0 -0.0 -> 0.0 -1.5707963267948966 +acosh1023 acosh -0.0 -0.0 -> 0.0 -1.5707963267948966 +acosh1024 acosh 0.0 -inf -> inf -1.5707963267948966 +acosh1025 acosh 2.3 -inf -> inf -1.5707963267948966 +acosh1026 acosh -0.0 -inf -> inf -1.5707963267948966 +acosh1027 acosh -2.3 -inf -> inf -1.5707963267948966 +acosh1028 acosh -inf -0.0 -> inf -3.1415926535897931 +acosh1029 acosh -inf -2.3 -> inf -3.1415926535897931 +acosh1030 acosh inf -0.0 -> inf -0.0 +acosh1031 acosh inf -2.3 -> inf -0.0 +acosh1032 acosh -inf -inf -> inf -2.3561944901923448 +acosh1033 acosh inf -inf -> inf -0.78539816339744828 +acosh1034 acosh nan -0.0 -> nan nan +acosh1035 acosh nan -2.3 -> nan nan +acosh1036 acosh nan -inf -> inf nan + + +------------------------ +-- asin: Inverse sine -- +------------------------ + +-- zeros +asin0000 asin 0.0 0.0 -> 0.0 0.0 +asin0001 asin 0.0 -0.0 -> 0.0 -0.0 +asin0002 asin -0.0 0.0 -> -0.0 0.0 +asin0003 asin -0.0 -0.0 -> -0.0 -0.0 + +-- branch points: +/-1 +asin0010 asin 1.0 0.0 -> 1.5707963267948966 0.0 +asin0011 asin 1.0 -0.0 -> 1.5707963267948966 -0.0 +asin0012 asin -1.0 0.0 -> -1.5707963267948966 0.0 +asin0013 asin -1.0 -0.0 -> -1.5707963267948966 -0.0 + +-- values along both sides of real axis +asin0020 asin -9.8813129168249309e-324 0.0 -> -9.8813129168249309e-324 0.0 +asin0021 asin -9.8813129168249309e-324 -0.0 -> -9.8813129168249309e-324 -0.0 +asin0022 asin -1e-305 0.0 -> -1e-305 0.0 +asin0023 asin -1e-305 -0.0 -> -1e-305 -0.0 +asin0024 asin -1e-150 0.0 -> -1e-150 0.0 +asin0025 asin -1e-150 -0.0 -> -1e-150 -0.0 +asin0026 asin -9.9999999999999998e-17 0.0 -> -9.9999999999999998e-17 0.0 +asin0027 asin -9.9999999999999998e-17 -0.0 -> -9.9999999999999998e-17 -0.0 +asin0028 asin -0.001 0.0 -> -0.0010000001666667416 0.0 +asin0029 asin -0.001 -0.0 -> -0.0010000001666667416 -0.0 +asin0030 asin -0.57899999999999996 0.0 -> -0.61750165481717001 0.0 +asin0031 asin -0.57899999999999996 -0.0 -> -0.61750165481717001 -0.0 +asin0032 asin -0.99999999999999989 0.0 -> -1.5707963118937354 0.0 +asin0033 asin -0.99999999999999989 -0.0 -> -1.5707963118937354 -0.0 +asin0034 asin -1.0000000000000002 0.0 -> -1.5707963267948966 2.1073424255447014e-08 +asin0035 asin -1.0000000000000002 -0.0 -> -1.5707963267948966 -2.1073424255447014e-08 +asin0036 asin -1.0009999999999999 0.0 -> -1.5707963267948966 0.044717633608306849 +asin0037 asin -1.0009999999999999 -0.0 -> -1.5707963267948966 -0.044717633608306849 +asin0038 asin -2.0 0.0 -> -1.5707963267948966 1.3169578969248168 +asin0039 asin -2.0 -0.0 -> -1.5707963267948966 -1.3169578969248168 +asin0040 asin -23.0 0.0 -> -1.5707963267948966 3.8281684713331012 +asin0041 asin -23.0 -0.0 -> -1.5707963267948966 -3.8281684713331012 +asin0042 asin -10000000000000000.0 0.0 -> -1.5707963267948966 37.534508668464674 +asin0043 asin -10000000000000000.0 -0.0 -> -1.5707963267948966 -37.534508668464674 +asin0044 asin -9.9999999999999998e+149 0.0 -> -1.5707963267948966 346.08091112966679 +asin0045 asin -9.9999999999999998e+149 -0.0 -> -1.5707963267948966 -346.08091112966679 +asin0046 asin -1.0000000000000001e+299 0.0 -> -1.5707963267948966 689.16608998577965 +asin0047 asin -1.0000000000000001e+299 -0.0 -> -1.5707963267948966 -689.16608998577965 +asin0048 asin 9.8813129168249309e-324 0.0 -> 9.8813129168249309e-324 0.0 +asin0049 asin 9.8813129168249309e-324 -0.0 -> 9.8813129168249309e-324 -0.0 +asin0050 asin 1e-305 0.0 -> 1e-305 0.0 +asin0051 asin 1e-305 -0.0 -> 1e-305 -0.0 +asin0052 asin 1e-150 0.0 -> 1e-150 0.0 +asin0053 asin 1e-150 -0.0 -> 1e-150 -0.0 +asin0054 asin 9.9999999999999998e-17 0.0 -> 9.9999999999999998e-17 0.0 +asin0055 asin 9.9999999999999998e-17 -0.0 -> 9.9999999999999998e-17 -0.0 +asin0056 asin 0.001 0.0 -> 0.0010000001666667416 0.0 +asin0057 asin 0.001 -0.0 -> 0.0010000001666667416 -0.0 +asin0058 asin 0.57899999999999996 0.0 -> 0.61750165481717001 0.0 +asin0059 asin 0.57899999999999996 -0.0 -> 0.61750165481717001 -0.0 +asin0060 asin 0.99999999999999989 0.0 -> 1.5707963118937354 0.0 +asin0061 asin 0.99999999999999989 -0.0 -> 1.5707963118937354 -0.0 +asin0062 asin 1.0000000000000002 0.0 -> 1.5707963267948966 2.1073424255447014e-08 +asin0063 asin 1.0000000000000002 -0.0 -> 1.5707963267948966 -2.1073424255447014e-08 +asin0064 asin 1.0009999999999999 0.0 -> 1.5707963267948966 0.044717633608306849 +asin0065 asin 1.0009999999999999 -0.0 -> 1.5707963267948966 -0.044717633608306849 +asin0066 asin 2.0 0.0 -> 1.5707963267948966 1.3169578969248168 +asin0067 asin 2.0 -0.0 -> 1.5707963267948966 -1.3169578969248168 +asin0068 asin 23.0 0.0 -> 1.5707963267948966 3.8281684713331012 +asin0069 asin 23.0 -0.0 -> 1.5707963267948966 -3.8281684713331012 +asin0070 asin 10000000000000000.0 0.0 -> 1.5707963267948966 37.534508668464674 +asin0071 asin 10000000000000000.0 -0.0 -> 1.5707963267948966 -37.534508668464674 +asin0072 asin 9.9999999999999998e+149 0.0 -> 1.5707963267948966 346.08091112966679 +asin0073 asin 9.9999999999999998e+149 -0.0 -> 1.5707963267948966 -346.08091112966679 +asin0074 asin 1.0000000000000001e+299 0.0 -> 1.5707963267948966 689.16608998577965 +asin0075 asin 1.0000000000000001e+299 -0.0 -> 1.5707963267948966 -689.16608998577965 + +-- random inputs +asin0100 asin -1.5979555835086083 -0.15003009814595247 -> -1.4515369557405788 -1.0544476399790823 +asin0101 asin -0.57488225895317679 -9.6080397838952743e-13 -> -0.61246024460412851 -1.174238005400403e-12 +asin0102 asin -3.6508087930516249 -0.36027527093220152 -> -1.4685890605305874 -1.9742273007152038 +asin0103 asin -1.5238659792326819 -1.1360813516996364 -> -0.86080051691147275 -1.3223742205689195 +asin0104 asin -1592.0639045555306 -0.72362427935018236 -> -1.5703418071175179 -8.0659336918729228 +asin0105 asin -0.19835471371312019 4.2131508416697709 -> -0.045777831019935149 2.1461732751933171 +asin0106 asin -1.918471054430213 0.40603305079779234 -> -1.3301396585791556 1.30263642314981 +asin0107 asin -254495.01623373642 0.71084414434470822 -> -1.5707935336394359 13.140183712762321 +asin0108 asin -0.31315882715691157 3.9647994288429866 -> -0.076450403840916004 2.0889762138713457 +asin0109 asin -0.90017064284720816 1.2530659485907105 -> -0.53466509741943447 1.1702811557577 +asin0110 asin 2.1615181696571075 -0.14058647488229523 -> 1.4976166323896871 -1.4085811039334604 +asin0111 asin 1.2104749210707795 -0.85732484485298999 -> 0.83913071588343924 -1.0681719250525901 +asin0112 asin 1.7059733185128891 -0.84032966373156581 -> 1.0510900815816229 -1.2967979791361652 +asin0113 asin 9.9137085017290687 -1.4608383970250893 -> 1.4237704820128891 -2.995414677560686 +asin0114 asin 117.12344751041495 -5453908091.5334015 -> 2.1475141411392012e-08 -23.112745450217066 +asin0115 asin 0.081041187798029227 0.067054349860173196 -> 0.080946786856771813 0.067223991060639698 +asin0116 asin 46.635472322049949 2.3835190718056678 -> 1.5197194940010779 4.5366989600972083 +asin0117 asin 3907.0687961127105 19.144021886390181 -> 1.5658965233083235 8.9637018715924217 +asin0118 asin 1.0889312322308273 509.01577883554768 -> 0.0021392803817829316 6.9256294494524706 +asin0119 asin 0.10851518277509224 1.5612510908217476 -> 0.058491014243902621 1.2297075725621327 + +-- values near infinity +asin0200 asin 1.5230241998821499e+308 5.5707228994084525e+307 -> 1.2201446370892068 710.37283486535966 +asin0201 asin 8.1334317698672204e+307 -9.2249425197872451e+307 -> 0.72259991284020042 -710.0962453049026 +asin0202 asin -9.9138506659241768e+307 6.701544526434995e+307 -> -0.97637511742194594 710.06887486671371 +asin0203 asin -1.4141298868173842e+308 -5.401505134514191e+307 -> -1.2059319055160587 -710.30396478954628 +asin0204 asin 0.0 9.1618092977897431e+307 -> 0.0 709.80181441050593 +asin0205 asin -0.0 6.8064342551939755e+307 -> -0.0 709.50463910853489 +asin0206 asin 0.0 -6.4997516454798215e+307 -> 0.0 -709.45853469751592 +asin0207 asin -0.0 -1.6767449053345242e+308 -> -0.0 -710.4062101803022 +asin0208 asin 5.4242749957378916e+307 0.0 -> 1.5707963267948966 709.27765497888902 +asin0209 asin 9.5342145121164749e+307 -0.0 -> 1.5707963267948966 -709.84165758595907 +asin0210 asin -7.0445698006201847e+307 0.0 -> -1.5707963267948966 709.53902780872136 +asin0211 asin -1.0016025569769706e+308 -0.0 -> -1.5707963267948966 -709.89095709697881 +asin0212 asin 1.6552203778877204e+308 0.48761543336249491 -> 1.5707963267948966 710.39328998153474 +asin0213 asin 1.2485712830384869e+308 -4.3489311161278899 -> 1.5707963267948966 -710.1113557467786 +asin0214 asin -1.5117842813353125e+308 5.123452666102434 -> -1.5707963267948966 710.30264641923031 +asin0215 asin -1.3167634313008016e+308 -0.52939679793528982 -> -1.5707963267948966 -710.16453260239768 +asin0216 asin 0.80843929176985907 1.0150851827767876e+308 -> 7.9642507396113875e-309 709.90432835561637 +asin0217 asin 8.2544809829680901 -1.7423548140539474e+308 -> 4.7375430746865733e-308 -710.44459336242164 +asin0218 asin -5.2499000118824295 4.6655578977512214e+307 -> -1.1252459249113292e-307 709.1269781491103 +asin0219 asin -5.9904782760833433 -4.7315689314781163e+307 -> -1.2660659419394637e-307 -709.14102757522312 + +-- special values +asin1000 asin -0.0 0.0 -> -0.0 0.0 +asin1001 asin 0.0 0.0 -> 0.0 0.0 +asin1002 asin -0.0 -0.0 -> -0.0 -0.0 +asin1003 asin 0.0 -0.0 -> 0.0 -0.0 +asin1004 asin -inf 0.0 -> -1.5707963267948966 inf +asin1005 asin -inf 2.2999999999999998 -> -1.5707963267948966 inf +asin1006 asin nan 0.0 -> nan nan +asin1007 asin nan 2.2999999999999998 -> nan nan +asin1008 asin -0.0 inf -> -0.0 inf +asin1009 asin -2.2999999999999998 inf -> -0.0 inf +asin1010 asin -inf inf -> -0.78539816339744828 inf +asin1011 asin nan inf -> nan inf +asin1012 asin -0.0 nan -> -0.0 nan +asin1013 asin -2.2999999999999998 nan -> nan nan +asin1014 asin -inf nan -> nan inf ignore-imag-sign +asin1015 asin nan nan -> nan nan +asin1016 asin inf 0.0 -> 1.5707963267948966 inf +asin1017 asin inf 2.2999999999999998 -> 1.5707963267948966 inf +asin1018 asin 0.0 inf -> 0.0 inf +asin1019 asin 2.2999999999999998 inf -> 0.0 inf +asin1020 asin inf inf -> 0.78539816339744828 inf +asin1021 asin 0.0 nan -> 0.0 nan +asin1022 asin 2.2999999999999998 nan -> nan nan +asin1023 asin inf nan -> nan inf ignore-imag-sign +asin1024 asin inf -0.0 -> 1.5707963267948966 -inf +asin1025 asin inf -2.2999999999999998 -> 1.5707963267948966 -inf +asin1026 asin nan -0.0 -> nan nan +asin1027 asin nan -2.2999999999999998 -> nan nan +asin1028 asin 0.0 -inf -> 0.0 -inf +asin1029 asin 2.2999999999999998 -inf -> 0.0 -inf +asin1030 asin inf -inf -> 0.78539816339744828 -inf +asin1031 asin nan -inf -> nan -inf +asin1032 asin -inf -0.0 -> -1.5707963267948966 -inf +asin1033 asin -inf -2.2999999999999998 -> -1.5707963267948966 -inf +asin1034 asin -0.0 -inf -> -0.0 -inf +asin1035 asin -2.2999999999999998 -inf -> -0.0 -inf +asin1036 asin -inf -inf -> -0.78539816339744828 -inf + + +------------------------------------ +-- asinh: Inverse hyperbolic sine -- +------------------------------------ + +-- zeros +asinh0000 asinh 0.0 0.0 -> 0.0 0.0 +asinh0001 asinh 0.0 -0.0 -> 0.0 -0.0 +asinh0002 asinh -0.0 0.0 -> -0.0 0.0 +asinh0003 asinh -0.0 -0.0 -> -0.0 -0.0 + +-- branch points: +/-i +asinh0010 asinh 0.0 1.0 -> 0.0 1.5707963267948966 +asinh0011 asinh 0.0 -1.0 -> 0.0 -1.5707963267948966 +asinh0012 asinh -0.0 1.0 -> -0.0 1.5707963267948966 +asinh0013 asinh -0.0 -1.0 -> -0.0 -1.5707963267948966 + +-- values along both sides of imaginary axis +asinh0020 asinh 0.0 -9.8813129168249309e-324 -> 0.0 -9.8813129168249309e-324 +asinh0021 asinh -0.0 -9.8813129168249309e-324 -> -0.0 -9.8813129168249309e-324 +asinh0022 asinh 0.0 -1e-305 -> 0.0 -1e-305 +asinh0023 asinh -0.0 -1e-305 -> -0.0 -1e-305 +asinh0024 asinh 0.0 -1e-150 -> 0.0 -1e-150 +asinh0025 asinh -0.0 -1e-150 -> -0.0 -1e-150 +asinh0026 asinh 0.0 -9.9999999999999998e-17 -> 0.0 -9.9999999999999998e-17 +asinh0027 asinh -0.0 -9.9999999999999998e-17 -> -0.0 -9.9999999999999998e-17 +asinh0028 asinh 0.0 -0.001 -> 0.0 -0.0010000001666667416 +asinh0029 asinh -0.0 -0.001 -> -0.0 -0.0010000001666667416 +asinh0030 asinh 0.0 -0.57899999999999996 -> 0.0 -0.61750165481717001 +asinh0031 asinh -0.0 -0.57899999999999996 -> -0.0 -0.61750165481717001 +asinh0032 asinh 0.0 -0.99999999999999989 -> 0.0 -1.5707963118937354 +asinh0033 asinh -0.0 -0.99999999999999989 -> -0.0 -1.5707963118937354 +asinh0034 asinh 0.0 -1.0000000000000002 -> 2.1073424255447014e-08 -1.5707963267948966 +asinh0035 asinh -0.0 -1.0000000000000002 -> -2.1073424255447014e-08 -1.5707963267948966 +asinh0036 asinh 0.0 -1.0009999999999999 -> 0.044717633608306849 -1.5707963267948966 +asinh0037 asinh -0.0 -1.0009999999999999 -> -0.044717633608306849 -1.5707963267948966 +asinh0038 asinh 0.0 -2.0 -> 1.3169578969248168 -1.5707963267948966 +asinh0039 asinh -0.0 -2.0 -> -1.3169578969248168 -1.5707963267948966 +asinh0040 asinh 0.0 -20.0 -> 3.6882538673612966 -1.5707963267948966 +asinh0041 asinh -0.0 -20.0 -> -3.6882538673612966 -1.5707963267948966 +asinh0042 asinh 0.0 -10000000000000000.0 -> 37.534508668464674 -1.5707963267948966 +asinh0043 asinh -0.0 -10000000000000000.0 -> -37.534508668464674 -1.5707963267948966 +asinh0044 asinh 0.0 -9.9999999999999998e+149 -> 346.08091112966679 -1.5707963267948966 +asinh0045 asinh -0.0 -9.9999999999999998e+149 -> -346.08091112966679 -1.5707963267948966 +asinh0046 asinh 0.0 -1.0000000000000001e+299 -> 689.16608998577965 -1.5707963267948966 +asinh0047 asinh -0.0 -1.0000000000000001e+299 -> -689.16608998577965 -1.5707963267948966 +asinh0048 asinh 0.0 9.8813129168249309e-324 -> 0.0 9.8813129168249309e-324 +asinh0049 asinh -0.0 9.8813129168249309e-324 -> -0.0 9.8813129168249309e-324 +asinh0050 asinh 0.0 1e-305 -> 0.0 1e-305 +asinh0051 asinh -0.0 1e-305 -> -0.0 1e-305 +asinh0052 asinh 0.0 1e-150 -> 0.0 1e-150 +asinh0053 asinh -0.0 1e-150 -> -0.0 1e-150 +asinh0054 asinh 0.0 9.9999999999999998e-17 -> 0.0 9.9999999999999998e-17 +asinh0055 asinh -0.0 9.9999999999999998e-17 -> -0.0 9.9999999999999998e-17 +asinh0056 asinh 0.0 0.001 -> 0.0 0.0010000001666667416 +asinh0057 asinh -0.0 0.001 -> -0.0 0.0010000001666667416 +asinh0058 asinh 0.0 0.57899999999999996 -> 0.0 0.61750165481717001 +asinh0059 asinh -0.0 0.57899999999999996 -> -0.0 0.61750165481717001 +asinh0060 asinh 0.0 0.99999999999999989 -> 0.0 1.5707963118937354 +asinh0061 asinh -0.0 0.99999999999999989 -> -0.0 1.5707963118937354 +asinh0062 asinh 0.0 1.0000000000000002 -> 2.1073424255447014e-08 1.5707963267948966 +asinh0063 asinh -0.0 1.0000000000000002 -> -2.1073424255447014e-08 1.5707963267948966 +asinh0064 asinh 0.0 1.0009999999999999 -> 0.044717633608306849 1.5707963267948966 +asinh0065 asinh -0.0 1.0009999999999999 -> -0.044717633608306849 1.5707963267948966 +asinh0066 asinh 0.0 2.0 -> 1.3169578969248168 1.5707963267948966 +asinh0067 asinh -0.0 2.0 -> -1.3169578969248168 1.5707963267948966 +asinh0068 asinh 0.0 20.0 -> 3.6882538673612966 1.5707963267948966 +asinh0069 asinh -0.0 20.0 -> -3.6882538673612966 1.5707963267948966 +asinh0070 asinh 0.0 10000000000000000.0 -> 37.534508668464674 1.5707963267948966 +asinh0071 asinh -0.0 10000000000000000.0 -> -37.534508668464674 1.5707963267948966 +asinh0072 asinh 0.0 9.9999999999999998e+149 -> 346.08091112966679 1.5707963267948966 +asinh0073 asinh -0.0 9.9999999999999998e+149 -> -346.08091112966679 1.5707963267948966 +asinh0074 asinh 0.0 1.0000000000000001e+299 -> 689.16608998577965 1.5707963267948966 +asinh0075 asinh -0.0 1.0000000000000001e+299 -> -689.16608998577965 1.5707963267948966 + +-- random inputs +asinh0100 asinh -0.5946402853710423 -0.044506548910000145 -> -0.56459775392653022 -0.038256221441536356 +asinh0101 asinh -0.19353958046180916 -0.017489624793193454 -> -0.19237926804196651 -0.017171741895336792 +asinh0102 asinh -0.033117585138955893 -8.5256414015933757 -> -2.8327758348650969 -1.5668848791092411 +asinh0103 asinh -1.5184043184035716 -0.73491245339073275 -> -1.2715891419764005 -0.39204624408542355 +asinh0104 asinh -0.60716120271208818 -0.28900743958436542 -> -0.59119299421187232 -0.24745931678118135 +asinh0105 asinh -0.0237177865112429 2.8832601052166313 -> -1.7205820772413236 1.5620261702963094 +asinh0106 asinh -2.3906812342743979 2.6349216848574013 -> -1.9609636249445124 0.8142142660574706 +asinh0107 asinh -0.0027605019787620517 183.85588476550555 -> -5.9072920005445066 1.5707813120847871 +asinh0108 asinh -0.99083661164404713 0.028006797051617648 -> -0.8750185251283995 0.019894099615994653 +asinh0109 asinh -3.0362951937986393 0.86377266758504867 -> -1.8636030714685221 0.26475058859950168 +asinh0110 asinh 0.34438464536152769 -0.71603790174885029 -> 0.43985415690734164 -0.71015037409294324 +asinh0111 asinh 4.4925124413876256 -60604595352.871613 -> 25.520783738612078 -1.5707963267207683 +asinh0112 asinh 2.3213991428170337 -7.5459667007307258 -> 2.7560464993451643 -1.270073210856117 +asinh0113 asinh 0.21291939741682028 -1.2720428814784408 -> 0.77275088137338266 -1.3182099250896895 +asinh0114 asinh 6.6447359379455957 -0.97196191666946996 -> 2.602830695139672 -0.14368247412319965 +asinh0115 asinh 7.1326256655083746 2.1516360452706857 -> 2.7051146374367212 0.29051701669727581 +asinh0116 asinh 0.18846550905063442 3.4705348585339832 -> 1.917697875799296 1.514155593347924 +asinh0117 asinh 0.19065075303281598 0.26216814548222012 -> 0.19603050785932474 0.26013422809614117 +asinh0118 asinh 2.0242004665739719 0.70510281647495787 -> 1.4970366212896002 0.30526007200481453 +asinh0119 asinh 37.336596461576057 717.29157391678234 -> 7.269981997945294 1.5187910219576033 + +-- values near infinity +asinh0200 asinh 1.0760517500874541e+308 1.1497786241240167e+308 -> 710.34346055651815 0.81850936961793475 +asinh0201 asinh 1.1784839328845529e+308 -1.6478429586716638e+308 -> 710.59536255783678 -0.94996311735607697 +asinh0202 asinh -4.8777682248909193e+307 1.4103736217538474e+308 -> -710.28970147376992 1.2378239519096443 +asinh0203 asinh -1.2832478903233108e+308 -1.5732392613155698e+308 -> -710.59750164290745 -0.88657181439322452 +asinh0204 asinh 0.0 6.8431383856345372e+307 -> 709.51001718444604 1.5707963267948966 +asinh0205 asinh -0.0 8.601822432238051e+307 -> -709.73874482126689 1.5707963267948966 +asinh0206 asinh 0.0 -5.5698396067303782e+307 -> 709.30413698733742 -1.5707963267948966 +asinh0207 asinh -0.0 -7.1507777734621804e+307 -> -709.55399186002705 -1.5707963267948966 +asinh0208 asinh 1.6025136110019349e+308 0.0 -> 710.3609292261076 0.0 +asinh0209 asinh 1.3927819858239114e+308 -0.0 -> 710.22065899832899 -0.0 +asinh0210 asinh -6.0442994056210995e+307 0.0 -> -709.38588631057621 0.0 +asinh0211 asinh -1.2775271979042634e+308 -0.0 -> -710.13428215553972 -0.0 +asinh0212 asinh 1.0687496260268489e+308 1.0255615699476961 -> 709.95584521407841 9.5959010882679093e-309 +asinh0213 asinh 1.0050967333370962e+308 -0.87668970117333433 -> 709.89443961168183 -8.7224410556242882e-309 +asinh0214 asinh -5.7161452814862392e+307 8.2377808413450122 -> -709.33006540611166 1.4411426644501116e-307 +asinh0215 asinh -8.2009040727653315e+307 -6.407409526654976 -> -709.69101513070109 -7.8130526461510088e-308 +asinh0216 asinh 6.4239368496483982 1.6365990821551427e+308 -> 710.38197618101287 1.5707963267948966 +asinh0217 asinh 5.4729111423315882 -1.1227237438144211e+308 -> 710.00511346983546 -1.5707963267948966 +asinh0218 asinh -8.3455818297412723 1.443172020182019e+308 -> -710.25619930551818 1.5707963267948966 +asinh0219 asinh -2.6049726230372441 -1.7952291144022702e+308 -> -710.47448847685644 -1.5707963267948966 + +-- values near 0 +asinh0220 asinh 1.2940113339664088e-314 6.9169190417774516e-323 -> 1.2940113339664088e-314 6.9169190417774516e-323 +asinh0221 asinh 2.3848478863874649e-315 -3.1907655025717717e-310 -> 2.3848478863874649e-315 -3.1907655025717717e-310 +asinh0222 asinh -3.0097643679641622e-316 4.6936236354918422e-322 -> -3.0097643679641622e-316 4.6936236354918422e-322 +asinh0223 asinh -1.787997087755751e-308 -8.5619622834902341e-310 -> -1.787997087755751e-308 -8.5619622834902341e-310 +asinh0224 asinh 0.0 1.2491433448427325e-314 -> 0.0 1.2491433448427325e-314 +asinh0225 asinh -0.0 2.5024072154538062e-308 -> -0.0 2.5024072154538062e-308 +asinh0226 asinh 0.0 -2.9643938750474793e-323 -> 0.0 -2.9643938750474793e-323 +asinh0227 asinh -0.0 -2.9396905927554169e-320 -> -0.0 -2.9396905927554169e-320 +asinh0228 asinh 5.64042930029359e-317 0.0 -> 5.64042930029359e-317 0.0 +asinh0229 asinh 3.3833911866596068e-318 -0.0 -> 3.3833911866596068e-318 -0.0 +asinh0230 asinh -4.9406564584124654e-324 0.0 -> -4.9406564584124654e-324 0.0 +asinh0231 asinh -2.2211379227994845e-308 -0.0 -> -2.2211379227994845e-308 -0.0 + +-- special values +asinh1000 asinh 0.0 0.0 -> 0.0 0.0 +asinh1001 asinh 0.0 -0.0 -> 0.0 -0.0 +asinh1002 asinh -0.0 0.0 -> -0.0 0.0 +asinh1003 asinh -0.0 -0.0 -> -0.0 -0.0 +asinh1004 asinh 0.0 inf -> inf 1.5707963267948966 +asinh1005 asinh 2.3 inf -> inf 1.5707963267948966 +asinh1006 asinh 0.0 nan -> nan nan +asinh1007 asinh 2.3 nan -> nan nan +asinh1008 asinh inf 0.0 -> inf 0.0 +asinh1009 asinh inf 2.3 -> inf 0.0 +asinh1010 asinh inf inf -> inf 0.78539816339744828 +asinh1011 asinh inf nan -> inf nan +asinh1012 asinh nan 0.0 -> nan 0.0 +asinh1013 asinh nan 2.3 -> nan nan +asinh1014 asinh nan inf -> inf nan ignore-real-sign +asinh1015 asinh nan nan -> nan nan +asinh1016 asinh 0.0 -inf -> inf -1.5707963267948966 +asinh1017 asinh 2.3 -inf -> inf -1.5707963267948966 +asinh1018 asinh inf -0.0 -> inf -0.0 +asinh1019 asinh inf -2.3 -> inf -0.0 +asinh1020 asinh inf -inf -> inf -0.78539816339744828 +asinh1021 asinh nan -0.0 -> nan -0.0 +asinh1022 asinh nan -2.3 -> nan nan +asinh1023 asinh nan -inf -> inf nan ignore-real-sign +asinh1024 asinh -0.0 -inf -> -inf -1.5707963267948966 +asinh1025 asinh -2.3 -inf -> -inf -1.5707963267948966 +asinh1026 asinh -0.0 nan -> nan nan +asinh1027 asinh -2.3 nan -> nan nan +asinh1028 asinh -inf -0.0 -> -inf -0.0 +asinh1029 asinh -inf -2.3 -> -inf -0.0 +asinh1030 asinh -inf -inf -> -inf -0.78539816339744828 +asinh1031 asinh -inf nan -> -inf nan +asinh1032 asinh -0.0 inf -> -inf 1.5707963267948966 +asinh1033 asinh -2.3 inf -> -inf 1.5707963267948966 +asinh1034 asinh -inf 0.0 -> -inf 0.0 +asinh1035 asinh -inf 2.3 -> -inf 0.0 +asinh1036 asinh -inf inf -> -inf 0.78539816339744828 + + +--------------------------- +-- atan: Inverse tangent -- +--------------------------- + +-- zeros +atan0000 atan 0.0 0.0 -> 0.0 0.0 +atan0001 atan 0.0 -0.0 -> 0.0 -0.0 +atan0002 atan -0.0 0.0 -> -0.0 0.0 +atan0003 atan -0.0 -0.0 -> -0.0 -0.0 + +-- values along both sides of imaginary axis +atan0010 atan 0.0 -9.8813129168249309e-324 -> 0.0 -9.8813129168249309e-324 +atan0011 atan -0.0 -9.8813129168249309e-324 -> -0.0 -9.8813129168249309e-324 +atan0012 atan 0.0 -1e-305 -> 0.0 -1e-305 +atan0013 atan -0.0 -1e-305 -> -0.0 -1e-305 +atan0014 atan 0.0 -1e-150 -> 0.0 -1e-150 +atan0015 atan -0.0 -1e-150 -> -0.0 -1e-150 +atan0016 atan 0.0 -9.9999999999999998e-17 -> 0.0 -9.9999999999999998e-17 +atan0017 atan -0.0 -9.9999999999999998e-17 -> -0.0 -9.9999999999999998e-17 +atan0018 atan 0.0 -0.001 -> 0.0 -0.0010000003333335333 +atan0019 atan -0.0 -0.001 -> -0.0 -0.0010000003333335333 +atan0020 atan 0.0 -0.57899999999999996 -> 0.0 -0.6609570902866303 +atan0021 atan -0.0 -0.57899999999999996 -> -0.0 -0.6609570902866303 +atan0022 atan 0.0 -0.99999999999999989 -> 0.0 -18.714973875118524 +atan0023 atan -0.0 -0.99999999999999989 -> -0.0 -18.714973875118524 +atan0024 atan 0.0 -1.0000000000000002 -> 1.5707963267948966 -18.36840028483855 +atan0025 atan -0.0 -1.0000000000000002 -> -1.5707963267948966 -18.36840028483855 +atan0026 atan 0.0 -1.0009999999999999 -> 1.5707963267948966 -3.8007011672919218 +atan0027 atan -0.0 -1.0009999999999999 -> -1.5707963267948966 -3.8007011672919218 +atan0028 atan 0.0 -2.0 -> 1.5707963267948966 -0.54930614433405489 +atan0029 atan -0.0 -2.0 -> -1.5707963267948966 -0.54930614433405489 +atan0030 atan 0.0 -20.0 -> 1.5707963267948966 -0.050041729278491265 +atan0031 atan -0.0 -20.0 -> -1.5707963267948966 -0.050041729278491265 +atan0032 atan 0.0 -10000000000000000.0 -> 1.5707963267948966 -9.9999999999999998e-17 +atan0033 atan -0.0 -10000000000000000.0 -> -1.5707963267948966 -9.9999999999999998e-17 +atan0034 atan 0.0 -9.9999999999999998e+149 -> 1.5707963267948966 -1e-150 +atan0035 atan -0.0 -9.9999999999999998e+149 -> -1.5707963267948966 -1e-150 +atan0036 atan 0.0 -1.0000000000000001e+299 -> 1.5707963267948966 -9.9999999999999999e-300 +atan0037 atan -0.0 -1.0000000000000001e+299 -> -1.5707963267948966 -9.9999999999999999e-300 +atan0038 atan 0.0 9.8813129168249309e-324 -> 0.0 9.8813129168249309e-324 +atan0039 atan -0.0 9.8813129168249309e-324 -> -0.0 9.8813129168249309e-324 +atan0040 atan 0.0 1e-305 -> 0.0 1e-305 +atan0041 atan -0.0 1e-305 -> -0.0 1e-305 +atan0042 atan 0.0 1e-150 -> 0.0 1e-150 +atan0043 atan -0.0 1e-150 -> -0.0 1e-150 +atan0044 atan 0.0 9.9999999999999998e-17 -> 0.0 9.9999999999999998e-17 +atan0045 atan -0.0 9.9999999999999998e-17 -> -0.0 9.9999999999999998e-17 +atan0046 atan 0.0 0.001 -> 0.0 0.0010000003333335333 +atan0047 atan -0.0 0.001 -> -0.0 0.0010000003333335333 +atan0048 atan 0.0 0.57899999999999996 -> 0.0 0.6609570902866303 +atan0049 atan -0.0 0.57899999999999996 -> -0.0 0.6609570902866303 +atan0050 atan 0.0 0.99999999999999989 -> 0.0 18.714973875118524 +atan0051 atan -0.0 0.99999999999999989 -> -0.0 18.714973875118524 +atan0052 atan 0.0 1.0000000000000002 -> 1.5707963267948966 18.36840028483855 +atan0053 atan -0.0 1.0000000000000002 -> -1.5707963267948966 18.36840028483855 +atan0054 atan 0.0 1.0009999999999999 -> 1.5707963267948966 3.8007011672919218 +atan0055 atan -0.0 1.0009999999999999 -> -1.5707963267948966 3.8007011672919218 +atan0056 atan 0.0 2.0 -> 1.5707963267948966 0.54930614433405489 +atan0057 atan -0.0 2.0 -> -1.5707963267948966 0.54930614433405489 +atan0058 atan 0.0 20.0 -> 1.5707963267948966 0.050041729278491265 +atan0059 atan -0.0 20.0 -> -1.5707963267948966 0.050041729278491265 +atan0060 atan 0.0 10000000000000000.0 -> 1.5707963267948966 9.9999999999999998e-17 +atan0061 atan -0.0 10000000000000000.0 -> -1.5707963267948966 9.9999999999999998e-17 +atan0062 atan 0.0 9.9999999999999998e+149 -> 1.5707963267948966 1e-150 +atan0063 atan -0.0 9.9999999999999998e+149 -> -1.5707963267948966 1e-150 +atan0064 atan 0.0 1.0000000000000001e+299 -> 1.5707963267948966 9.9999999999999999e-300 +atan0065 atan -0.0 1.0000000000000001e+299 -> -1.5707963267948966 9.9999999999999999e-300 + +-- random inputs +atan0100 atan -0.32538873661060214 -1.5530461550412578 -> -1.3682728427554227 -0.69451401598762041 +atan0101 atan -0.45863393495197929 -4799.1747094903594 -> -1.5707963068820623 -0.00020836916050636145 +atan0102 atan -8.3006999685976162 -2.6788890251790938 -> -1.4619862771810199 -0.034811669653327826 +atan0103 atan -1.8836307682985314 -1.1441976638861771 -> -1.1839984370871612 -0.20630956157312796 +atan0104 atan -0.00063230482407491669 -4.9312520961829485 -> -1.5707692093223147 -0.20563867743008304 +atan0105 atan -0.84278137150065946 179012.37493146997 -> -1.5707963267685969 5.5862059836425272e-06 +atan0106 atan -0.95487853984049287 14.311334539886177 -> -1.5661322859434561 0.069676024526232005 +atan0107 atan -1.3513252539663239 6.0500727021632198e-08 -> -0.93371676315220975 2.140800269742656e-08 +atan0108 atan -0.20566254458595795 0.11933771944159823 -> -0.20556463711174916 0.11493405387141732 +atan0109 atan -0.58563718795408559 0.64438965423212868 -> -0.68361089300233124 0.46759762751800249 +atan0110 atan 48.479267751948292 -78.386382460112543 -> 1.5650888770910523 -0.0092276811373297584 +atan0111 atan 1.0575373914056061 -0.75988012377296987 -> 0.94430886722043594 -0.31915698126703118 +atan0112 atan 4444810.4314677203 -0.56553404593942558 -> 1.5707961018134231 -2.8625446437701909e-14 +atan0113 atan 0.010101405082520009 -0.032932668550282478 -> 0.01011202676646334 -0.032941214776834996 +atan0114 atan 1.5353585300154911 -2.1947099346796519 -> 1.3400310739206394 -0.29996003607449045 +atan0115 atan 0.21869457055670882 9.9915684254007093 -> 1.5685846078876444 0.1003716881759439 +atan0116 atan 0.17783290150246836 0.064334689863650957 -> 0.17668728064286277 0.062435808728873846 +atan0117 atan 15.757474087615918 383.57262142534 -> 1.5706894060369621 0.0026026817278826603 +atan0118 atan 10.587017408533317 0.21720238081843438 -> 1.4766594681336236 0.0019199097383010061 +atan0119 atan 0.86026078678781204 0.1230148609359502 -> 0.7147259322534929 0.070551221954286605 + +-- values near infinity +atan0200 atan 7.8764397011195798e+307 8.1647921137746308e+307 -> 1.5707963267948966 6.3439446939604493e-309 +atan0201 atan 1.5873698696131487e+308 -1.0780367422960641e+308 -> 1.5707963267948966 -2.9279309368530781e-309 +atan0202 atan -1.5844551864825834e+308 1.0290657809098675e+308 -> -1.5707963267948966 2.8829614736961417e-309 +atan0203 atan -1.3168792562524032e+308 -9.088432341614825e+307 -> -1.5707963267948966 -3.5499373057390056e-309 +atan0204 atan 0.0 1.0360465742258337e+308 -> 1.5707963267948966 9.6520757355646018e-309 +atan0205 atan -0.0 1.0045063210373196e+308 -> -1.5707963267948966 9.955138947929503e-309 +atan0206 atan 0.0 -9.5155296715763696e+307 -> 1.5707963267948966 -1.050913648020118e-308 +atan0207 atan -0.0 -1.5565700490496501e+308 -> -1.5707963267948966 -6.4243816114189071e-309 +atan0208 atan 1.2956339389525244e+308 0.0 -> 1.5707963267948966 0.0 +atan0209 atan 1.4408126243772151e+308 -0.0 -> 1.5707963267948966 -0.0 +atan0210 atan -1.0631786461936417e+308 0.0 -> -1.5707963267948966 0.0 +atan0211 atan -1.0516056964171069e+308 -0.0 -> -1.5707963267948966 -0.0 +atan0212 atan 1.236162319603838e+308 4.6827953496242936 -> 1.5707963267948966 0.0 +atan0213 atan 7.000516472897218e+307 -5.8631608017844163 -> 1.5707963267948966 -0.0 +atan0214 atan -1.5053444003338508e+308 5.1199197268420313 -> -1.5707963267948966 0.0 +atan0215 atan -1.399172518147259e+308 -3.5687766472913673 -> -1.5707963267948966 -0.0 +atan0216 atan 8.1252833070803021 6.2782953917343822e+307 -> 1.5707963267948966 1.5927890256908564e-308 +atan0217 atan 2.8034285947515167 -1.3378049775753878e+308 -> 1.5707963267948966 -7.4749310756219562e-309 +atan0218 atan -1.4073509988974953 1.6776381785968355e+308 -> -1.5707963267948966 5.9607608646364569e-309 +atan0219 atan -2.7135551527592119 -1.281567445525738e+308 -> -1.5707963267948966 -7.8029447727565326e-309 + +-- imaginary part = +/-1, real part tiny +atan0300 atan -1e-150 -1.0 -> -0.78539816339744828 -173.04045556483339 +atan0301 atan 1e-155 1.0 -> 0.78539816339744828 178.79691829731851 +atan0302 atan 9.9999999999999999e-161 -1.0 -> 0.78539816339744828 -184.55338102980363 +atan0303 atan -1e-165 1.0 -> -0.78539816339744828 190.30984376228875 +atan0304 atan -9.9998886718268301e-321 -1.0 -> -0.78539816339744828 -368.76019403576692 + +-- special values +atan1000 atan -0.0 0.0 -> -0.0 0.0 +atan1001 atan nan 0.0 -> nan 0.0 +atan1002 atan -0.0 1.0 -> -0.0 inf divide-by-zero +atan1003 atan -inf 0.0 -> -1.5707963267948966 0.0 +atan1004 atan -inf 2.2999999999999998 -> -1.5707963267948966 0.0 +atan1005 atan nan 2.2999999999999998 -> nan nan +atan1006 atan -0.0 inf -> -1.5707963267948966 0.0 +atan1007 atan -2.2999999999999998 inf -> -1.5707963267948966 0.0 +atan1008 atan -inf inf -> -1.5707963267948966 0.0 +atan1009 atan nan inf -> nan 0.0 +atan1010 atan -0.0 nan -> nan nan +atan1011 atan -2.2999999999999998 nan -> nan nan +atan1012 atan -inf nan -> -1.5707963267948966 0.0 ignore-imag-sign +atan1013 atan nan nan -> nan nan +atan1014 atan 0.0 0.0 -> 0.0 0.0 +atan1015 atan 0.0 1.0 -> 0.0 inf divide-by-zero +atan1016 atan inf 0.0 -> 1.5707963267948966 0.0 +atan1017 atan inf 2.2999999999999998 -> 1.5707963267948966 0.0 +atan1018 atan 0.0 inf -> 1.5707963267948966 0.0 +atan1019 atan 2.2999999999999998 inf -> 1.5707963267948966 0.0 +atan1020 atan inf inf -> 1.5707963267948966 0.0 +atan1021 atan 0.0 nan -> nan nan +atan1022 atan 2.2999999999999998 nan -> nan nan +atan1023 atan inf nan -> 1.5707963267948966 0.0 ignore-imag-sign +atan1024 atan 0.0 -0.0 -> 0.0 -0.0 +atan1025 atan nan -0.0 -> nan -0.0 +atan1026 atan 0.0 -1.0 -> 0.0 -inf divide-by-zero +atan1027 atan inf -0.0 -> 1.5707963267948966 -0.0 +atan1028 atan inf -2.2999999999999998 -> 1.5707963267948966 -0.0 +atan1029 atan nan -2.2999999999999998 -> nan nan +atan1030 atan 0.0 -inf -> 1.5707963267948966 -0.0 +atan1031 atan 2.2999999999999998 -inf -> 1.5707963267948966 -0.0 +atan1032 atan inf -inf -> 1.5707963267948966 -0.0 +atan1033 atan nan -inf -> nan -0.0 +atan1034 atan -0.0 -0.0 -> -0.0 -0.0 +atan1035 atan -0.0 -1.0 -> -0.0 -inf divide-by-zero +atan1036 atan -inf -0.0 -> -1.5707963267948966 -0.0 +atan1037 atan -inf -2.2999999999999998 -> -1.5707963267948966 -0.0 +atan1038 atan -0.0 -inf -> -1.5707963267948966 -0.0 +atan1039 atan -2.2999999999999998 -inf -> -1.5707963267948966 -0.0 +atan1040 atan -inf -inf -> -1.5707963267948966 -0.0 + + +--------------------------------------- +-- atanh: Inverse hyperbolic tangent -- +--------------------------------------- + +-- zeros +atanh0000 atanh 0.0 0.0 -> 0.0 0.0 +atanh0001 atanh 0.0 -0.0 -> 0.0 -0.0 +atanh0002 atanh -0.0 0.0 -> -0.0 0.0 +atanh0003 atanh -0.0 -0.0 -> -0.0 -0.0 + +-- values along both sides of real axis +atanh0010 atanh -9.8813129168249309e-324 0.0 -> -9.8813129168249309e-324 0.0 +atanh0011 atanh -9.8813129168249309e-324 -0.0 -> -9.8813129168249309e-324 -0.0 +atanh0012 atanh -1e-305 0.0 -> -1e-305 0.0 +atanh0013 atanh -1e-305 -0.0 -> -1e-305 -0.0 +atanh0014 atanh -1e-150 0.0 -> -1e-150 0.0 +atanh0015 atanh -1e-150 -0.0 -> -1e-150 -0.0 +atanh0016 atanh -9.9999999999999998e-17 0.0 -> -9.9999999999999998e-17 0.0 +atanh0017 atanh -9.9999999999999998e-17 -0.0 -> -9.9999999999999998e-17 -0.0 +atanh0018 atanh -0.001 0.0 -> -0.0010000003333335333 0.0 +atanh0019 atanh -0.001 -0.0 -> -0.0010000003333335333 -0.0 +atanh0020 atanh -0.57899999999999996 0.0 -> -0.6609570902866303 0.0 +atanh0021 atanh -0.57899999999999996 -0.0 -> -0.6609570902866303 -0.0 +atanh0022 atanh -0.99999999999999989 0.0 -> -18.714973875118524 0.0 +atanh0023 atanh -0.99999999999999989 -0.0 -> -18.714973875118524 -0.0 +atanh0024 atanh -1.0000000000000002 0.0 -> -18.36840028483855 1.5707963267948966 +atanh0025 atanh -1.0000000000000002 -0.0 -> -18.36840028483855 -1.5707963267948966 +atanh0026 atanh -1.0009999999999999 0.0 -> -3.8007011672919218 1.5707963267948966 +atanh0027 atanh -1.0009999999999999 -0.0 -> -3.8007011672919218 -1.5707963267948966 +atanh0028 atanh -2.0 0.0 -> -0.54930614433405489 1.5707963267948966 +atanh0029 atanh -2.0 -0.0 -> -0.54930614433405489 -1.5707963267948966 +atanh0030 atanh -23.0 0.0 -> -0.043505688494814884 1.5707963267948966 +atanh0031 atanh -23.0 -0.0 -> -0.043505688494814884 -1.5707963267948966 +atanh0032 atanh -10000000000000000.0 0.0 -> -9.9999999999999998e-17 1.5707963267948966 +atanh0033 atanh -10000000000000000.0 -0.0 -> -9.9999999999999998e-17 -1.5707963267948966 +atanh0034 atanh -9.9999999999999998e+149 0.0 -> -1e-150 1.5707963267948966 +atanh0035 atanh -9.9999999999999998e+149 -0.0 -> -1e-150 -1.5707963267948966 +atanh0036 atanh -1.0000000000000001e+299 0.0 -> -9.9999999999999999e-300 1.5707963267948966 +atanh0037 atanh -1.0000000000000001e+299 -0.0 -> -9.9999999999999999e-300 -1.5707963267948966 +atanh0038 atanh 9.8813129168249309e-324 0.0 -> 9.8813129168249309e-324 0.0 +atanh0039 atanh 9.8813129168249309e-324 -0.0 -> 9.8813129168249309e-324 -0.0 +atanh0040 atanh 1e-305 0.0 -> 1e-305 0.0 +atanh0041 atanh 1e-305 -0.0 -> 1e-305 -0.0 +atanh0042 atanh 1e-150 0.0 -> 1e-150 0.0 +atanh0043 atanh 1e-150 -0.0 -> 1e-150 -0.0 +atanh0044 atanh 9.9999999999999998e-17 0.0 -> 9.9999999999999998e-17 0.0 +atanh0045 atanh 9.9999999999999998e-17 -0.0 -> 9.9999999999999998e-17 -0.0 +atanh0046 atanh 0.001 0.0 -> 0.0010000003333335333 0.0 +atanh0047 atanh 0.001 -0.0 -> 0.0010000003333335333 -0.0 +atanh0048 atanh 0.57899999999999996 0.0 -> 0.6609570902866303 0.0 +atanh0049 atanh 0.57899999999999996 -0.0 -> 0.6609570902866303 -0.0 +atanh0050 atanh 0.99999999999999989 0.0 -> 18.714973875118524 0.0 +atanh0051 atanh 0.99999999999999989 -0.0 -> 18.714973875118524 -0.0 +atanh0052 atanh 1.0000000000000002 0.0 -> 18.36840028483855 1.5707963267948966 +atanh0053 atanh 1.0000000000000002 -0.0 -> 18.36840028483855 -1.5707963267948966 +atanh0054 atanh 1.0009999999999999 0.0 -> 3.8007011672919218 1.5707963267948966 +atanh0055 atanh 1.0009999999999999 -0.0 -> 3.8007011672919218 -1.5707963267948966 +atanh0056 atanh 2.0 0.0 -> 0.54930614433405489 1.5707963267948966 +atanh0057 atanh 2.0 -0.0 -> 0.54930614433405489 -1.5707963267948966 +atanh0058 atanh 23.0 0.0 -> 0.043505688494814884 1.5707963267948966 +atanh0059 atanh 23.0 -0.0 -> 0.043505688494814884 -1.5707963267948966 +atanh0060 atanh 10000000000000000.0 0.0 -> 9.9999999999999998e-17 1.5707963267948966 +atanh0061 atanh 10000000000000000.0 -0.0 -> 9.9999999999999998e-17 -1.5707963267948966 +atanh0062 atanh 9.9999999999999998e+149 0.0 -> 1e-150 1.5707963267948966 +atanh0063 atanh 9.9999999999999998e+149 -0.0 -> 1e-150 -1.5707963267948966 +atanh0064 atanh 1.0000000000000001e+299 0.0 -> 9.9999999999999999e-300 1.5707963267948966 +atanh0065 atanh 1.0000000000000001e+299 -0.0 -> 9.9999999999999999e-300 -1.5707963267948966 + +-- random inputs +atanh0100 atanh -0.54460925980633501 -0.54038050126721027 -> -0.41984265808446974 -0.60354153938352828 +atanh0101 atanh -1.6934614269829051 -0.48807386108113621 -> -0.58592769102243281 -1.3537837470975898 +atanh0102 atanh -1.3467293985501207 -0.47868354895395876 -> -0.69961624370709985 -1.1994450156570076 +atanh0103 atanh -5.6142232418984888 -544551613.39307702 -> -1.8932657550925744e-17 -1.5707963249585235 +atanh0104 atanh -0.011841460381263651 -3.259978899823385 -> -0.0010183936547405188 -1.2731614020743838 +atanh0105 atanh -0.0073345736950029532 0.35821949670922248 -> -0.0065004869024682466 0.34399359971920895 +atanh0106 atanh -13.866782244320014 0.9541129545860273 -> -0.071896852055058899 1.5658322704631409 +atanh0107 atanh -708.59964982780775 21.984802159266675 -> -0.0014098779074189741 1.5707525842838959 +atanh0108 atanh -30.916832076030602 1.3691897138829843 -> -0.032292682045743676 1.5693652094847115 +atanh0109 atanh -0.57461806339861754 0.29534797443913063 -> -0.56467464472482765 0.39615612824172625 +atanh0110 atanh 0.40089246737415685 -1.632285984300659 -> 0.1063832707890608 -1.0402821335326482 +atanh0111 atanh 2119.6167688262176 -1.5383653437377242e+17 -> 8.9565008518382049e-32 -1.5707963267948966 +atanh0112 atanh 756.86017850941641 -6.6064087133223817 -> 0.0013211481136820046 -1.5707847948702234 +atanh0113 atanh 4.0490617718041602 -2.5784456791040652e-12 -> 0.25218425538553618 -1.5707963267947291 +atanh0114 atanh 10.589254957173523 -0.13956391149624509 -> 0.094700890282197664 -1.5695407140217623 +atanh0115 atanh 1.0171187553160499 0.70766113465354019 -> 0.55260251975367791 0.96619711116641682 +atanh0116 atanh 0.031645502527750849 0.067319983726544394 -> 0.031513018344086742 0.067285437670549036 +atanh0117 atanh 0.13670177624994517 0.43240089361857947 -> 0.11538933151017253 0.41392008145336212 +atanh0118 atanh 0.64173899243596688 2.9008577686695256 -> 0.065680142424134405 1.2518535724053921 +atanh0119 atanh 0.19313813528025942 38.799619150741869 -> 0.00012820765917366644 1.5450292202823612 + +-- values near infinity +atanh0200 atanh 5.3242646831347954e+307 1.3740396080084153e+308 -> 2.4519253616695576e-309 1.5707963267948966 +atanh0201 atanh 1.158701641241358e+308 -6.5579268873375853e+307 -> 6.5365375267795098e-309 -1.5707963267948966 +atanh0202 atanh -1.3435325735762247e+308 9.8947369259601547e+307 -> -4.8256680906589956e-309 1.5707963267948966 +atanh0203 atanh -1.4359857522598942e+308 -9.4701204702391004e+307 -> -4.8531282262872645e-309 -1.5707963267948966 +atanh0204 atanh 0.0 5.6614181068098497e+307 -> 0.0 1.5707963267948966 +atanh0205 atanh -0.0 6.9813212721450139e+307 -> -0.0 1.5707963267948966 +atanh0206 atanh 0.0 -7.4970613060311453e+307 -> 0.0 -1.5707963267948966 +atanh0207 atanh -0.0 -1.5280601880314068e+308 -> -0.0 -1.5707963267948966 +atanh0208 atanh 8.2219472336000745e+307 0.0 -> 1.2162568933954813e-308 1.5707963267948966 +atanh0209 atanh 1.4811519617280899e+308 -0.0 -> 6.7515017083951325e-309 -1.5707963267948966 +atanh0210 atanh -1.2282016263598785e+308 0.0 -> -8.1419856360537615e-309 1.5707963267948966 +atanh0211 atanh -1.0616427760154426e+308 -0.0 -> -9.4193642399489563e-309 -1.5707963267948966 +atanh0212 atanh 1.2971536510180682e+308 5.2847948452333293 -> 7.7091869510998328e-309 1.5707963267948966 +atanh0213 atanh 1.1849860977411851e+308 -7.9781906447459949 -> 8.4389175696339014e-309 -1.5707963267948966 +atanh0214 atanh -1.4029969422586635e+308 0.93891986543663375 -> -7.127599283218073e-309 1.5707963267948966 +atanh0215 atanh -4.7508098912248211e+307 -8.2702421247039908 -> -2.1049042645278043e-308 -1.5707963267948966 +atanh0216 atanh 8.2680742115769998 8.1153898410918065e+307 -> 0.0 1.5707963267948966 +atanh0217 atanh 1.2575325146218885 -1.4746679147661649e+308 -> 0.0 -1.5707963267948966 +atanh0218 atanh -2.4618803682310899 1.3781522717005568e+308 -> -0.0 1.5707963267948966 +atanh0219 atanh -4.0952386694788112 -1.231083376353703e+308 -> -0.0 -1.5707963267948966 + +-- values near 0 +atanh0220 atanh 3.8017563659811628e-314 2.6635484239074319e-312 -> 3.8017563659811628e-314 2.6635484239074319e-312 +atanh0221 atanh 1.7391110733611878e-321 -4.3547800672541419e-313 -> 1.7391110733611878e-321 -4.3547800672541419e-313 +atanh0222 atanh -5.9656816081325078e-317 9.9692253555416263e-313 -> -5.9656816081325078e-317 9.9692253555416263e-313 +atanh0223 atanh -6.5606671178400239e-313 -2.1680936406357335e-309 -> -6.5606671178400239e-313 -2.1680936406357335e-309 +atanh0224 atanh 0.0 2.5230944401820779e-319 -> 0.0 2.5230944401820779e-319 +atanh0225 atanh -0.0 5.6066569490064658e-320 -> -0.0 5.6066569490064658e-320 +atanh0226 atanh 0.0 -2.4222487249468377e-317 -> 0.0 -2.4222487249468377e-317 +atanh0227 atanh -0.0 -3.0861101089206037e-316 -> -0.0 -3.0861101089206037e-316 +atanh0228 atanh 3.1219222884393986e-310 0.0 -> 3.1219222884393986e-310 0.0 +atanh0229 atanh 9.8926337564976196e-309 -0.0 -> 9.8926337564976196e-309 -0.0 +atanh0230 atanh -1.5462535092918154e-312 0.0 -> -1.5462535092918154e-312 0.0 +atanh0231 atanh -9.8813129168249309e-324 -0.0 -> -9.8813129168249309e-324 -0.0 + +-- real part = +/-1, imaginary part tiny +atanh0300 atanh 1.0 1e-153 -> 176.49433320432448 0.78539816339744828 +atanh0301 atanh 1.0 9.9999999999999997e-155 -> 177.64562575082149 0.78539816339744828 +atanh0302 atanh -1.0 1e-161 -> -185.70467357630065 0.78539816339744828 +atanh0303 atanh 1.0 -1e-165 -> 190.30984376228875 -0.78539816339744828 +atanh0304 atanh -1.0 -9.8813129168249309e-324 -> -372.22003596069061 -0.78539816339744828 + +-- special values +atanh1000 atanh 0.0 0.0 -> 0.0 0.0 +atanh1001 atanh 0.0 nan -> 0.0 nan +atanh1002 atanh 1.0 0.0 -> inf 0.0 divide-by-zero +atanh1003 atanh 0.0 inf -> 0.0 1.5707963267948966 +atanh1004 atanh 2.3 inf -> 0.0 1.5707963267948966 +atanh1005 atanh 2.3 nan -> nan nan +atanh1006 atanh inf 0.0 -> 0.0 1.5707963267948966 +atanh1007 atanh inf 2.3 -> 0.0 1.5707963267948966 +atanh1008 atanh inf inf -> 0.0 1.5707963267948966 +atanh1009 atanh inf nan -> 0.0 nan +atanh1010 atanh nan 0.0 -> nan nan +atanh1011 atanh nan 2.3 -> nan nan +atanh1012 atanh nan inf -> 0.0 1.5707963267948966 ignore-real-sign +atanh1013 atanh nan nan -> nan nan +atanh1014 atanh 0.0 -0.0 -> 0.0 -0.0 +atanh1015 atanh 1.0 -0.0 -> inf -0.0 divide-by-zero +atanh1016 atanh 0.0 -inf -> 0.0 -1.5707963267948966 +atanh1017 atanh 2.3 -inf -> 0.0 -1.5707963267948966 +atanh1018 atanh inf -0.0 -> 0.0 -1.5707963267948966 +atanh1019 atanh inf -2.3 -> 0.0 -1.5707963267948966 +atanh1020 atanh inf -inf -> 0.0 -1.5707963267948966 +atanh1021 atanh nan -0.0 -> nan nan +atanh1022 atanh nan -2.3 -> nan nan +atanh1023 atanh nan -inf -> 0.0 -1.5707963267948966 ignore-real-sign +atanh1024 atanh -0.0 -0.0 -> -0.0 -0.0 +atanh1025 atanh -0.0 nan -> -0.0 nan +atanh1026 atanh -1.0 -0.0 -> -inf -0.0 divide-by-zero +atanh1027 atanh -0.0 -inf -> -0.0 -1.5707963267948966 +atanh1028 atanh -2.3 -inf -> -0.0 -1.5707963267948966 +atanh1029 atanh -2.3 nan -> nan nan +atanh1030 atanh -inf -0.0 -> -0.0 -1.5707963267948966 +atanh1031 atanh -inf -2.3 -> -0.0 -1.5707963267948966 +atanh1032 atanh -inf -inf -> -0.0 -1.5707963267948966 +atanh1033 atanh -inf nan -> -0.0 nan +atanh1034 atanh -0.0 0.0 -> -0.0 0.0 +atanh1035 atanh -1.0 0.0 -> -inf 0.0 divide-by-zero +atanh1036 atanh -0.0 inf -> -0.0 1.5707963267948966 +atanh1037 atanh -2.3 inf -> -0.0 1.5707963267948966 +atanh1038 atanh -inf 0.0 -> -0.0 1.5707963267948966 +atanh1039 atanh -inf 2.3 -> -0.0 1.5707963267948966 +atanh1040 atanh -inf inf -> -0.0 1.5707963267948966 + + +---------------------------- +-- log: Natural logarithm -- +---------------------------- + +log0000 log 1.0 0.0 -> 0.0 0.0 +log0001 log 1.0 -0.0 -> 0.0 -0.0 +log0002 log -1.0 0.0 -> 0.0 3.1415926535897931 +log0003 log -1.0 -0.0 -> 0.0 -3.1415926535897931 +-- values along both sides of real axis +log0010 log -9.8813129168249309e-324 0.0 -> -743.74692474082133 3.1415926535897931 +log0011 log -9.8813129168249309e-324 -0.0 -> -743.74692474082133 -3.1415926535897931 +log0012 log -1e-305 0.0 -> -702.28845336318398 3.1415926535897931 +log0013 log -1e-305 -0.0 -> -702.28845336318398 -3.1415926535897931 +log0014 log -1e-150 0.0 -> -345.38776394910684 3.1415926535897931 +log0015 log -1e-150 -0.0 -> -345.38776394910684 -3.1415926535897931 +log0016 log -9.9999999999999998e-17 0.0 -> -36.841361487904734 3.1415926535897931 +log0017 log -9.9999999999999998e-17 -0.0 -> -36.841361487904734 -3.1415926535897931 +log0018 log -0.001 0.0 -> -6.9077552789821368 3.1415926535897931 +log0019 log -0.001 -0.0 -> -6.9077552789821368 -3.1415926535897931 +log0020 log -0.57899999999999996 0.0 -> -0.54645280140914188 3.1415926535897931 +log0021 log -0.57899999999999996 -0.0 -> -0.54645280140914188 -3.1415926535897931 +log0022 log -0.99999999999999989 0.0 -> -1.1102230246251565e-16 3.1415926535897931 +log0023 log -0.99999999999999989 -0.0 -> -1.1102230246251565e-16 -3.1415926535897931 +log0024 log -1.0000000000000002 0.0 -> 2.2204460492503128e-16 3.1415926535897931 +log0025 log -1.0000000000000002 -0.0 -> 2.2204460492503128e-16 -3.1415926535897931 +log0026 log -1.0009999999999999 0.0 -> 0.00099950033308342321 3.1415926535897931 +log0027 log -1.0009999999999999 -0.0 -> 0.00099950033308342321 -3.1415926535897931 +log0028 log -2.0 0.0 -> 0.69314718055994529 3.1415926535897931 +log0029 log -2.0 -0.0 -> 0.69314718055994529 -3.1415926535897931 +log0030 log -23.0 0.0 -> 3.1354942159291497 3.1415926535897931 +log0031 log -23.0 -0.0 -> 3.1354942159291497 -3.1415926535897931 +log0032 log -10000000000000000.0 0.0 -> 36.841361487904734 3.1415926535897931 +log0033 log -10000000000000000.0 -0.0 -> 36.841361487904734 -3.1415926535897931 +log0034 log -9.9999999999999998e+149 0.0 -> 345.38776394910684 3.1415926535897931 +log0035 log -9.9999999999999998e+149 -0.0 -> 345.38776394910684 -3.1415926535897931 +log0036 log -1.0000000000000001e+299 0.0 -> 688.47294280521965 3.1415926535897931 +log0037 log -1.0000000000000001e+299 -0.0 -> 688.47294280521965 -3.1415926535897931 +log0038 log 9.8813129168249309e-324 0.0 -> -743.74692474082133 0.0 +log0039 log 9.8813129168249309e-324 -0.0 -> -743.74692474082133 -0.0 +log0040 log 1e-305 0.0 -> -702.28845336318398 0.0 +log0041 log 1e-305 -0.0 -> -702.28845336318398 -0.0 +log0042 log 1e-150 0.0 -> -345.38776394910684 0.0 +log0043 log 1e-150 -0.0 -> -345.38776394910684 -0.0 +log0044 log 9.9999999999999998e-17 0.0 -> -36.841361487904734 0.0 +log0045 log 9.9999999999999998e-17 -0.0 -> -36.841361487904734 -0.0 +log0046 log 0.001 0.0 -> -6.9077552789821368 0.0 +log0047 log 0.001 -0.0 -> -6.9077552789821368 -0.0 +log0048 log 0.57899999999999996 0.0 -> -0.54645280140914188 0.0 +log0049 log 0.57899999999999996 -0.0 -> -0.54645280140914188 -0.0 +log0050 log 0.99999999999999989 0.0 -> -1.1102230246251565e-16 0.0 +log0051 log 0.99999999999999989 -0.0 -> -1.1102230246251565e-16 -0.0 +log0052 log 1.0000000000000002 0.0 -> 2.2204460492503128e-16 0.0 +log0053 log 1.0000000000000002 -0.0 -> 2.2204460492503128e-16 -0.0 +log0054 log 1.0009999999999999 0.0 -> 0.00099950033308342321 0.0 +log0055 log 1.0009999999999999 -0.0 -> 0.00099950033308342321 -0.0 +log0056 log 2.0 0.0 -> 0.69314718055994529 0.0 +log0057 log 2.0 -0.0 -> 0.69314718055994529 -0.0 +log0058 log 23.0 0.0 -> 3.1354942159291497 0.0 +log0059 log 23.0 -0.0 -> 3.1354942159291497 -0.0 +log0060 log 10000000000000000.0 0.0 -> 36.841361487904734 0.0 +log0061 log 10000000000000000.0 -0.0 -> 36.841361487904734 -0.0 +log0062 log 9.9999999999999998e+149 0.0 -> 345.38776394910684 0.0 +log0063 log 9.9999999999999998e+149 -0.0 -> 345.38776394910684 -0.0 +log0064 log 1.0000000000000001e+299 0.0 -> 688.47294280521965 0.0 +log0065 log 1.0000000000000001e+299 -0.0 -> 688.47294280521965 -0.0 + +-- random inputs +log0066 log -1.9830454945186191e-16 -2.0334448025673346 -> 0.70973130194329803 -1.5707963267948968 +log0067 log -0.96745853024741857 -0.84995816228299692 -> 0.25292811398722387 -2.4207570438536905 +log0068 log -0.1603644313948418 -0.2929942111041835 -> -1.0965857872427374 -2.0715870859971419 +log0069 log -0.15917913168438699 -0.25238799251132177 -> -1.2093477313249901 -2.1334784232033863 +log0070 log -0.68907818535078802 -3.0693105853476346 -> 1.1460398629184565 -1.7916403813913211 +log0071 log -17.268133447565589 6.8165120014604756 -> 2.9212694465974836 2.7656245081603164 +log0072 log -1.7153894479690328 26.434055372802636 -> 3.2767542953718003 1.6355986276341734 +log0073 log -8.0456794648936578e-06 0.19722758057570208 -> -1.6233969848296075 1.5708371206810101 +log0074 log -2.4306442691323173 0.6846919750700996 -> 0.92633592001969589 2.8670160576718331 +log0075 log -3.5488049250888194 0.45324040643185254 -> 1.2747008374256426 3.0145640007885111 +log0076 log 0.18418516851510189 -0.26062518836212617 -> -1.1421287121940344 -0.95558440841183434 +log0077 log 2.7124837795638399 -13.148769067133387 -> 2.5971659975706802 -1.3673583045209439 +log0078 log 3.6521275476169149e-13 -3.7820543023170673e-05 -> -10.182658136741569 -1.5707963171384316 +log0079 log 5.0877545813862239 -1.2834978326786852 -> 1.6576856213076328 -0.24711583497738485 +log0080 log 0.26477986808461512 -0.67659001194187429 -> -0.31944085207999973 -1.197773671987121 +log0081 log 0.0014754261398071962 5.3514691608205442 -> 1.6773711707153829 1.5705206219261802 +log0082 log 0.29667334462157885 0.00020056045042584795 -> -1.2151233667079588 0.00067603114168689204 +log0083 log 0.82104233671099425 3.9005387130133102 -> 1.3827918965299593 1.3633304701848363 +log0084 log 0.27268135358180667 124.42088110945804 -> 4.8236724223559229 1.5686047258789015 +log0085 log 0.0026286959168267485 0.47795808180573013 -> -0.73821712137809126 1.5652965360960087 + +-- values near infinity +log0100 log 1.0512025744003172e+308 7.2621669750664611e+307 -> 709.44123967814494 0.60455434048332968 +log0101 log 5.5344249034372126e+307 -1.2155859158431275e+308 -> 709.48562300345679 -1.143553056717973 +log0102 log -1.3155575403469408e+308 1.1610793541663864e+308 -> 709.75847809546428 2.41848796504974 +log0103 log -1.632366720973235e+308 -1.54299446211448e+308 -> 710.00545236515586 -2.3843326028455087 +log0104 log 0.0 5.9449276692327712e+307 -> 708.67616191258526 1.5707963267948966 +log0105 log -0.0 1.1201850459025692e+308 -> 709.30970253338171 1.5707963267948966 +log0106 log 0.0 -1.6214225933466528e+308 -> 709.6795125501086 -1.5707963267948966 +log0107 log -0.0 -1.7453269791591058e+308 -> 709.75315056087379 -1.5707963267948966 +log0108 log 1.440860577601428e+308 0.0 -> 709.56144920058262 0.0 +log0109 log 1.391515176148282e+308 -0.0 -> 709.52660185041327 -0.0 +log0110 log -1.201354401295296e+308 0.0 -> 709.37965823023956 3.1415926535897931 +log0111 log -1.6704337825976804e+308 -0.0 -> 709.70929198492399 -3.1415926535897931 +log0112 log 7.2276974655190223e+307 7.94879711369164 -> 708.87154406512104 1.0997689307850458e-307 +log0113 log 1.1207859593716076e+308 -6.1956200868221147 -> 709.31023883080104 -5.5279244310803286e-308 +log0114 log -4.6678933874471045e+307 9.947107893220382 -> 708.43433142431388 3.1415926535897931 +log0115 log -1.5108012453950142e+308 -5.3117197179375619 -> 709.60884877835008 -3.1415926535897931 +log0116 log 7.4903750871504435 1.5320703776626352e+308 -> 709.62282865085137 1.5707963267948966 +log0117 log 5.9760325525654778 -8.0149473997349123e+307 -> 708.97493177248396 -1.5707963267948966 +log0118 log -7.880194206386629 1.7861845814767441e+308 -> 709.77629046837137 1.5707963267948966 +log0119 log -9.886438993852865 -6.19235781080747e+307 -> 708.71693946977302 -1.5707963267948966 + +-- values near 0 +log0120 log 2.2996867579227779e-308 6.7861840770939125e-312 -> -708.36343567717392 0.00029509166223339815 +log0121 log 6.9169190417774516e-323 -9.0414013188948118e-322 -> -739.22766796468386 -1.4944423210001669 +log0122 log -1.5378064962914011e-316 1.8243628389354635e-310 -> -713.20014803142965 1.5707971697228842 +log0123 log -2.3319898483706837e-321 -2.2358763941866371e-313 -> -719.9045008332522 -1.570796337224766 +log0124 log 0.0 3.872770101081121e-315 -> -723.96033425374401 1.5707963267948966 +log0125 log -0.0 9.6342800939043076e-322 -> -739.16707236281752 1.5707963267948966 +log0126 log 0.0 -2.266099393427834e-308 -> -708.37814861757965 -1.5707963267948966 +log0127 log -0.0 -2.1184695673766626e-315 -> -724.56361036731812 -1.5707963267948966 +log0128 log 1.1363509854348671e-322 0.0 -> -741.30457770545206 0.0 +log0129 log 3.5572726500569751e-322 -0.0 -> -740.16340580236522 -0.0 +log0130 log -2.3696071074040593e-310 0.0 -> -712.93865466421641 3.1415926535897931 +log0131 log -2.813283897266934e-317 -0.0 -> -728.88512203138862 -3.1415926535897931 + +-- values near the unit circle +log0200 log -0.59999999999999998 0.80000000000000004 -> 2.2204460492503132e-17 2.2142974355881808 +log0201 log 0.79999999999999993 0.60000000000000009 -> 6.1629758220391547e-33 0.64350110879328448 + +-- special values +log1000 log -0.0 0.0 -> -inf 3.1415926535897931 divide-by-zero +log1001 log 0.0 0.0 -> -inf 0.0 divide-by-zero +log1002 log 0.0 inf -> inf 1.5707963267948966 +log1003 log 2.3 inf -> inf 1.5707963267948966 +log1004 log -0.0 inf -> inf 1.5707963267948966 +log1005 log -2.3 inf -> inf 1.5707963267948966 +log1006 log 0.0 nan -> nan nan +log1007 log 2.3 nan -> nan nan +log1008 log -0.0 nan -> nan nan +log1009 log -2.3 nan -> nan nan +log1010 log -inf 0.0 -> inf 3.1415926535897931 +log1011 log -inf 2.3 -> inf 3.1415926535897931 +log1012 log inf 0.0 -> inf 0.0 +log1013 log inf 2.3 -> inf 0.0 +log1014 log -inf inf -> inf 2.3561944901923448 +log1015 log inf inf -> inf 0.78539816339744828 +log1016 log inf nan -> inf nan +log1017 log -inf nan -> inf nan +log1018 log nan 0.0 -> nan nan +log1019 log nan 2.3 -> nan nan +log1020 log nan inf -> inf nan +log1021 log nan nan -> nan nan +log1022 log -0.0 -0.0 -> -inf -3.1415926535897931 divide-by-zero +log1023 log 0.0 -0.0 -> -inf -0.0 divide-by-zero +log1024 log 0.0 -inf -> inf -1.5707963267948966 +log1025 log 2.3 -inf -> inf -1.5707963267948966 +log1026 log -0.0 -inf -> inf -1.5707963267948966 +log1027 log -2.3 -inf -> inf -1.5707963267948966 +log1028 log -inf -0.0 -> inf -3.1415926535897931 +log1029 log -inf -2.3 -> inf -3.1415926535897931 +log1030 log inf -0.0 -> inf -0.0 +log1031 log inf -2.3 -> inf -0.0 +log1032 log -inf -inf -> inf -2.3561944901923448 +log1033 log inf -inf -> inf -0.78539816339744828 +log1034 log nan -0.0 -> nan nan +log1035 log nan -2.3 -> nan nan +log1036 log nan -inf -> inf nan + + +------------------------------ +-- log10: Logarithm base 10 -- +------------------------------ + +logt0000 log10 1.0 0.0 -> 0.0 0.0 +logt0001 log10 1.0 -0.0 -> 0.0 -0.0 +logt0002 log10 -1.0 0.0 -> 0.0 1.3643763538418414 +logt0003 log10 -1.0 -0.0 -> 0.0 -1.3643763538418414 +-- values along both sides of real axis +logt0010 log10 -9.8813129168249309e-324 0.0 -> -323.0051853474518 1.3643763538418414 +logt0011 log10 -9.8813129168249309e-324 -0.0 -> -323.0051853474518 -1.3643763538418414 +logt0012 log10 -1e-305 0.0 -> -305.0 1.3643763538418414 +logt0013 log10 -1e-305 -0.0 -> -305.0 -1.3643763538418414 +logt0014 log10 -1e-150 0.0 -> -150.0 1.3643763538418414 +logt0015 log10 -1e-150 -0.0 -> -150.0 -1.3643763538418414 +logt0016 log10 -9.9999999999999998e-17 0.0 -> -16.0 1.3643763538418414 +logt0017 log10 -9.9999999999999998e-17 -0.0 -> -16.0 -1.3643763538418414 +logt0018 log10 -0.001 0.0 -> -3.0 1.3643763538418414 +logt0019 log10 -0.001 -0.0 -> -3.0 -1.3643763538418414 +logt0020 log10 -0.57899999999999996 0.0 -> -0.23732143627256383 1.3643763538418414 +logt0021 log10 -0.57899999999999996 -0.0 -> -0.23732143627256383 -1.3643763538418414 +logt0022 log10 -0.99999999999999989 0.0 -> -4.821637332766436e-17 1.3643763538418414 +logt0023 log10 -0.99999999999999989 -0.0 -> -4.821637332766436e-17 -1.3643763538418414 +logt0024 log10 -1.0000000000000002 0.0 -> 9.6432746655328696e-17 1.3643763538418414 +logt0025 log10 -1.0000000000000002 -0.0 -> 9.6432746655328696e-17 -1.3643763538418414 +logt0026 log10 -1.0009999999999999 0.0 -> 0.0004340774793185929 1.3643763538418414 +logt0027 log10 -1.0009999999999999 -0.0 -> 0.0004340774793185929 -1.3643763538418414 +logt0028 log10 -2.0 0.0 -> 0.3010299956639812 1.3643763538418414 +logt0029 log10 -2.0 -0.0 -> 0.3010299956639812 -1.3643763538418414 +logt0030 log10 -23.0 0.0 -> 1.3617278360175928 1.3643763538418414 +logt0031 log10 -23.0 -0.0 -> 1.3617278360175928 -1.3643763538418414 +logt0032 log10 -10000000000000000.0 0.0 -> 16.0 1.3643763538418414 +logt0033 log10 -10000000000000000.0 -0.0 -> 16.0 -1.3643763538418414 +logt0034 log10 -9.9999999999999998e+149 0.0 -> 150.0 1.3643763538418414 +logt0035 log10 -9.9999999999999998e+149 -0.0 -> 150.0 -1.3643763538418414 +logt0036 log10 -1.0000000000000001e+299 0.0 -> 299.0 1.3643763538418414 +logt0037 log10 -1.0000000000000001e+299 -0.0 -> 299.0 -1.3643763538418414 +logt0038 log10 9.8813129168249309e-324 0.0 -> -323.0051853474518 0.0 +logt0039 log10 9.8813129168249309e-324 -0.0 -> -323.0051853474518 -0.0 +logt0040 log10 1e-305 0.0 -> -305.0 0.0 +logt0041 log10 1e-305 -0.0 -> -305.0 -0.0 +logt0042 log10 1e-150 0.0 -> -150.0 0.0 +logt0043 log10 1e-150 -0.0 -> -150.0 -0.0 +logt0044 log10 9.9999999999999998e-17 0.0 -> -16.0 0.0 +logt0045 log10 9.9999999999999998e-17 -0.0 -> -16.0 -0.0 +logt0046 log10 0.001 0.0 -> -3.0 0.0 +logt0047 log10 0.001 -0.0 -> -3.0 -0.0 +logt0048 log10 0.57899999999999996 0.0 -> -0.23732143627256383 0.0 +logt0049 log10 0.57899999999999996 -0.0 -> -0.23732143627256383 -0.0 +logt0050 log10 0.99999999999999989 0.0 -> -4.821637332766436e-17 0.0 +logt0051 log10 0.99999999999999989 -0.0 -> -4.821637332766436e-17 -0.0 +logt0052 log10 1.0000000000000002 0.0 -> 9.6432746655328696e-17 0.0 +logt0053 log10 1.0000000000000002 -0.0 -> 9.6432746655328696e-17 -0.0 +logt0054 log10 1.0009999999999999 0.0 -> 0.0004340774793185929 0.0 +logt0055 log10 1.0009999999999999 -0.0 -> 0.0004340774793185929 -0.0 +logt0056 log10 2.0 0.0 -> 0.3010299956639812 0.0 +logt0057 log10 2.0 -0.0 -> 0.3010299956639812 -0.0 +logt0058 log10 23.0 0.0 -> 1.3617278360175928 0.0 +logt0059 log10 23.0 -0.0 -> 1.3617278360175928 -0.0 +logt0060 log10 10000000000000000.0 0.0 -> 16.0 0.0 +logt0061 log10 10000000000000000.0 -0.0 -> 16.0 -0.0 +logt0062 log10 9.9999999999999998e+149 0.0 -> 150.0 0.0 +logt0063 log10 9.9999999999999998e+149 -0.0 -> 150.0 -0.0 +logt0064 log10 1.0000000000000001e+299 0.0 -> 299.0 0.0 +logt0065 log10 1.0000000000000001e+299 -0.0 -> 299.0 -0.0 + +-- random inputs +logt0066 log10 -1.9830454945186191e-16 -2.0334448025673346 -> 0.30823238806798503 -0.68218817692092071 +logt0067 log10 -0.96745853024741857 -0.84995816228299692 -> 0.10984528422284802 -1.051321426174086 +logt0068 log10 -0.1603644313948418 -0.2929942111041835 -> -0.47624115633305419 -0.89967884023059597 +logt0069 log10 -0.15917913168438699 -0.25238799251132177 -> -0.52521304641665956 -0.92655790645688119 +logt0070 log10 -0.68907818535078802 -3.0693105853476346 -> 0.4977187885066448 -0.77809953119328823 +logt0071 log10 -17.268133447565589 6.8165120014604756 -> 1.2686912008098534 1.2010954629104202 +logt0072 log10 -1.7153894479690328 26.434055372802636 -> 1.423076309032751 0.71033145859005309 +logt0073 log10 -8.0456794648936578e-06 0.19722758057570208 -> -0.70503235244987561 0.68220589348055516 +logt0074 log10 -2.4306442691323173 0.6846919750700996 -> 0.40230257845332595 1.2451292533748923 +logt0075 log10 -3.5488049250888194 0.45324040643185254 -> 0.55359553977141063 1.3092085108866405 +logt0076 log10 0.18418516851510189 -0.26062518836212617 -> -0.49602019732913638 -0.41500503556604301 +logt0077 log10 2.7124837795638399 -13.148769067133387 -> 1.1279348613317008 -0.59383616643803216 +logt0078 log10 3.6521275476169149e-13 -3.7820543023170673e-05 -> -4.4222722398941112 -0.68218817272717114 +logt0079 log10 5.0877545813862239 -1.2834978326786852 -> 0.71992371806426847 -0.10732104352159283 +logt0080 log10 0.26477986808461512 -0.67659001194187429 -> -0.13873139935281681 -0.52018649631300229 +logt0081 log10 0.0014754261398071962 5.3514691608205442 -> 0.72847304354528819 0.6820684398178033 +logt0082 log10 0.29667334462157885 0.00020056045042584795 -> -0.52772137299296806 0.00029359659442937261 +logt0083 log10 0.82104233671099425 3.9005387130133102 -> 0.60053889028349361 0.59208690021184018 +logt0084 log10 0.27268135358180667 124.42088110945804 -> 2.094894315538069 0.68123637673656989 +logt0085 log10 0.0026286959168267485 0.47795808180573013 -> -0.32060362226100814 0.67979964816877081 + +-- values near infinity +logt0100 log10 1.0512025744003172e+308 7.2621669750664611e+307 -> 308.10641562682065 0.26255461408256975 +logt0101 log10 5.5344249034372126e+307 -1.2155859158431275e+308 -> 308.12569106009209 -0.496638782296212 +logt0102 log10 -1.3155575403469408e+308 1.1610793541663864e+308 -> 308.24419052091019 1.0503359777705266 +logt0103 log10 -1.632366720973235e+308 -1.54299446211448e+308 -> 308.3514500834093 -1.0355024924378222 +logt0104 log10 0.0 5.9449276692327712e+307 -> 307.77414657501117 0.68218817692092071 +logt0105 log10 -0.0 1.1201850459025692e+308 -> 308.04928977068465 0.68218817692092071 +logt0106 log10 0.0 -1.6214225933466528e+308 -> 308.20989622030174 -0.68218817692092071 +logt0107 log10 -0.0 -1.7453269791591058e+308 -> 308.24187680203539 -0.68218817692092071 +logt0108 log10 1.440860577601428e+308 0.0 -> 308.15862195908755 0.0 +logt0109 log10 1.391515176148282e+308 -0.0 -> 308.14348794720007 -0.0 +logt0110 log10 -1.201354401295296e+308 0.0 -> 308.07967114380773 1.3643763538418414 +logt0111 log10 -1.6704337825976804e+308 -0.0 -> 308.22282926451624 -1.3643763538418414 +logt0112 log10 7.2276974655190223e+307 7.94879711369164 -> 307.85899996571993 4.7762357800858463e-308 +logt0113 log10 1.1207859593716076e+308 -6.1956200868221147 -> 308.04952268169455 -2.4007470767963597e-308 +logt0114 log10 -4.6678933874471045e+307 9.947107893220382 -> 307.66912092839902 1.3643763538418414 +logt0115 log10 -1.5108012453950142e+308 -5.3117197179375619 -> 308.1792073341565 -1.3643763538418414 +logt0116 log10 7.4903750871504435 1.5320703776626352e+308 -> 308.18527871564157 0.68218817692092071 +logt0117 log10 5.9760325525654778 -8.0149473997349123e+307 -> 307.90390067652424 -0.68218817692092071 +logt0118 log10 -7.880194206386629 1.7861845814767441e+308 -> 308.25192633617331 0.68218817692092071 +logt0119 log10 -9.886438993852865 -6.19235781080747e+307 -> 307.79185604308338 -0.68218817692092071 + +-- values near 0 +logt0120 log10 2.2996867579227779e-308 6.7861840770939125e-312 -> -307.63833129662572 0.00012815668056362305 +logt0121 log10 6.9169190417774516e-323 -9.0414013188948118e-322 -> -321.04249706727148 -0.64902805353306059 +logt0122 log10 -1.5378064962914011e-316 1.8243628389354635e-310 -> -309.73888878263222 0.68218854299989429 +logt0123 log10 -2.3319898483706837e-321 -2.2358763941866371e-313 -> -312.65055220919641 -0.68218818145055538 +logt0124 log10 0.0 3.872770101081121e-315 -> -314.41197828323476 0.68218817692092071 +logt0125 log10 -0.0 9.6342800939043076e-322 -> -321.01618073175331 0.68218817692092071 +logt0126 log10 0.0 -2.266099393427834e-308 -> -307.64472104545649 -0.68218817692092071 +logt0127 log10 -0.0 -2.1184695673766626e-315 -> -314.67397777042407 -0.68218817692092071 +logt0128 log10 1.1363509854348671e-322 0.0 -> -321.94448750709819 0.0 +logt0129 log10 3.5572726500569751e-322 -0.0 -> -321.44888284668451 -0.0 +logt0130 log10 -2.3696071074040593e-310 0.0 -> -309.62532365619722 1.3643763538418414 +logt0131 log10 -2.813283897266934e-317 -0.0 -> -316.55078643961042 -1.3643763538418414 + +-- values near the unit circle +logt0200 log10 -0.59999999999999998 0.80000000000000004 -> 9.6432746655328709e-18 0.96165715756846815 +logt0201 log10 0.79999999999999993 0.60000000000000009 -> 2.6765463916147622e-33 0.2794689806475476 + +-- special values +logt1000 log10 -0.0 0.0 -> -inf 1.3643763538418414 divide-by-zero +logt1001 log10 0.0 0.0 -> -inf 0.0 divide-by-zero +logt1002 log10 0.0 inf -> inf 0.68218817692092071 +logt1003 log10 2.3 inf -> inf 0.68218817692092071 +logt1004 log10 -0.0 inf -> inf 0.68218817692092071 +logt1005 log10 -2.3 inf -> inf 0.68218817692092071 +logt1006 log10 0.0 nan -> nan nan +logt1007 log10 2.3 nan -> nan nan +logt1008 log10 -0.0 nan -> nan nan +logt1009 log10 -2.3 nan -> nan nan +logt1010 log10 -inf 0.0 -> inf 1.3643763538418414 +logt1011 log10 -inf 2.3 -> inf 1.3643763538418414 +logt1012 log10 inf 0.0 -> inf 0.0 +logt1013 log10 inf 2.3 -> inf 0.0 +logt1014 log10 -inf inf -> inf 1.0232822653813811 +logt1015 log10 inf inf -> inf 0.34109408846046035 +logt1016 log10 inf nan -> inf nan +logt1017 log10 -inf nan -> inf nan +logt1018 log10 nan 0.0 -> nan nan +logt1019 log10 nan 2.3 -> nan nan +logt1020 log10 nan inf -> inf nan +logt1021 log10 nan nan -> nan nan +logt1022 log10 -0.0 -0.0 -> -inf -1.3643763538418414 divide-by-zero +logt1023 log10 0.0 -0.0 -> -inf -0.0 divide-by-zero +logt1024 log10 0.0 -inf -> inf -0.68218817692092071 +logt1025 log10 2.3 -inf -> inf -0.68218817692092071 +logt1026 log10 -0.0 -inf -> inf -0.68218817692092071 +logt1027 log10 -2.3 -inf -> inf -0.68218817692092071 +logt1028 log10 -inf -0.0 -> inf -1.3643763538418414 +logt1029 log10 -inf -2.3 -> inf -1.3643763538418414 +logt1030 log10 inf -0.0 -> inf -0.0 +logt1031 log10 inf -2.3 -> inf -0.0 +logt1032 log10 -inf -inf -> inf -1.0232822653813811 +logt1033 log10 inf -inf -> inf -0.34109408846046035 +logt1034 log10 nan -0.0 -> nan nan +logt1035 log10 nan -2.3 -> nan nan +logt1036 log10 nan -inf -> inf nan + + +----------------------- +-- sqrt: Square root -- +----------------------- + +-- zeros +sqrt0000 sqrt 0.0 0.0 -> 0.0 0.0 +sqrt0001 sqrt 0.0 -0.0 -> 0.0 -0.0 +sqrt0002 sqrt -0.0 0.0 -> 0.0 0.0 +sqrt0003 sqrt -0.0 -0.0 -> 0.0 -0.0 + +-- values along both sides of real axis +sqrt0010 sqrt -9.8813129168249309e-324 0.0 -> 0.0 3.1434555694052576e-162 +sqrt0011 sqrt -9.8813129168249309e-324 -0.0 -> 0.0 -3.1434555694052576e-162 +sqrt0012 sqrt -1e-305 0.0 -> 0.0 3.1622776601683791e-153 +sqrt0013 sqrt -1e-305 -0.0 -> 0.0 -3.1622776601683791e-153 +sqrt0014 sqrt -1e-150 0.0 -> 0.0 9.9999999999999996e-76 +sqrt0015 sqrt -1e-150 -0.0 -> 0.0 -9.9999999999999996e-76 +sqrt0016 sqrt -9.9999999999999998e-17 0.0 -> 0.0 1e-08 +sqrt0017 sqrt -9.9999999999999998e-17 -0.0 -> 0.0 -1e-08 +sqrt0018 sqrt -0.001 0.0 -> 0.0 0.031622776601683791 +sqrt0019 sqrt -0.001 -0.0 -> 0.0 -0.031622776601683791 +sqrt0020 sqrt -0.57899999999999996 0.0 -> 0.0 0.76092049518987193 +sqrt0021 sqrt -0.57899999999999996 -0.0 -> 0.0 -0.76092049518987193 +sqrt0022 sqrt -0.99999999999999989 0.0 -> 0.0 0.99999999999999989 +sqrt0023 sqrt -0.99999999999999989 -0.0 -> 0.0 -0.99999999999999989 +sqrt0024 sqrt -1.0000000000000002 0.0 -> 0.0 1.0 +sqrt0025 sqrt -1.0000000000000002 -0.0 -> 0.0 -1.0 +sqrt0026 sqrt -1.0009999999999999 0.0 -> 0.0 1.000499875062461 +sqrt0027 sqrt -1.0009999999999999 -0.0 -> 0.0 -1.000499875062461 +sqrt0028 sqrt -2.0 0.0 -> 0.0 1.4142135623730951 +sqrt0029 sqrt -2.0 -0.0 -> 0.0 -1.4142135623730951 +sqrt0030 sqrt -23.0 0.0 -> 0.0 4.7958315233127191 +sqrt0031 sqrt -23.0 -0.0 -> 0.0 -4.7958315233127191 +sqrt0032 sqrt -10000000000000000.0 0.0 -> 0.0 100000000.0 +sqrt0033 sqrt -10000000000000000.0 -0.0 -> 0.0 -100000000.0 +sqrt0034 sqrt -9.9999999999999998e+149 0.0 -> 0.0 9.9999999999999993e+74 +sqrt0035 sqrt -9.9999999999999998e+149 -0.0 -> 0.0 -9.9999999999999993e+74 +sqrt0036 sqrt -1.0000000000000001e+299 0.0 -> 0.0 3.1622776601683796e+149 +sqrt0037 sqrt -1.0000000000000001e+299 -0.0 -> 0.0 -3.1622776601683796e+149 +sqrt0038 sqrt 9.8813129168249309e-324 0.0 -> 3.1434555694052576e-162 0.0 +sqrt0039 sqrt 9.8813129168249309e-324 -0.0 -> 3.1434555694052576e-162 -0.0 +sqrt0040 sqrt 1e-305 0.0 -> 3.1622776601683791e-153 0.0 +sqrt0041 sqrt 1e-305 -0.0 -> 3.1622776601683791e-153 -0.0 +sqrt0042 sqrt 1e-150 0.0 -> 9.9999999999999996e-76 0.0 +sqrt0043 sqrt 1e-150 -0.0 -> 9.9999999999999996e-76 -0.0 +sqrt0044 sqrt 9.9999999999999998e-17 0.0 -> 1e-08 0.0 +sqrt0045 sqrt 9.9999999999999998e-17 -0.0 -> 1e-08 -0.0 +sqrt0046 sqrt 0.001 0.0 -> 0.031622776601683791 0.0 +sqrt0047 sqrt 0.001 -0.0 -> 0.031622776601683791 -0.0 +sqrt0048 sqrt 0.57899999999999996 0.0 -> 0.76092049518987193 0.0 +sqrt0049 sqrt 0.57899999999999996 -0.0 -> 0.76092049518987193 -0.0 +sqrt0050 sqrt 0.99999999999999989 0.0 -> 0.99999999999999989 0.0 +sqrt0051 sqrt 0.99999999999999989 -0.0 -> 0.99999999999999989 -0.0 +sqrt0052 sqrt 1.0000000000000002 0.0 -> 1.0 0.0 +sqrt0053 sqrt 1.0000000000000002 -0.0 -> 1.0 -0.0 +sqrt0054 sqrt 1.0009999999999999 0.0 -> 1.000499875062461 0.0 +sqrt0055 sqrt 1.0009999999999999 -0.0 -> 1.000499875062461 -0.0 +sqrt0056 sqrt 2.0 0.0 -> 1.4142135623730951 0.0 +sqrt0057 sqrt 2.0 -0.0 -> 1.4142135623730951 -0.0 +sqrt0058 sqrt 23.0 0.0 -> 4.7958315233127191 0.0 +sqrt0059 sqrt 23.0 -0.0 -> 4.7958315233127191 -0.0 +sqrt0060 sqrt 10000000000000000.0 0.0 -> 100000000.0 0.0 +sqrt0061 sqrt 10000000000000000.0 -0.0 -> 100000000.0 -0.0 +sqrt0062 sqrt 9.9999999999999998e+149 0.0 -> 9.9999999999999993e+74 0.0 +sqrt0063 sqrt 9.9999999999999998e+149 -0.0 -> 9.9999999999999993e+74 -0.0 +sqrt0064 sqrt 1.0000000000000001e+299 0.0 -> 3.1622776601683796e+149 0.0 +sqrt0065 sqrt 1.0000000000000001e+299 -0.0 -> 3.1622776601683796e+149 -0.0 + +-- random inputs +sqrt0100 sqrt -0.34252542541549913 -223039880.15076211 -> 10560.300180587592 -10560.300196805192 +sqrt0101 sqrt -0.88790791393018909 -5.3307751730827402 -> 1.5027154613689004 -1.7737140896343291 +sqrt0102 sqrt -113916.89291310767 -0.018143374626153858 -> 2.6877817875351178e-05 -337.51576691038952 +sqrt0103 sqrt -0.63187172386197121 -0.26293913366617694 -> 0.16205707495266153 -0.81125471918761971 +sqrt0104 sqrt -0.058185169308906215 -2.3548312990430991 -> 1.0717660342420072 -1.0985752598086966 +sqrt0105 sqrt -1.0580584765935896 0.14400319259151736 -> 0.069837489270111242 1.030987755262468 +sqrt0106 sqrt -1.1667595947504932 0.11159711473953678 -> 0.051598531319315251 1.0813981705111229 +sqrt0107 sqrt -0.5123728411449906 0.026175433648339085 -> 0.018278026262418718 0.71603556293597614 +sqrt0108 sqrt -3.7453400060067228 1.0946500314809635 -> 0.27990088541692498 1.9554243814742367 +sqrt0109 sqrt -0.0027736121575097673 1.0367943000839817 -> 0.71903560338719175 0.72096172651250545 +sqrt0110 sqrt 1501.2559699453188 -1.1997325207283589 -> 38.746047664730959 -0.015481998720355024 +sqrt0111 sqrt 1.4830075326850578 -0.64100878436755349 -> 1.244712815741096 -0.25749264258434584 +sqrt0112 sqrt 0.095395618499734602 -0.48226565701639595 -> 0.54175904053472879 -0.44509239434231551 +sqrt0113 sqrt 0.50109185681863277 -0.54054037379892561 -> 0.7868179858332387 -0.34349772344520979 +sqrt0114 sqrt 0.98779807595367897 -0.00019848758437225191 -> 0.99388031770665153 -9.9854872279921968e-05 +sqrt0115 sqrt 11.845472380792259 0.0010051104581506761 -> 3.4417252072345397 0.00014601840612346451 +sqrt0116 sqrt 2.3558249686735975 0.25605157371744403 -> 1.5371278477386647 0.083288964575761404 +sqrt0117 sqrt 0.77584894123159098 1.0496420627016076 -> 1.0200744386390885 0.51449287568756552 +sqrt0118 sqrt 1.8961715669604893 0.34940793467158854 -> 1.3827991781411615 0.12634080935066902 +sqrt0119 sqrt 0.96025378316565801 0.69573224860140515 -> 1.0358710342209998 0.33581991658093457 + +-- values near 0 +sqrt0120 sqrt 7.3577938365086866e-313 8.1181408465112743e-319 -> 8.5777583531543516e-157 4.732087634251168e-163 +sqrt0121 sqrt 1.2406883874892108e-310 -5.1210133324269776e-312 -> 1.1140990057468052e-155 -2.2982756945349973e-157 +sqrt0122 sqrt -7.1145453001139502e-322 2.9561379244703735e-314 -> 1.2157585807480286e-157 1.2157586100077242e-157 +sqrt0123 sqrt -4.9963244206801218e-314 -8.4718424423690227e-319 -> 1.8950582312540437e-162 -2.2352459419578971e-157 +sqrt0124 sqrt 0.0 7.699553609385195e-318 -> 1.9620848107797476e-159 1.9620848107797476e-159 +sqrt0125 sqrt -0.0 3.3900826606499415e-309 -> 4.1170879639922327e-155 4.1170879639922327e-155 +sqrt0126 sqrt 0.0 -9.8907989772250828e-319 -> 7.032353438652342e-160 -7.032353438652342e-160 +sqrt0127 sqrt -0.0 -1.3722939367590908e-315 -> 2.6194407196566702e-158 -2.6194407196566702e-158 +sqrt0128 sqrt 7.9050503334599447e-323 0.0 -> 8.8910349979403099e-162 0.0 +sqrt0129 sqrt 1.8623241768349486e-309 -0.0 -> 4.3154654173506579e-155 -0.0 +sqrt0130 sqrt -2.665971134499887e-308 0.0 -> 0.0 1.6327801856036491e-154 +sqrt0131 sqrt -1.5477066694467245e-310 -0.0 -> 0.0 -1.2440685951533077e-155 + +-- inputs whose absolute value overflows +sqrt0140 sqrt 1.6999999999999999e+308 -1.6999999999999999e+308 -> 1.4325088230154573e+154 -5.9336458271212207e+153 +sqrt0141 sqrt -1.797e+308 -9.9999999999999999e+306 -> 3.7284476432057307e+152 -1.3410406899802901e+154 + +-- special values +sqrt1000 sqrt 0.0 0.0 -> 0.0 0.0 +sqrt1001 sqrt -0.0 0.0 -> 0.0 0.0 +sqrt1002 sqrt 0.0 inf -> inf inf +sqrt1003 sqrt 2.3 inf -> inf inf +sqrt1004 sqrt inf inf -> inf inf +sqrt1005 sqrt -0.0 inf -> inf inf +sqrt1006 sqrt -2.3 inf -> inf inf +sqrt1007 sqrt -inf inf -> inf inf +sqrt1008 sqrt nan inf -> inf inf +sqrt1009 sqrt 0.0 nan -> nan nan +sqrt1010 sqrt 2.3 nan -> nan nan +sqrt1011 sqrt -0.0 nan -> nan nan +sqrt1012 sqrt -2.3 nan -> nan nan +sqrt1013 sqrt -inf 0.0 -> 0.0 inf +sqrt1014 sqrt -inf 2.3 -> 0.0 inf +sqrt1015 sqrt inf 0.0 -> inf 0.0 +sqrt1016 sqrt inf 2.3 -> inf 0.0 +sqrt1017 sqrt -inf nan -> nan inf ignore-imag-sign +sqrt1018 sqrt inf nan -> inf nan +sqrt1019 sqrt nan 0.0 -> nan nan +sqrt1020 sqrt nan 2.3 -> nan nan +sqrt1021 sqrt nan nan -> nan nan +sqrt1022 sqrt 0.0 -0.0 -> 0.0 -0.0 +sqrt1023 sqrt -0.0 -0.0 -> 0.0 -0.0 +sqrt1024 sqrt 0.0 -inf -> inf -inf +sqrt1025 sqrt 2.3 -inf -> inf -inf +sqrt1026 sqrt inf -inf -> inf -inf +sqrt1027 sqrt -0.0 -inf -> inf -inf +sqrt1028 sqrt -2.3 -inf -> inf -inf +sqrt1029 sqrt -inf -inf -> inf -inf +sqrt1030 sqrt nan -inf -> inf -inf +sqrt1031 sqrt -inf -0.0 -> 0.0 -inf +sqrt1032 sqrt -inf -2.3 -> 0.0 -inf +sqrt1033 sqrt inf -0.0 -> inf -0.0 +sqrt1034 sqrt inf -2.3 -> inf -0.0 +sqrt1035 sqrt nan -0.0 -> nan nan +sqrt1036 sqrt nan -2.3 -> nan nan + + +-- For exp, cosh, sinh, tanh we limit tests to arguments whose +-- imaginary part is less than 10 in absolute value: most math +-- libraries have poor accuracy for (real) sine and cosine for +-- large arguments, and the accuracy of these complex functions +-- suffer correspondingly. +-- +-- Similarly, for cos, sin and tan we limit tests to arguments +-- with relatively small real part. + + +------------------------------- +-- exp: Exponential function -- +------------------------------- + +-- zeros +exp0000 exp 0.0 0.0 -> 1.0 0.0 +exp0001 exp 0.0 -0.0 -> 1.0 -0.0 +exp0002 exp -0.0 0.0 -> 1.0 0.0 +exp0003 exp -0.0 -0.0 -> 1.0 -0.0 + +-- random inputs +exp0004 exp -17.957359009564684 -1.108613895795274 -> 7.0869292576226611e-09 -1.4225929202377833e-08 +exp0005 exp -1.4456149663368642e-15 -0.75359817331772239 -> 0.72923148323917997 -0.68426708517419033 +exp0006 exp -0.76008654883512661 -0.46657235480105019 -> 0.41764393109928666 -0.21035108396792854 +exp0007 exp -5.7071614697735731 -2.3744161818115816e-11 -> 0.0033220890242068356 -7.8880219364953578e-14 +exp0008 exp -0.4653981327927097 -5.2236706667445587e-21 -> 0.62788507378216663 -3.2798648420026468e-21 +exp0009 exp -3.2444565242295518 1.1535625304243959 -> 0.015799936931457641 0.035644950380024749 +exp0010 exp -3.0651456337977727 0.87765086532391878 -> 0.029805595629855953 0.035882775180855669 +exp0011 exp -0.11080823753233926 0.96486386300873106 -> 0.50979112534376314 0.73575512419561562 +exp0012 exp -2.5629722598928648 0.019636235754708079 -> 0.077060452853917397 0.0015133717341137684 +exp0013 exp -3.3201709957983357e-10 1.2684017344487268 -> 0.29780699855434889 0.95462610007689186 +exp0014 exp 0.88767276057993272 -0.18953422986895557 -> 2.3859624049858095 -0.45771559132044426 +exp0015 exp 1.5738333486794742 -2.2576803075544328e-11 -> 4.8251091132458654 -1.0893553826776623e-10 +exp0016 exp 1.6408702341813795 -1.438879484380837 -> 0.6786733590689048 -5.1148284173168825 +exp0017 exp 1.820279424202033 -0.020812040370785722 -> 6.1722462896420902 -0.1284755888435051 +exp0018 exp 1.7273965735945873 -0.61140621328954947 -> 4.6067931898799976 -3.2294267694441308 +exp0019 exp 2.5606034306862995 0.098153136008435504 -> 12.881325889966629 1.2684184812864494 +exp0020 exp 10.280368619483029 3.4564622559748535 -> -27721.283321551502 -9028.9663215568835 +exp0021 exp 1.104007405129741e-155 0.21258803067317278 -> 0.97748813933531764 0.21099037290544478 +exp0022 exp 0.027364777809295172 0.00059226603500623363 -> 1.0277424518451876 0.0006086970181346579 +exp0023 exp 0.94356313429255245 3.418530463518592 -> -2.4712285695346194 -0.70242654900218349 + +-- cases where exp(z) representable, exp(z.real) not +exp0030 exp 710.0 0.78500000000000003 -> 1.5803016909637158e+308 1.5790437551806911e+308 +exp0031 exp 710.0 -0.78500000000000003 -> 1.5803016909637158e+308 -1.5790437551806911e+308 + +-- values for which exp(x) is subnormal, or underflows to 0 +exp0040 exp -735.0 0.78500000000000003 -> 4.3976783136329355e-320 4.3942198541120468e-320 +exp0041 exp -735.0 -2.3559999999999999 -> -4.3952079854037293e-320 -4.396690182341253e-320 +exp0042 exp -745.0 0.0 -> 4.9406564584124654e-324 0.0 +exp0043 exp -745.0 0.7 -> 0.0 0.0 +exp0044 exp -745.0 2.1 -> -0.0 0.0 +exp0045 exp -745.0 3.7 -> -0.0 -0.0 +exp0046 exp -745.0 5.3 -> 0.0 -0.0 + +-- values for which exp(z) overflows +exp0050 exp 710.0 0.0 -> inf 0.0 overflow +exp0051 exp 711.0 0.7 -> inf inf overflow +exp0052 exp 710.0 1.5 -> 1.5802653829857376e+307 inf overflow +exp0053 exp 710.0 1.6 -> -6.5231579995501372e+306 inf overflow +exp0054 exp 710.0 2.8 -> -inf 7.4836177417448528e+307 overflow + +-- special values +exp1000 exp 0.0 0.0 -> 1.0 0.0 +exp1001 exp -0.0 0.0 -> 1.0 0.0 +exp1002 exp 0.0 inf -> nan nan invalid +exp1003 exp 2.3 inf -> nan nan invalid +exp1004 exp -0.0 inf -> nan nan invalid +exp1005 exp -2.3 inf -> nan nan invalid +exp1006 exp 0.0 nan -> nan nan +exp1007 exp 2.3 nan -> nan nan +exp1008 exp -0.0 nan -> nan nan +exp1009 exp -2.3 nan -> nan nan +exp1010 exp -inf 0.0 -> 0.0 0.0 +exp1011 exp -inf 1.4 -> 0.0 0.0 +exp1012 exp -inf 2.8 -> -0.0 0.0 +exp1013 exp -inf 4.2 -> -0.0 -0.0 +exp1014 exp -inf 5.6 -> 0.0 -0.0 +exp1015 exp -inf 7.0 -> 0.0 0.0 +exp1016 exp inf 0.0 -> inf 0.0 +exp1017 exp inf 1.4 -> inf inf +exp1018 exp inf 2.8 -> -inf inf +exp1019 exp inf 4.2 -> -inf -inf +exp1020 exp inf 5.6 -> inf -inf +exp1021 exp inf 7.0 -> inf inf +exp1022 exp -inf inf -> 0.0 0.0 ignore-real-sign ignore-imag-sign +exp1023 exp inf inf -> inf nan invalid ignore-real-sign +exp1024 exp -inf nan -> 0.0 0.0 ignore-real-sign ignore-imag-sign +exp1025 exp inf nan -> inf nan ignore-real-sign +exp1026 exp nan 0.0 -> nan 0.0 +exp1027 exp nan 2.3 -> nan nan +exp1028 exp nan inf -> nan nan +exp1029 exp nan nan -> nan nan +exp1030 exp 0.0 -0.0 -> 1.0 -0.0 +exp1031 exp -0.0 -0.0 -> 1.0 -0.0 +exp1032 exp 0.0 -inf -> nan nan invalid +exp1033 exp 2.3 -inf -> nan nan invalid +exp1034 exp -0.0 -inf -> nan nan invalid +exp1035 exp -2.3 -inf -> nan nan invalid +exp1036 exp -inf -0.0 -> 0.0 -0.0 +exp1037 exp -inf -1.4 -> 0.0 -0.0 +exp1038 exp -inf -2.8 -> -0.0 -0.0 +exp1039 exp -inf -4.2 -> -0.0 0.0 +exp1040 exp -inf -5.6 -> 0.0 0.0 +exp1041 exp -inf -7.0 -> 0.0 -0.0 +exp1042 exp inf -0.0 -> inf -0.0 +exp1043 exp inf -1.4 -> inf -inf +exp1044 exp inf -2.8 -> -inf -inf +exp1045 exp inf -4.2 -> -inf inf +exp1046 exp inf -5.6 -> inf inf +exp1047 exp inf -7.0 -> inf -inf +exp1048 exp -inf -inf -> 0.0 0.0 ignore-real-sign ignore-imag-sign +exp1049 exp inf -inf -> inf nan invalid ignore-real-sign +exp1050 exp nan -0.0 -> nan -0.0 +exp1051 exp nan -2.3 -> nan nan +exp1052 exp nan -inf -> nan nan + + +----------------------------- +-- cosh: Hyperbolic Cosine -- +----------------------------- + +-- zeros +cosh0000 cosh 0.0 0.0 -> 1.0 0.0 +cosh0001 cosh 0.0 -0.0 -> 1.0 -0.0 +cosh0002 cosh -0.0 0.0 -> 1.0 -0.0 +cosh0003 cosh -0.0 -0.0 -> 1.0 0.0 + +-- random inputs +cosh0004 cosh -0.85395264297414253 -8.8553756148671958 -> -1.1684340348021185 0.51842195359787435 +cosh0005 cosh -19.584904237211223 -0.066582627994906177 -> 159816812.23336992 10656776.050406246 +cosh0006 cosh -0.11072618401130772 -1.484820215073247 -> 0.086397164744949503 0.11054275637717284 +cosh0007 cosh -3.4764840250681752 -0.48440348288275276 -> 14.325931955190844 7.5242053548737955 +cosh0008 cosh -0.52047063604524602 -0.3603805382775585 -> 1.0653940354683802 0.19193293606252473 +cosh0009 cosh -1.39518962975995 0.0074738604700702906 -> 2.1417031027235969 -0.01415518712296308 +cosh0010 cosh -0.37107064757653541 0.14728085307856609 -> 1.0580601496776991 -0.055712531964568587 +cosh0011 cosh -5.8470200958739653 4.0021722388336292 -> -112.86220667618285 131.24734033545013 +cosh0012 cosh -0.1700261444851883 0.97167540135354513 -> 0.57208748253577946 -0.1410904820240203 +cosh0013 cosh -0.44042397902648783 1.0904791964139742 -> 0.50760322393058133 -0.40333966652010816 +cosh0014 cosh 0.052267552491867299 -3.8889011430644174 -> -0.73452303414639297 0.035540704833537134 +cosh0015 cosh 0.98000764177127453 -1.2548829247784097 -> 0.47220747341416142 -1.0879421432180316 +cosh0016 cosh 0.083594701222644008 -0.88847899930181284 -> 0.63279782419312613 -0.064954566816002285 +cosh0017 cosh 1.38173531783776 -0.43185040816732229 -> 1.9221663374671647 -0.78073830858849347 +cosh0018 cosh 0.57315681120148465 -0.22255760951027942 -> 1.1399733125173004 -0.1335512343605956 +cosh0019 cosh 1.8882512333062347 4.5024932182383797 -> -0.7041602065362691 -3.1573822131964615 +cosh0020 cosh 0.5618219206858317 0.92620452129575348 -> 0.69822380405378381 0.47309067471054522 +cosh0021 cosh 0.54361442847062591 0.64176483583018462 -> 0.92234462074193491 0.34167906495845501 +cosh0022 cosh 0.0014777403107920331 1.3682028122677661 -> 0.2012106963899549 0.001447518137863219 +cosh0023 cosh 2.218885944363501 2.0015727395883687 -> -1.94294321081968 4.1290269176083196 + +-- large real part +cosh0030 cosh 710.5 2.3519999999999999 -> -1.2967465239355998e+308 1.3076707908857333e+308 +cosh0031 cosh -710.5 0.69999999999999996 -> 1.4085466381392499e+308 -1.1864024666450239e+308 + +-- special values +cosh1000 cosh 0.0 0.0 -> 1.0 0.0 +cosh1001 cosh 0.0 inf -> nan 0.0 invalid ignore-imag-sign +cosh1002 cosh 0.0 nan -> nan 0.0 ignore-imag-sign +cosh1003 cosh 2.3 inf -> nan nan invalid +cosh1004 cosh 2.3 nan -> nan nan +cosh1005 cosh inf 0.0 -> inf 0.0 +cosh1006 cosh inf 1.4 -> inf inf +cosh1007 cosh inf 2.8 -> -inf inf +cosh1008 cosh inf 4.2 -> -inf -inf +cosh1009 cosh inf 5.6 -> inf -inf +cosh1010 cosh inf 7.0 -> inf inf +cosh1011 cosh inf inf -> inf nan invalid ignore-real-sign +cosh1012 cosh inf nan -> inf nan +cosh1013 cosh nan 0.0 -> nan 0.0 ignore-imag-sign +cosh1014 cosh nan 2.3 -> nan nan +cosh1015 cosh nan inf -> nan nan +cosh1016 cosh nan nan -> nan nan +cosh1017 cosh 0.0 -0.0 -> 1.0 -0.0 +cosh1018 cosh 0.0 -inf -> nan 0.0 invalid ignore-imag-sign +cosh1019 cosh 2.3 -inf -> nan nan invalid +cosh1020 cosh inf -0.0 -> inf -0.0 +cosh1021 cosh inf -1.4 -> inf -inf +cosh1022 cosh inf -2.8 -> -inf -inf +cosh1023 cosh inf -4.2 -> -inf inf +cosh1024 cosh inf -5.6 -> inf inf +cosh1025 cosh inf -7.0 -> inf -inf +cosh1026 cosh inf -inf -> inf nan invalid ignore-real-sign +cosh1027 cosh nan -0.0 -> nan 0.0 ignore-imag-sign +cosh1028 cosh nan -2.3 -> nan nan +cosh1029 cosh nan -inf -> nan nan +cosh1030 cosh -0.0 -0.0 -> 1.0 0.0 +cosh1031 cosh -0.0 -inf -> nan 0.0 invalid ignore-imag-sign +cosh1032 cosh -0.0 nan -> nan 0.0 ignore-imag-sign +cosh1033 cosh -2.3 -inf -> nan nan invalid +cosh1034 cosh -2.3 nan -> nan nan +cosh1035 cosh -inf -0.0 -> inf 0.0 +cosh1036 cosh -inf -1.4 -> inf inf +cosh1037 cosh -inf -2.8 -> -inf inf +cosh1038 cosh -inf -4.2 -> -inf -inf +cosh1039 cosh -inf -5.6 -> inf -inf +cosh1040 cosh -inf -7.0 -> inf inf +cosh1041 cosh -inf -inf -> inf nan invalid ignore-real-sign +cosh1042 cosh -inf nan -> inf nan +cosh1043 cosh -0.0 0.0 -> 1.0 -0.0 +cosh1044 cosh -0.0 inf -> nan 0.0 invalid ignore-imag-sign +cosh1045 cosh -2.3 inf -> nan nan invalid +cosh1046 cosh -inf 0.0 -> inf -0.0 +cosh1047 cosh -inf 1.4 -> inf -inf +cosh1048 cosh -inf 2.8 -> -inf -inf +cosh1049 cosh -inf 4.2 -> -inf inf +cosh1050 cosh -inf 5.6 -> inf inf +cosh1051 cosh -inf 7.0 -> inf -inf +cosh1052 cosh -inf inf -> inf nan invalid ignore-real-sign + + +--------------------------- +-- sinh: Hyperbolic Sine -- +--------------------------- + +-- zeros +sinh0000 sinh 0.0 0.0 -> 0.0 0.0 +sinh0001 sinh 0.0 -0.0 -> 0.0 -0.0 +sinh0002 sinh -0.0 0.0 -> -0.0 0.0 +sinh0003 sinh -0.0 -0.0 -> -0.0 -0.0 + +-- random inputs +sinh0004 sinh -17.282588091462742 -0.38187948694103546 -> -14867386.857248396 -5970648.6553516639 +sinh0005 sinh -343.91971203143208 -5.0172868877771525e-22 -> -1.1518691776521735e+149 -5.7792581214689021e+127 +sinh0006 sinh -14.178122253300922 -1.9387157579351293 -> 258440.37909034826 -670452.58500946441 +sinh0007 sinh -1.0343810581686239 -1.0970235266369905 -> -0.56070858278092739 -1.4098883258046697 +sinh0008 sinh -0.066126561416368204 -0.070461584169961872 -> -0.066010558700938124 -0.070557276738637542 +sinh0009 sinh -0.37630149150308484 3.3621734692162173 -> 0.37591118119332617 -0.23447115926369383 +sinh0010 sinh -0.049941960978670055 0.40323767020414625 -> -0.045955482136329009 0.3928878494430646 +sinh0011 sinh -16.647852603903715 0.0026852219129082098 -> -8492566.5739382561 22804.480671133562 +sinh0012 sinh -1.476625314303694 0.89473773116683386 -> -1.2982943334382224 1.7966593367791204 +sinh0013 sinh -422.36429577556913 0.10366634502307912 -> -1.3400321008920044e+183 1.3941600948045599e+182 +sinh0014 sinh 0.09108340745641981 -0.40408227416070353 -> 0.083863724802237902 -0.39480716553935602 +sinh0015 sinh 2.036064132067386 -2.6831729961386239 -> -3.37621124363175 -1.723868330002817 +sinh0016 sinh 2.5616717223063317 -0.0078978498622717767 -> 6.4399415853815869 -0.051472264400722133 +sinh0017 sinh 0.336804011985188 -6.5654622971649337 -> 0.32962499307574578 -0.29449170159995197 +sinh0018 sinh 0.23774603755649693 -0.92467195799232049 -> 0.14449839490603389 -0.82109449053556793 +sinh0019 sinh 0.0011388273541465494 1.9676196882949855 -> -0.00044014605389634999 0.92229398407098806 +sinh0020 sinh 3.2443870105663759 0.8054287559616895 -> 8.8702890778527426 9.2610748597042196 +sinh0021 sinh 0.040628908857054738 0.098206391190944958 -> 0.04044426841671233 0.098129544739707392 +sinh0022 sinh 4.7252283918217696e-30 9.1198155642656697 -> -4.5071980561644404e-30 0.30025730701661713 +sinh0023 sinh 0.043713693678420068 0.22512549887532657 -> 0.042624198673416713 0.22344201231217961 + +-- large real part +sinh0030 sinh 710.5 -2.3999999999999999 -> -1.3579970564885919e+308 -1.24394470907798e+308 +sinh0031 sinh -710.5 0.80000000000000004 -> -1.2830671601735164e+308 1.3210954193997678e+308 + +-- special values +sinh1000 sinh 0.0 0.0 -> 0.0 0.0 +sinh1001 sinh 0.0 inf -> 0.0 nan invalid ignore-real-sign +sinh1002 sinh 0.0 nan -> 0.0 nan ignore-real-sign +sinh1003 sinh 2.3 inf -> nan nan invalid +sinh1004 sinh 2.3 nan -> nan nan +sinh1005 sinh inf 0.0 -> inf 0.0 +sinh1006 sinh inf 1.4 -> inf inf +sinh1007 sinh inf 2.8 -> -inf inf +sinh1008 sinh inf 4.2 -> -inf -inf +sinh1009 sinh inf 5.6 -> inf -inf +sinh1010 sinh inf 7.0 -> inf inf +sinh1011 sinh inf inf -> inf nan invalid ignore-real-sign +sinh1012 sinh inf nan -> inf nan ignore-real-sign +sinh1013 sinh nan 0.0 -> nan 0.0 +sinh1014 sinh nan 2.3 -> nan nan +sinh1015 sinh nan inf -> nan nan +sinh1016 sinh nan nan -> nan nan +sinh1017 sinh 0.0 -0.0 -> 0.0 -0.0 +sinh1018 sinh 0.0 -inf -> 0.0 nan invalid ignore-real-sign +sinh1019 sinh 2.3 -inf -> nan nan invalid +sinh1020 sinh inf -0.0 -> inf -0.0 +sinh1021 sinh inf -1.4 -> inf -inf +sinh1022 sinh inf -2.8 -> -inf -inf +sinh1023 sinh inf -4.2 -> -inf inf +sinh1024 sinh inf -5.6 -> inf inf +sinh1025 sinh inf -7.0 -> inf -inf +sinh1026 sinh inf -inf -> inf nan invalid ignore-real-sign +sinh1027 sinh nan -0.0 -> nan -0.0 +sinh1028 sinh nan -2.3 -> nan nan +sinh1029 sinh nan -inf -> nan nan +sinh1030 sinh -0.0 -0.0 -> -0.0 -0.0 +sinh1031 sinh -0.0 -inf -> 0.0 nan invalid ignore-real-sign +sinh1032 sinh -0.0 nan -> 0.0 nan ignore-real-sign +sinh1033 sinh -2.3 -inf -> nan nan invalid +sinh1034 sinh -2.3 nan -> nan nan +sinh1035 sinh -inf -0.0 -> -inf -0.0 +sinh1036 sinh -inf -1.4 -> -inf -inf +sinh1037 sinh -inf -2.8 -> inf -inf +sinh1038 sinh -inf -4.2 -> inf inf +sinh1039 sinh -inf -5.6 -> -inf inf +sinh1040 sinh -inf -7.0 -> -inf -inf +sinh1041 sinh -inf -inf -> inf nan invalid ignore-real-sign +sinh1042 sinh -inf nan -> inf nan ignore-real-sign +sinh1043 sinh -0.0 0.0 -> -0.0 0.0 +sinh1044 sinh -0.0 inf -> 0.0 nan invalid ignore-real-sign +sinh1045 sinh -2.3 inf -> nan nan invalid +sinh1046 sinh -inf 0.0 -> -inf 0.0 +sinh1047 sinh -inf 1.4 -> -inf inf +sinh1048 sinh -inf 2.8 -> inf inf +sinh1049 sinh -inf 4.2 -> inf -inf +sinh1050 sinh -inf 5.6 -> -inf -inf +sinh1051 sinh -inf 7.0 -> -inf inf +sinh1052 sinh -inf inf -> inf nan invalid ignore-real-sign + + +------------------------------ +-- tanh: Hyperbolic Tangent -- +------------------------------ + +-- zeros +tanh0000 tanh 0.0 0.0 -> 0.0 0.0 +tanh0001 tanh 0.0 -0.0 -> 0.0 -0.0 +tanh0002 tanh -0.0 0.0 -> -0.0 0.0 +tanh0003 tanh -0.0 -0.0 -> -0.0 -0.0 + +-- random inputs +tanh0004 tanh -21.200500450664993 -1.6970729480342996 -> -1.0 1.9241352344849399e-19 +tanh0005 tanh -0.34158771504251928 -8.0848504951747131 -> -2.123711225855613 1.2827526782026006 +tanh0006 tanh -15.454144725193689 -0.23619582288265617 -> -0.99999999999993283 -3.4336684248260036e-14 +tanh0007 tanh -7.6103163119661952 -0.7802748320307008 -> -0.99999999497219438 -4.9064845343755437e-07 +tanh0008 tanh -0.15374717235792129 -0.6351086327306138 -> -0.23246081703561869 -0.71083467433910219 +tanh0009 tanh -0.49101115474392465 0.09723001264886301 -> -0.45844445715492133 0.077191158541805888 +tanh0010 tanh -0.10690612157664491 2.861612800856395 -> -0.11519761626257358 -0.28400488355647507 +tanh0011 tanh -0.91505774192066702 1.5431174597727007 -> -1.381109893068114 0.025160819663709356 +tanh0012 tanh -0.057433367093792223 0.35491159541246459 -> -0.065220499046696953 0.36921788332369498 +tanh0013 tanh -1.3540418621233514 0.18969415642242535 -> -0.88235642861151387 0.043764069984411721 +tanh0014 tanh 0.94864783961003529 -0.11333689578867717 -> 0.74348401861861368 -0.051271042543855221 +tanh0015 tanh 1.9591698133845488 -0.0029654444904578339 -> 0.9610270776968135 -0.00022664240049212933 +tanh0016 tanh 1.0949715796669197 -0.24706642853984456 -> 0.81636574501369386 -0.087767436914149954 +tanh0017 tanh 5770428.2113731047 -3.7160580339833165 -> 1.0 -0.0 +tanh0018 tanh 1.5576782321399629 -1.0357943787966468 -> 1.0403002384895388 -0.081126347894671463 +tanh0019 tanh 0.62378536230552961 2.3471393579560216 -> 0.85582499238960363 -0.53569473646842869 +tanh0020 tanh 17.400628602508025 9.3987059533841979 -> 0.99999999999999845 -8.0175867720530832e-17 +tanh0021 tanh 0.15026177509871896 0.50630349159505472 -> 0.19367536571827768 0.53849847858853661 +tanh0022 tanh 0.57433977530711167 1.0071604546265627 -> 1.0857848159262844 0.69139213955872214 +tanh0023 tanh 0.16291181500449456 0.006972810241567544 -> 0.16149335907551157 0.0067910772903467817 + +-- large real part +tanh0030 tanh 710 0.13 -> 1.0 0.0 +tanh0031 tanh -711 7.4000000000000004 -> -1.0 0.0 +tanh0032 tanh 1000 -2.3199999999999998 -> 1.0 0.0 +tanh0033 tanh -1.0000000000000001e+300 -9.6699999999999999 -> -1.0 -0.0 + +--special values +tanh1000 tanh 0.0 0.0 -> 0.0 0.0 +tanh1001 tanh 0.0 inf -> nan nan invalid +tanh1002 tanh 2.3 inf -> nan nan invalid +tanh1003 tanh 0.0 nan -> nan nan +tanh1004 tanh 2.3 nan -> nan nan +tanh1005 tanh inf 0.0 -> 1.0 0.0 +tanh1006 tanh inf 0.7 -> 1.0 0.0 +tanh1007 tanh inf 1.4 -> 1.0 0.0 +tanh1008 tanh inf 2.1 -> 1.0 -0.0 +tanh1009 tanh inf 2.8 -> 1.0 -0.0 +tanh1010 tanh inf 3.5 -> 1.0 0.0 +tanh1011 tanh inf inf -> 1.0 0.0 ignore-imag-sign +tanh1012 tanh inf nan -> 1.0 0.0 ignore-imag-sign +tanh1013 tanh nan 0.0 -> nan 0.0 +tanh1014 tanh nan 2.3 -> nan nan +tanh1015 tanh nan inf -> nan nan +tanh1016 tanh nan nan -> nan nan +tanh1017 tanh 0.0 -0.0 -> 0.0 -0.0 +tanh1018 tanh 0.0 -inf -> nan nan invalid +tanh1019 tanh 2.3 -inf -> nan nan invalid +tanh1020 tanh inf -0.0 -> 1.0 -0.0 +tanh1021 tanh inf -0.7 -> 1.0 -0.0 +tanh1022 tanh inf -1.4 -> 1.0 -0.0 +tanh1023 tanh inf -2.1 -> 1.0 0.0 +tanh1024 tanh inf -2.8 -> 1.0 0.0 +tanh1025 tanh inf -3.5 -> 1.0 -0.0 +tanh1026 tanh inf -inf -> 1.0 0.0 ignore-imag-sign +tanh1027 tanh nan -0.0 -> nan -0.0 +tanh1028 tanh nan -2.3 -> nan nan +tanh1029 tanh nan -inf -> nan nan +tanh1030 tanh -0.0 -0.0 -> -0.0 -0.0 +tanh1031 tanh -0.0 -inf -> nan nan invalid +tanh1032 tanh -2.3 -inf -> nan nan invalid +tanh1033 tanh -0.0 nan -> nan nan +tanh1034 tanh -2.3 nan -> nan nan +tanh1035 tanh -inf -0.0 -> -1.0 -0.0 +tanh1036 tanh -inf -0.7 -> -1.0 -0.0 +tanh1037 tanh -inf -1.4 -> -1.0 -0.0 +tanh1038 tanh -inf -2.1 -> -1.0 0.0 +tanh1039 tanh -inf -2.8 -> -1.0 0.0 +tanh1040 tanh -inf -3.5 -> -1.0 -0.0 +tanh1041 tanh -inf -inf -> -1.0 0.0 ignore-imag-sign +tanh1042 tanh -inf nan -> -1.0 0.0 ignore-imag-sign +tanh1043 tanh -0.0 0.0 -> -0.0 0.0 +tanh1044 tanh -0.0 inf -> nan nan invalid +tanh1045 tanh -2.3 inf -> nan nan invalid +tanh1046 tanh -inf 0.0 -> -1.0 0.0 +tanh1047 tanh -inf 0.7 -> -1.0 0.0 +tanh1048 tanh -inf 1.4 -> -1.0 0.0 +tanh1049 tanh -inf 2.1 -> -1.0 -0.0 +tanh1050 tanh -inf 2.8 -> -1.0 -0.0 +tanh1051 tanh -inf 3.5 -> -1.0 0.0 +tanh1052 tanh -inf inf -> -1.0 0.0 ignore-imag-sign + + +----------------- +-- cos: Cosine -- +----------------- + +-- zeros +cos0000 cos 0.0 0.0 -> 1.0 -0.0 +cos0001 cos 0.0 -0.0 -> 1.0 0.0 +cos0002 cos -0.0 0.0 -> 1.0 0.0 +cos0003 cos -0.0 -0.0 -> 1.0 -0.0 + +-- random inputs +cos0004 cos -2.0689194692073034 -0.0016802181751734313 -> -0.47777827208561469 -0.0014760401501695971 +cos0005 cos -0.4209627318177977 -1.8238516774258027 -> 2.9010402201444108 -1.2329207042329617 +cos0006 cos -1.9402181630694557 -2.9751857392891217 -> -3.5465459297970985 -9.1119163586282248 +cos0007 cos -3.3118320290191616 -0.87871302909286142 -> -1.3911528636565498 0.16878141517391701 +cos0008 cos -4.9540404623376872 -0.57949232239026827 -> 0.28062445586552065 0.59467861308508008 +cos0009 cos -0.45374584316245026 1.3950283448373935 -> 1.9247665574290578 0.83004572204761107 +cos0010 cos -0.42578172040176843 1.2715881615413049 -> 1.7517161459489148 0.67863902697363332 +cos0011 cos -0.13862985354300136 0.43587635877670328 -> 1.0859880290361912 0.062157548146672272 +cos0012 cos -0.11073221308966584 9.9384082307326475e-15 -> 0.99387545040722947 1.0982543264065479e-15 +cos0013 cos -1.5027633662054623e-07 0.0069668060249955498 -> 1.0000242682912412 1.0469545565660995e-09 +cos0014 cos 4.9728645490503052 -0.00027479808860952822 -> 0.25754011731975501 -0.00026552849549083186 +cos0015 cos 7.81969303486719 -0.79621523445878783 -> 0.045734882501585063 0.88253139933082991 +cos0016 cos 0.13272421880766716 -0.74668445308718201 -> 1.2806012244432847 0.10825373267437005 +cos0017 cos 4.2396521985973274 -2.2178848380884881 -> -2.1165117057056855 -4.0416492444641401 +cos0018 cos 1.1622206624927296 -0.50400115461197081 -> 0.44884072613370379 0.4823469915034318 +cos0019 cos 1.628772864620884e-08 0.58205705428979282 -> 1.1742319995791435 -1.0024839481956604e-08 +cos0020 cos 2.6385212606111241 2.9886107100937296 -> -8.7209475927161417 -4.7748352107199796 +cos0021 cos 4.8048375263775256 0.0062248852898515658 -> 0.092318702015846243 0.0061983430422306142 +cos0022 cos 7.9914515433858515 0.71659966615501436 -> -0.17375439906936566 -0.77217043527294582 +cos0023 cos 0.45124351152540226 1.6992693993812158 -> 2.543477948972237 -1.1528193694875477 + +-- special values +cos1000 cos -0.0 0.0 -> 1.0 0.0 +cos1001 cos -inf 0.0 -> nan 0.0 invalid ignore-imag-sign +cos1002 cos nan 0.0 -> nan 0.0 ignore-imag-sign +cos1003 cos -inf 2.2999999999999998 -> nan nan invalid +cos1004 cos nan 2.2999999999999998 -> nan nan +cos1005 cos -0.0 inf -> inf 0.0 +cos1006 cos -1.3999999999999999 inf -> inf inf +cos1007 cos -2.7999999999999998 inf -> -inf inf +cos1008 cos -4.2000000000000002 inf -> -inf -inf +cos1009 cos -5.5999999999999996 inf -> inf -inf +cos1010 cos -7.0 inf -> inf inf +cos1011 cos -inf inf -> inf nan invalid ignore-real-sign +cos1012 cos nan inf -> inf nan +cos1013 cos -0.0 nan -> nan 0.0 ignore-imag-sign +cos1014 cos -2.2999999999999998 nan -> nan nan +cos1015 cos -inf nan -> nan nan +cos1016 cos nan nan -> nan nan +cos1017 cos 0.0 0.0 -> 1.0 -0.0 +cos1018 cos inf 0.0 -> nan 0.0 invalid ignore-imag-sign +cos1019 cos inf 2.2999999999999998 -> nan nan invalid +cos1020 cos 0.0 inf -> inf -0.0 +cos1021 cos 1.3999999999999999 inf -> inf -inf +cos1022 cos 2.7999999999999998 inf -> -inf -inf +cos1023 cos 4.2000000000000002 inf -> -inf inf +cos1024 cos 5.5999999999999996 inf -> inf inf +cos1025 cos 7.0 inf -> inf -inf +cos1026 cos inf inf -> inf nan invalid ignore-real-sign +cos1027 cos 0.0 nan -> nan 0.0 ignore-imag-sign +cos1028 cos 2.2999999999999998 nan -> nan nan +cos1029 cos inf nan -> nan nan +cos1030 cos 0.0 -0.0 -> 1.0 0.0 +cos1031 cos inf -0.0 -> nan 0.0 invalid ignore-imag-sign +cos1032 cos nan -0.0 -> nan 0.0 ignore-imag-sign +cos1033 cos inf -2.2999999999999998 -> nan nan invalid +cos1034 cos nan -2.2999999999999998 -> nan nan +cos1035 cos 0.0 -inf -> inf 0.0 +cos1036 cos 1.3999999999999999 -inf -> inf inf +cos1037 cos 2.7999999999999998 -inf -> -inf inf +cos1038 cos 4.2000000000000002 -inf -> -inf -inf +cos1039 cos 5.5999999999999996 -inf -> inf -inf +cos1040 cos 7.0 -inf -> inf inf +cos1041 cos inf -inf -> inf nan invalid ignore-real-sign +cos1042 cos nan -inf -> inf nan +cos1043 cos -0.0 -0.0 -> 1.0 -0.0 +cos1044 cos -inf -0.0 -> nan 0.0 invalid ignore-imag-sign +cos1045 cos -inf -2.2999999999999998 -> nan nan invalid +cos1046 cos -0.0 -inf -> inf -0.0 +cos1047 cos -1.3999999999999999 -inf -> inf -inf +cos1048 cos -2.7999999999999998 -inf -> -inf -inf +cos1049 cos -4.2000000000000002 -inf -> -inf inf +cos1050 cos -5.5999999999999996 -inf -> inf inf +cos1051 cos -7.0 -inf -> inf -inf +cos1052 cos -inf -inf -> inf nan invalid ignore-real-sign + + +--------------- +-- sin: Sine -- +--------------- + +-- zeros +sin0000 sin 0.0 0.0 -> 0.0 0.0 +sin0001 sin 0.0 -0.0 -> 0.0 -0.0 +sin0002 sin -0.0 0.0 -> -0.0 0.0 +sin0003 sin -0.0 -0.0 -> -0.0 -0.0 + +-- random inputs +sin0004 sin -0.18691829163163759 -0.74388741985507034 -> -0.2396636733773444 -0.80023231101856751 +sin0005 sin -0.45127453702459158 -461.81339920716164 -> -7.9722299331077877e+199 -1.6450205811004628e+200 +sin0006 sin -0.47669228345768921 -2.7369936564987514 -> -3.557238022267124 -6.8308030771226615 +sin0007 sin -0.31024285525950857 -1.4869219939188296 -> -0.70972676047175209 -1.9985029635426839 +sin0008 sin -4.4194573407025608 -1.405999210989288 -> 2.0702480800802685 0.55362250792180601 +sin0009 sin -1.7810832046434898e-05 0.0016439555384379083 -> -1.7810856113185261e-05 0.0016439562786668375 +sin0010 sin -0.8200017874897666 0.61724876887771929 -> -0.8749078195948865 0.44835295550987758 +sin0011 sin -1.4536502806107114 0.63998575534150415 -> -1.2035709929437679 0.080012187489163708 +sin0012 sin -2.2653412155506079 0.13172760685583729 -> -0.77502093809190431 -0.084554426868229532 +sin0013 sin -0.02613983069491858 0.18404766597776073 -> -0.026580778863127943 0.18502525396735642 +sin0014 sin 1.5743065001054617 -0.53125574272642029 -> 1.1444596332092725 0.0019537598099352077 +sin0015 sin 7.3833101791283289e-20 -0.16453221324236217 -> 7.4834720674379429e-20 -0.16527555646466915 +sin0016 sin 0.34763834641254038 -2.8377416421089565 -> 2.918883541504663 -8.0002718053250224 +sin0017 sin 0.077105785180421563 -0.090056027316200674 -> 0.077341973814471304 -0.089909869380524587 +sin0018 sin 3.9063227798142329e-17 -0.05954098654295524 -> 3.9132490348956512e-17 -0.059576172859837351 +sin0019 sin 0.57333917932544598 8.7785221430594696e-06 -> 0.54244029338302935 7.3747869125301368e-06 +sin0020 sin 0.024861722816513169 0.33044620756118515 -> 0.026228801369651 0.3363889671570689 +sin0021 sin 1.4342727387492671 0.81361889790284347 -> 1.3370960060947923 0.12336137961387163 +sin0022 sin 1.1518087354403725 4.8597235966150558 -> 58.919141989603041 26.237003403758852 +sin0023 sin 0.00087773078406649192 34.792379211312095 -> 565548145569.38245 644329685822700.62 + +-- special values +sin1000 sin -0.0 0.0 -> -0.0 0.0 +sin1001 sin -inf 0.0 -> nan 0.0 invalid ignore-imag-sign +sin1002 sin nan 0.0 -> nan 0.0 ignore-imag-sign +sin1003 sin -inf 2.2999999999999998 -> nan nan invalid +sin1004 sin nan 2.2999999999999998 -> nan nan +sin1005 sin -0.0 inf -> -0.0 inf +sin1006 sin -1.3999999999999999 inf -> -inf inf +sin1007 sin -2.7999999999999998 inf -> -inf -inf +sin1008 sin -4.2000000000000002 inf -> inf -inf +sin1009 sin -5.5999999999999996 inf -> inf inf +sin1010 sin -7.0 inf -> -inf inf +sin1011 sin -inf inf -> nan inf invalid ignore-imag-sign +sin1012 sin nan inf -> nan inf ignore-imag-sign +sin1013 sin -0.0 nan -> -0.0 nan +sin1014 sin -2.2999999999999998 nan -> nan nan +sin1015 sin -inf nan -> nan nan +sin1016 sin nan nan -> nan nan +sin1017 sin 0.0 0.0 -> 0.0 0.0 +sin1018 sin inf 0.0 -> nan 0.0 invalid ignore-imag-sign +sin1019 sin inf 2.2999999999999998 -> nan nan invalid +sin1020 sin 0.0 inf -> 0.0 inf +sin1021 sin 1.3999999999999999 inf -> inf inf +sin1022 sin 2.7999999999999998 inf -> inf -inf +sin1023 sin 4.2000000000000002 inf -> -inf -inf +sin1024 sin 5.5999999999999996 inf -> -inf inf +sin1025 sin 7.0 inf -> inf inf +sin1026 sin inf inf -> nan inf invalid ignore-imag-sign +sin1027 sin 0.0 nan -> 0.0 nan +sin1028 sin 2.2999999999999998 nan -> nan nan +sin1029 sin inf nan -> nan nan +sin1030 sin 0.0 -0.0 -> 0.0 -0.0 +sin1031 sin inf -0.0 -> nan 0.0 invalid ignore-imag-sign +sin1032 sin nan -0.0 -> nan 0.0 ignore-imag-sign +sin1033 sin inf -2.2999999999999998 -> nan nan invalid +sin1034 sin nan -2.2999999999999998 -> nan nan +sin1035 sin 0.0 -inf -> 0.0 -inf +sin1036 sin 1.3999999999999999 -inf -> inf -inf +sin1037 sin 2.7999999999999998 -inf -> inf inf +sin1038 sin 4.2000000000000002 -inf -> -inf inf +sin1039 sin 5.5999999999999996 -inf -> -inf -inf +sin1040 sin 7.0 -inf -> inf -inf +sin1041 sin inf -inf -> nan inf invalid ignore-imag-sign +sin1042 sin nan -inf -> nan inf ignore-imag-sign +sin1043 sin -0.0 -0.0 -> -0.0 -0.0 +sin1044 sin -inf -0.0 -> nan 0.0 invalid ignore-imag-sign +sin1045 sin -inf -2.2999999999999998 -> nan nan invalid +sin1046 sin -0.0 -inf -> -0.0 -inf +sin1047 sin -1.3999999999999999 -inf -> -inf -inf +sin1048 sin -2.7999999999999998 -inf -> -inf inf +sin1049 sin -4.2000000000000002 -inf -> inf inf +sin1050 sin -5.5999999999999996 -inf -> inf -inf +sin1051 sin -7.0 -inf -> -inf -inf +sin1052 sin -inf -inf -> nan inf invalid ignore-imag-sign + + +------------------ +-- tan: Tangent -- +------------------ + +-- zeros +tan0000 tan 0.0 0.0 -> 0.0 0.0 +tan0001 tan 0.0 -0.0 -> 0.0 -0.0 +tan0002 tan -0.0 0.0 -> -0.0 0.0 +tan0003 tan -0.0 -0.0 -> -0.0 -0.0 + +-- random inputs +tan0004 tan -0.56378561833861074 -1.7110276237187664e+73 -> -0.0 -1.0 +tan0005 tan -3.5451633993471915e-12 -2.855471863564059 -> -4.6622441304889575e-14 -0.99340273843093951 +tan0006 tan -2.502442719638696 -0.26742234390504221 -> 0.66735215252994995 -0.39078997935420956 +tan0007 tan -0.87639597720371365 -55.586225523280206 -> -1.0285264565948176e-48 -1.0 +tan0008 tan -0.015783869596427243 -520.05944436039272 -> -0.0 -1.0 +tan0009 tan -0.84643549990725164 2.0749097935396343 -> -0.031412661676959573 1.0033548479526764 +tan0010 tan -0.43613792248559646 8.1082741629458059 -> -1.3879848444644593e-07 0.99999988344224011 +tan0011 tan -1.0820906367833114 0.28571868992480248 -> -1.3622485737936536 0.99089269377971245 +tan0012 tan -1.1477859580220084 1.9021637002708041 -> -0.034348450042071196 1.0293954097901687 +tan0013 tan -0.12465543176953409 3.0606851016344815e-05 -> -0.12530514290387343 3.1087420769945479e-05 +tan0014 tan 3.7582848717525343 -692787020.44038939 -> 0.0 -1.0 +tan0015 tan 2.2321967655142176e-06 -10.090069423008169 -> 1.5369846120622643e-14 -0.99999999655723759 +tan0016 tan 0.88371172390245012 -1.1635053630132823 -> 0.19705017118625889 -1.0196452280843129 +tan0017 tan 2.1347414231849267 -1.9311339960416831 -> -0.038663576915982524 -1.0174399993980778 +tan0018 tan 5.9027945255899974 -2.1574195684607135e-183 -> -0.39986591539281496 -2.5023753167976915e-183 +tan0019 tan 0.44811489490805362 683216075670.07556 -> 0.0 1.0 +tan0020 tan 4.1459766396068325 12.523017205605756 -> 2.4022514758988068e-11 1.0000000000112499 +tan0021 tan 1.7809617968443272 1.5052381702853379 -> -0.044066222118946903 1.0932684517702778 +tan0022 tan 1.1615313900880577 1.7956298728647107 -> 0.041793186826390362 1.0375339546034792 +tan0023 tan 0.067014779477908945 5.8517361577457097 -> 2.2088639754800034e-06 0.9999836182420061 + +-- special values +tan1000 tan -0.0 0.0 -> -0.0 0.0 +tan1001 tan -inf 0.0 -> nan nan invalid +tan1002 tan -inf 2.2999999999999998 -> nan nan invalid +tan1003 tan nan 0.0 -> nan nan +tan1004 tan nan 2.2999999999999998 -> nan nan +tan1005 tan -0.0 inf -> -0.0 1.0 +tan1006 tan -0.69999999999999996 inf -> -0.0 1.0 +tan1007 tan -1.3999999999999999 inf -> -0.0 1.0 +tan1008 tan -2.1000000000000001 inf -> 0.0 1.0 +tan1009 tan -2.7999999999999998 inf -> 0.0 1.0 +tan1010 tan -3.5 inf -> -0.0 1.0 +tan1011 tan -inf inf -> -0.0 1.0 ignore-real-sign +tan1012 tan nan inf -> -0.0 1.0 ignore-real-sign +tan1013 tan -0.0 nan -> -0.0 nan +tan1014 tan -2.2999999999999998 nan -> nan nan +tan1015 tan -inf nan -> nan nan +tan1016 tan nan nan -> nan nan +tan1017 tan 0.0 0.0 -> 0.0 0.0 +tan1018 tan inf 0.0 -> nan nan invalid +tan1019 tan inf 2.2999999999999998 -> nan nan invalid +tan1020 tan 0.0 inf -> 0.0 1.0 +tan1021 tan 0.69999999999999996 inf -> 0.0 1.0 +tan1022 tan 1.3999999999999999 inf -> 0.0 1.0 +tan1023 tan 2.1000000000000001 inf -> -0.0 1.0 +tan1024 tan 2.7999999999999998 inf -> -0.0 1.0 +tan1025 tan 3.5 inf -> 0.0 1.0 +tan1026 tan inf inf -> -0.0 1.0 ignore-real-sign +tan1027 tan 0.0 nan -> 0.0 nan +tan1028 tan 2.2999999999999998 nan -> nan nan +tan1029 tan inf nan -> nan nan +tan1030 tan 0.0 -0.0 -> 0.0 -0.0 +tan1031 tan inf -0.0 -> nan nan invalid +tan1032 tan inf -2.2999999999999998 -> nan nan invalid +tan1033 tan nan -0.0 -> nan nan +tan1034 tan nan -2.2999999999999998 -> nan nan +tan1035 tan 0.0 -inf -> 0.0 -1.0 +tan1036 tan 0.69999999999999996 -inf -> 0.0 -1.0 +tan1037 tan 1.3999999999999999 -inf -> 0.0 -1.0 +tan1038 tan 2.1000000000000001 -inf -> -0.0 -1.0 +tan1039 tan 2.7999999999999998 -inf -> -0.0 -1.0 +tan1040 tan 3.5 -inf -> 0.0 -1.0 +tan1041 tan inf -inf -> -0.0 -1.0 ignore-real-sign +tan1042 tan nan -inf -> -0.0 -1.0 ignore-real-sign +tan1043 tan -0.0 -0.0 -> -0.0 -0.0 +tan1044 tan -inf -0.0 -> nan nan invalid +tan1045 tan -inf -2.2999999999999998 -> nan nan invalid +tan1046 tan -0.0 -inf -> -0.0 -1.0 +tan1047 tan -0.69999999999999996 -inf -> -0.0 -1.0 +tan1048 tan -1.3999999999999999 -inf -> -0.0 -1.0 +tan1049 tan -2.1000000000000001 -inf -> 0.0 -1.0 +tan1050 tan -2.7999999999999998 -inf -> 0.0 -1.0 +tan1051 tan -3.5 -inf -> -0.0 -1.0 +tan1052 tan -inf -inf -> -0.0 -1.0 ignore-real-sign + + +------------------------------------------------------------------------ +-- rect: Conversion from polar coordinates to rectangular coordinates -- +------------------------------------------------------------------------ +-- +-- For cmath.rect, we can use the same testcase syntax as for the +-- complex -> complex functions above, but here the input arguments +-- should be interpreted as a pair of floating-point numbers rather +-- than the real and imaginary parts of a complex number. +-- +-- Here are the 'spirit of C99' rules for rect. First, the short +-- version: +-- +-- rect(x, t) = exp(log(x)+it) for positive-signed x +-- rect(x, t) = -exp(log(-x)+it) for negative-signed x +-- rect(nan, t) = exp(nan + it), except that in rect(nan, +-0) the +-- sign of the imaginary part is unspecified. +-- +-- and now the long version: +-- +-- rect(x, -t) = conj(rect(x, t)) for all x and t +-- rect(-x, t) = -rect(x, t) for all x and t +-- rect(+0, +0) returns +0 + i0 +-- rect(+0, inf) returns +- 0 +- i0, where the signs of the real and +-- imaginary parts are unspecified. +-- rect(x, inf) returns NaN + i NaN and raises the "invalid" +-- floating-point exception, for finite nonzero x. +-- rect(inf, inf) returns +-inf + i NaN and raises the "invalid" +-- floating-point exception (where the sign of the real part of the +-- result is unspecified). +-- rect(inf, +0) returns inf+i0 +-- rect(inf, x) returns inf*cis(x), for finite nonzero x +-- rect(inf, NaN) returns +-inf+i NaN, where the sign of the real part +-- of the result is unspecified. +-- rect(NaN, x) returns NaN + i NaN for all nonzero numbers (including +-- infinities) x +-- rect(NaN, 0) returns NaN +- i0, where the sign of the imaginary +-- part is unspecified +-- rect(NaN, NaN) returns NaN + i NaN +-- rect(x, NaN) returns NaN + i NaN for finite nonzero x +-- rect(+0, NaN) return +-0 +- i0, where the signs of the real and +-- imaginary parts are unspecified. + +-- special values +rect1000 rect 0.0 0.0 -> 0.0 0.0 +rect1001 rect 0.0 inf -> 0.0 0.0 ignore-real-sign ignore-imag-sign +rect1002 rect 2.3 inf -> nan nan invalid +rect1003 rect inf inf -> inf nan invalid ignore-real-sign +rect1004 rect inf 0.0 -> inf 0.0 +rect1005 rect inf 1.4 -> inf inf +rect1006 rect inf 2.8 -> -inf inf +rect1007 rect inf 4.2 -> -inf -inf +rect1008 rect inf 5.6 -> inf -inf +rect1009 rect inf 7.0 -> inf inf +rect1010 rect nan 0.0 -> nan 0.0 ignore-imag-sign +rect1011 rect nan 2.3 -> nan nan +rect1012 rect nan inf -> nan nan +rect1013 rect nan nan -> nan nan +rect1014 rect inf nan -> inf nan ignore-real-sign +rect1015 rect 2.3 nan -> nan nan +rect1016 rect 0.0 nan -> 0.0 0.0 ignore-real-sign ignore-imag-sign +rect1017 rect 0.0 -0.0 -> 0.0 -0.0 +rect1018 rect 0.0 -inf -> 0.0 0.0 ignore-real-sign ignore-imag-sign +rect1019 rect 2.3 -inf -> nan nan invalid +rect1020 rect inf -inf -> inf nan invalid ignore-real-sign +rect1021 rect inf -0.0 -> inf -0.0 +rect1022 rect inf -1.4 -> inf -inf +rect1023 rect inf -2.8 -> -inf -inf +rect1024 rect inf -4.2 -> -inf inf +rect1025 rect inf -5.6 -> inf inf +rect1026 rect inf -7.0 -> inf -inf +rect1027 rect nan -0.0 -> nan 0.0 ignore-imag-sign +rect1028 rect nan -2.3 -> nan nan +rect1029 rect nan -inf -> nan nan +rect1030 rect -0.0 0.0 -> -0.0 -0.0 +rect1031 rect -0.0 inf -> 0.0 0.0 ignore-real-sign ignore-imag-sign +rect1032 rect -2.3 inf -> nan nan invalid +rect1033 rect -inf inf -> -inf nan invalid ignore-real-sign +rect1034 rect -inf 0.0 -> -inf -0.0 +rect1035 rect -inf 1.4 -> -inf -inf +rect1036 rect -inf 2.8 -> inf -inf +rect1037 rect -inf 4.2 -> inf inf +rect1038 rect -inf 5.6 -> -inf inf +rect1039 rect -inf 7.0 -> -inf -inf +rect1040 rect -inf nan -> inf nan ignore-real-sign +rect1041 rect -2.3 nan -> nan nan +rect1042 rect -0.0 nan -> 0.0 0.0 ignore-real-sign ignore-imag-sign +rect1043 rect -0.0 -0.0 -> -0.0 0.0 +rect1044 rect -0.0 -inf -> 0.0 0.0 ignore-real-sign ignore-imag-sign +rect1045 rect -2.3 -inf -> nan nan invalid +rect1046 rect -inf -inf -> -inf nan invalid ignore-real-sign +rect1047 rect -inf -0.0 -> -inf 0.0 +rect1048 rect -inf -1.4 -> -inf inf +rect1049 rect -inf -2.8 -> inf inf +rect1050 rect -inf -4.2 -> inf -inf +rect1051 rect -inf -5.6 -> -inf -inf +rect1052 rect -inf -7.0 -> -inf inf + +------------------------------------------------------------------------- +-- polar: Conversion from rectangular coordinates to polar coordinates -- +------------------------------------------------------------------------- +-- +-- For cmath.polar, we can use the same testcase syntax as for the +-- complex -> complex functions above, but here the output arguments +-- should be interpreted as a pair of floating-point numbers rather +-- than the real and imaginary parts of a complex number. +-- +-- Annex G of the C99 standard describes fully both the real and +-- imaginary parts of polar (as cabs and carg, respectively, which in turn +-- are defined in terms of the functions hypot and atan2). + +-- overflow +polar0100 polar 1.4e308 1.4e308 -> inf 0.78539816339744828 overflow + +-- special values +polar1000 polar 0.0 0.0 -> 0.0 0.0 +polar1001 polar 0.0 -0.0 -> 0.0 -0.0 +polar1002 polar -0.0 0.0 -> 0.0 3.1415926535897931 +polar1003 polar -0.0 -0.0 -> 0.0 -3.1415926535897931 +polar1004 polar inf 0.0 -> inf 0.0 +polar1005 polar inf 2.3 -> inf 0.0 +polar1006 polar inf inf -> inf 0.78539816339744828 +polar1007 polar 2.3 inf -> inf 1.5707963267948966 +polar1008 polar 0.0 inf -> inf 1.5707963267948966 +polar1009 polar -0.0 inf -> inf 1.5707963267948966 +polar1010 polar -2.3 inf -> inf 1.5707963267948966 +polar1011 polar -inf inf -> inf 2.3561944901923448 +polar1012 polar -inf 2.3 -> inf 3.1415926535897931 +polar1013 polar -inf 0.0 -> inf 3.1415926535897931 +polar1014 polar -inf -0.0 -> inf -3.1415926535897931 +polar1015 polar -inf -2.3 -> inf -3.1415926535897931 +polar1016 polar -inf -inf -> inf -2.3561944901923448 +polar1017 polar -2.3 -inf -> inf -1.5707963267948966 +polar1018 polar -0.0 -inf -> inf -1.5707963267948966 +polar1019 polar 0.0 -inf -> inf -1.5707963267948966 +polar1020 polar 2.3 -inf -> inf -1.5707963267948966 +polar1021 polar inf -inf -> inf -0.78539816339744828 +polar1022 polar inf -2.3 -> inf -0.0 +polar1023 polar inf -0.0 -> inf -0.0 +polar1024 polar nan -inf -> inf nan +polar1025 polar nan -2.3 -> nan nan +polar1026 polar nan -0.0 -> nan nan +polar1027 polar nan 0.0 -> nan nan +polar1028 polar nan 2.3 -> nan nan +polar1029 polar nan inf -> inf nan +polar1030 polar nan nan -> nan nan +polar1031 polar inf nan -> inf nan +polar1032 polar 2.3 nan -> nan nan +polar1033 polar 0.0 nan -> nan nan +polar1034 polar -0.0 nan -> nan nan +polar1035 polar -2.3 nan -> nan nan +polar1036 polar -inf nan -> inf nan diff --git a/Lib/test/ieee754.txt b/Lib/test/ieee754.txt new file mode 100644 index 0000000..5a41c8f --- /dev/null +++ b/Lib/test/ieee754.txt @@ -0,0 +1,183 @@ +====================================== +Python IEEE 754 floating point support +====================================== + +>>> from sys import float_info as FI +>>> from math import * +>>> PI = pi +>>> E = e + +You must never compare two floats with == because you are not going to get +what you expect. We treat two floats as equal if the difference between them +is small than epsilon. +>>> EPS = 1E-15 +>>> def equal(x, y): +... """Almost equal helper for floats""" +... return abs(x - y) < EPS + + +NaNs and INFs +============= + +In Python 2.6 and newer NaNs (not a number) and infinity can be constructed +from the strings 'inf' and 'nan'. + +>>> INF = float('inf') +>>> NINF = float('-inf') +>>> NAN = float('nan') + +>>> INF +inf +>>> NINF +-inf +>>> NAN +nan + +The math module's ``isnan`` and ``isinf`` functions can be used to detect INF +and NAN: +>>> isinf(INF), isinf(NINF), isnan(NAN) +(True, True, True) +>>> INF == -NINF +True + +Infinity +-------- + +Ambiguous operations like ``0 * inf`` or ``inf - inf`` result in NaN. +>>> INF * 0 +nan +>>> INF - INF +nan +>>> INF / INF +nan + +However unambigous operations with inf return inf: +>>> INF * INF +inf +>>> 1.5 * INF +inf +>>> 0.5 * INF +inf +>>> INF / 1000 +inf + +Not a Number +------------ + +NaNs are never equal to another number, even itself +>>> NAN == NAN +False +>>> NAN < 0 +False +>>> NAN >= 0 +False + +All operations involving a NaN return a NaN except for the power of *0* and *1*. +>>> 1 + NAN +nan +>>> 1 * NAN +nan +>>> 0 * NAN +nan +>>> 1 ** NAN +1.0 +>>> 0 ** NAN +0.0 +>>> (1.0 + FI.epsilon) * NAN +nan + +Misc Functions +============== + +The power of 1 raised to x is always 1.0, even for special values like 0, +infinity and NaN. + +>>> pow(1, 0) +1.0 +>>> pow(1, INF) +1.0 +>>> pow(1, -INF) +1.0 +>>> pow(1, NAN) +1.0 + +The power of 0 raised to x is defined as 0, if x is positive. Negative +values are a domain error or zero division error and NaN result in a +silent NaN. + +>>> pow(0, 0) +1.0 +>>> pow(0, INF) +0.0 +>>> pow(0, -INF) +Traceback (most recent call last): +... +ValueError: math domain error +>>> 0 ** -1 +Traceback (most recent call last): +... +ZeroDivisionError: 0.0 cannot be raised to a negative power +>>> pow(0, NAN) +nan + + +Trigonometric Functions +======================= + +>>> sin(INF) +Traceback (most recent call last): +... +ValueError: math domain error +>>> sin(NINF) +Traceback (most recent call last): +... +ValueError: math domain error +>>> sin(NAN) +nan +>>> cos(INF) +Traceback (most recent call last): +... +ValueError: math domain error +>>> cos(NINF) +Traceback (most recent call last): +... +ValueError: math domain error +>>> cos(NAN) +nan +>>> tan(INF) +Traceback (most recent call last): +... +ValueError: math domain error +>>> tan(NINF) +Traceback (most recent call last): +... +ValueError: math domain error +>>> tan(NAN) +nan + +Neither pi nor tan are exact, but you can assume that tan(pi/2) is a large value +and tan(pi) is a very small value: +>>> tan(PI/2) > 1E10 +True +>>> -tan(-PI/2) > 1E10 +True +>>> tan(PI) < 1E-15 +True + +>>> asin(NAN), acos(NAN), atan(NAN) +(nan, nan, nan) +>>> asin(INF), asin(NINF) +Traceback (most recent call last): +... +ValueError: math domain error +>>> acos(INF), acos(NINF) +Traceback (most recent call last): +... +ValueError: math domain error +>>> equal(atan(INF), PI/2), equal(atan(NINF), -PI/2) +(True, True) + + +Hyberbolic Functions +==================== + diff --git a/Lib/test/test_cmath.py b/Lib/test/test_cmath.py index 7c5f4a5..ca4945d 100755 --- a/Lib/test/test_cmath.py +++ b/Lib/test/test_cmath.py @@ -1,6 +1,81 @@ from test.test_support import run_unittest +from test.test_math import parse_testfile, test_file import unittest +import os, sys import cmath, math +from cmath import phase, polar, rect, pi + +INF = float('inf') +NAN = float('nan') + +complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]] +complex_infinities = [complex(x, y) for x, y in [ + (INF, 0.0), # 1st quadrant + (INF, 2.3), + (INF, INF), + (2.3, INF), + (0.0, INF), + (-0.0, INF), # 2nd quadrant + (-2.3, INF), + (-INF, INF), + (-INF, 2.3), + (-INF, 0.0), + (-INF, -0.0), # 3rd quadrant + (-INF, -2.3), + (-INF, -INF), + (-2.3, -INF), + (-0.0, -INF), + (0.0, -INF), # 4th quadrant + (2.3, -INF), + (INF, -INF), + (INF, -2.3), + (INF, -0.0) + ]] +complex_nans = [complex(x, y) for x, y in [ + (NAN, -INF), + (NAN, -2.3), + (NAN, -0.0), + (NAN, 0.0), + (NAN, 2.3), + (NAN, INF), + (-INF, NAN), + (-2.3, NAN), + (-0.0, NAN), + (0.0, NAN), + (2.3, NAN), + (INF, NAN) + ]] + +def almostEqualF(a, b, rel_err=2e-15, abs_err = 5e-323): + """Determine whether floating-point values a and b are equal to within + a (small) rounding error. The default values for rel_err and + abs_err are chosen to be suitable for platforms where a float is + represented by an IEEE 754 double. They allow an error of between + 9 and 19 ulps.""" + + # special values testing + if math.isnan(a): + return math.isnan(b) + if math.isinf(a): + return a == b + + # if both a and b are zero, check whether they have the same sign + # (in theory there are examples where it would be legitimate for a + # and b to have opposite signs; in practice these hardly ever + # occur). + if not a and not b: + return math.copysign(1., a) == math.copysign(1., b) + + # if a-b overflows, or b is infinite, return False. Again, in + # theory there are examples where a is within a few ulps of the + # max representable float, and then b could legitimately be + # infinite. In practice these examples are rare. + try: + absolute_error = abs(b-a) + except OverflowError: + return False + else: + return absolute_error <= max(abs_err, rel_err * abs(a)) class CMathTests(unittest.TestCase): # list of all functions in cmath @@ -12,25 +87,51 @@ class CMathTests(unittest.TestCase): test_functions.append(lambda x : cmath.log(x, 1729. + 0j)) test_functions.append(lambda x : cmath.log(14.-27j, x)) - def cAssertAlmostEqual(self, a, b, rel_eps = 1e-10, abs_eps = 1e-100): - """Check that two complex numbers are almost equal.""" - # the two complex numbers are considered almost equal if - # either the relative error is <= rel_eps or the absolute error - # is tiny, <= abs_eps. - if a == b == 0: - return - absolute_error = abs(a-b) - relative_error = absolute_error/max(abs(a), abs(b)) - if relative_error > rel_eps and absolute_error > abs_eps: - self.fail("%s and %s are not almost equal" % (a, b)) + def setUp(self): + self.test_values = open(test_file) + + def tearDown(self): + self.test_values.close() + + def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323): + """Check that two floating-point numbers are almost equal.""" + + # special values testing + if math.isnan(a): + if math.isnan(b): + return + self.fail("%s should be nan" % repr(b)) + + if math.isinf(a): + if a == b: + return + self.fail("finite result where infinity excpected: " + "expected %s, got %s" % (repr(a), repr(b))) + + if not a and not b: + if math.atan2(a, -1.) != math.atan2(b, -1.): + self.fail("zero has wrong sign: expected %s, got %s" % + (repr(a), repr(b))) + + # test passes if either the absolute error or the relative + # error is sufficiently small. The defaults amount to an + # error of between 9 ulps and 19 ulps on an IEEE-754 compliant + # machine. + + try: + absolute_error = abs(b-a) + except OverflowError: + pass + else: + if absolute_error <= max(abs_err, rel_err * abs(a)): + return + self.fail("%s and %s are not sufficiently close" % (repr(a), repr(b))) def test_constants(self): e_expected = 2.71828182845904523536 pi_expected = 3.14159265358979323846 - self.assertAlmostEqual(cmath.pi, pi_expected, places=9, - msg="cmath.pi is %s; should be %s" % (cmath.pi, pi_expected)) - self.assertAlmostEqual(cmath.e, e_expected, places=9, - msg="cmath.e is %s; should be %s" % (cmath.e, e_expected)) + self.assertAlmostEqual(cmath.pi, pi_expected) + self.assertAlmostEqual(cmath.e, e_expected) def test_user_object(self): # Test automatic calling of __complex__ and __float__ by cmath @@ -109,13 +210,13 @@ class CMathTests(unittest.TestCase): for f in self.test_functions: # usual usage - self.cAssertAlmostEqual(f(MyComplex(cx_arg)), f(cx_arg)) - self.cAssertAlmostEqual(f(MyComplexOS(cx_arg)), f(cx_arg)) + self.assertEqual(f(MyComplex(cx_arg)), f(cx_arg)) + self.assertEqual(f(MyComplexOS(cx_arg)), f(cx_arg)) # other combinations of __float__ and __complex__ - self.cAssertAlmostEqual(f(FloatAndComplex()), f(cx_arg)) - self.cAssertAlmostEqual(f(FloatAndComplexOS()), f(cx_arg)) - self.cAssertAlmostEqual(f(JustFloat()), f(flt_arg)) - self.cAssertAlmostEqual(f(JustFloatOS()), f(flt_arg)) + self.assertEqual(f(FloatAndComplex()), f(cx_arg)) + self.assertEqual(f(FloatAndComplexOS()), f(cx_arg)) + self.assertEqual(f(JustFloat()), f(flt_arg)) + self.assertEqual(f(JustFloatOS()), f(flt_arg)) # TypeError should be raised for classes not providing # either __complex__ or __float__, even if they provide # __int__, __long__ or __index__. An old-style class @@ -138,7 +239,7 @@ class CMathTests(unittest.TestCase): # functions, by virtue of providing a __float__ method for f in self.test_functions: for arg in [2, 2.]: - self.cAssertAlmostEqual(f(arg), f(arg.__float__())) + self.assertEqual(f(arg), f(arg.__float__())) # but strings should give a TypeError for f in self.test_functions: @@ -182,12 +283,201 @@ class CMathTests(unittest.TestCase): float_fn = getattr(math, fn) complex_fn = getattr(cmath, fn) for v in values: - self.cAssertAlmostEqual(float_fn(v), complex_fn(v)) + z = complex_fn(v) + self.rAssertAlmostEqual(float_fn(v), z.real) + self.assertEqual(0., z.imag) # test two-argument version of log with various bases for base in [0.5, 2., 10.]: for v in positive: - self.cAssertAlmostEqual(cmath.log(v, base), math.log(v, base)) + z = cmath.log(v, base) + self.rAssertAlmostEqual(math.log(v, base), z.real) + self.assertEqual(0., z.imag) + + def test_specific_values(self): + if not float.__getformat__("double").startswith("IEEE"): + return + + def rect_complex(z): + """Wrapped version of rect that accepts a complex number instead of + two float arguments.""" + return cmath.rect(z.real, z.imag) + + def polar_complex(z): + """Wrapped version of polar that returns a complex number instead of + two floats.""" + return complex(*polar(z)) + + for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file): + arg = complex(ar, ai) + expected = complex(er, ei) + if fn == 'rect': + function = rect_complex + elif fn == 'polar': + function = polar_complex + else: + function = getattr(cmath, fn) + if 'divide-by-zero' in flags or 'invalid' in flags: + try: + actual = function(arg) + except ValueError: + continue + else: + test_str = "%s: %s(complex(%r, %r))" % (id, fn, ar, ai) + self.fail('ValueError not raised in test %s' % test_str) + + if 'overflow' in flags: + try: + actual = function(arg) + except OverflowError: + continue + else: + test_str = "%s: %s(complex(%r, %r))" % (id, fn, ar, ai) + self.fail('OverflowError not raised in test %s' % test_str) + + actual = function(arg) + + if 'ignore-real-sign' in flags: + actual = complex(abs(actual.real), actual.imag) + expected = complex(abs(expected.real), expected.imag) + if 'ignore-imag-sign' in flags: + actual = complex(actual.real, abs(actual.imag)) + expected = complex(expected.real, abs(expected.imag)) + + # for the real part of the log function, we allow an + # absolute error of up to 2e-15. + if fn in ('log', 'log10'): + real_abs_err = 2e-15 + else: + real_abs_err = 5e-323 + + if not (almostEqualF(expected.real, actual.real, + abs_err = real_abs_err) and + almostEqualF(expected.imag, actual.imag)): + error_message = ( + "%s: %s(complex(%r, %r))\n" % (id, fn, ar, ai) + + "Expected: complex(%r, %r)\n" % + (expected.real, expected.imag) + + "Received: complex(%r, %r)\n" % + (actual.real, actual.imag) + + "Received value insufficiently close to expected value.") + self.fail(error_message) + + def assertCISEqual(self, a, b): + eps = 1E-7 + if abs(a[0] - b[0]) > eps or abs(a[1] - b[1]) > eps: + self.fail((a ,b)) + + def test_polar(self): + self.assertCISEqual(polar(0), (0., 0.)) + self.assertCISEqual(polar(1.), (1., 0.)) + self.assertCISEqual(polar(-1.), (1., pi)) + self.assertCISEqual(polar(1j), (1., pi/2)) + self.assertCISEqual(polar(-1j), (1., -pi/2)) + + def test_phase(self): + self.assertAlmostEqual(phase(0), 0.) + self.assertAlmostEqual(phase(1.), 0.) + self.assertAlmostEqual(phase(-1.), pi) + self.assertAlmostEqual(phase(-1.+1E-300j), pi) + self.assertAlmostEqual(phase(-1.-1E-300j), -pi) + self.assertAlmostEqual(phase(1j), pi/2) + self.assertAlmostEqual(phase(-1j), -pi/2) + + # zeros + self.assertEqual(phase(complex(0.0, 0.0)), 0.0) + self.assertEqual(phase(complex(0.0, -0.0)), -0.0) + self.assertEqual(phase(complex(-0.0, 0.0)), pi) + self.assertEqual(phase(complex(-0.0, -0.0)), -pi) + + # infinities + self.assertAlmostEqual(phase(complex(-INF, -0.0)), -pi) + self.assertAlmostEqual(phase(complex(-INF, -2.3)), -pi) + self.assertAlmostEqual(phase(complex(-INF, -INF)), -0.75*pi) + self.assertAlmostEqual(phase(complex(-2.3, -INF)), -pi/2) + self.assertAlmostEqual(phase(complex(-0.0, -INF)), -pi/2) + self.assertAlmostEqual(phase(complex(0.0, -INF)), -pi/2) + self.assertAlmostEqual(phase(complex(2.3, -INF)), -pi/2) + self.assertAlmostEqual(phase(complex(INF, -INF)), -pi/4) + self.assertEqual(phase(complex(INF, -2.3)), -0.0) + self.assertEqual(phase(complex(INF, -0.0)), -0.0) + self.assertEqual(phase(complex(INF, 0.0)), 0.0) + self.assertEqual(phase(complex(INF, 2.3)), 0.0) + self.assertAlmostEqual(phase(complex(INF, INF)), pi/4) + self.assertAlmostEqual(phase(complex(2.3, INF)), pi/2) + self.assertAlmostEqual(phase(complex(0.0, INF)), pi/2) + self.assertAlmostEqual(phase(complex(-0.0, INF)), pi/2) + self.assertAlmostEqual(phase(complex(-2.3, INF)), pi/2) + self.assertAlmostEqual(phase(complex(-INF, INF)), 0.75*pi) + self.assertAlmostEqual(phase(complex(-INF, 2.3)), pi) + self.assertAlmostEqual(phase(complex(-INF, 0.0)), pi) + + # real or imaginary part NaN + for z in complex_nans: + self.assert_(math.isnan(phase(z))) + + def test_abs(self): + # zeros + for z in complex_zeros: + self.assertEqual(abs(z), 0.0) + + # infinities + for z in complex_infinities: + self.assertEqual(abs(z), INF) + + # real or imaginary part NaN + self.assertEqual(abs(complex(NAN, -INF)), INF) + self.assert_(math.isnan(abs(complex(NAN, -2.3)))) + self.assert_(math.isnan(abs(complex(NAN, -0.0)))) + self.assert_(math.isnan(abs(complex(NAN, 0.0)))) + self.assert_(math.isnan(abs(complex(NAN, 2.3)))) + self.assertEqual(abs(complex(NAN, INF)), INF) + self.assertEqual(abs(complex(-INF, NAN)), INF) + self.assert_(math.isnan(abs(complex(-2.3, NAN)))) + self.assert_(math.isnan(abs(complex(-0.0, NAN)))) + self.assert_(math.isnan(abs(complex(0.0, NAN)))) + self.assert_(math.isnan(abs(complex(2.3, NAN)))) + self.assertEqual(abs(complex(INF, NAN)), INF) + self.assert_(math.isnan(abs(complex(NAN, NAN)))) + + # result overflows + if float.__getformat__("double").startswith("IEEE"): + self.assertRaises(OverflowError, abs, complex(1.4e308, 1.4e308)) + + def assertCEqual(self, a, b): + eps = 1E-7 + if abs(a.real - b[0]) > eps or abs(a.imag - b[1]) > eps: + self.fail((a ,b)) + + def test_rect(self): + self.assertCEqual(rect(0, 0), (0, 0)) + self.assertCEqual(rect(1, 0), (1., 0)) + self.assertCEqual(rect(1, -pi), (-1., 0)) + self.assertCEqual(rect(1, pi/2), (0, 1.)) + self.assertCEqual(rect(1, -pi/2), (0, -1.)) + + def test_isnan(self): + self.failIf(cmath.isnan(1)) + self.failIf(cmath.isnan(1j)) + self.failIf(cmath.isnan(INF)) + self.assert_(cmath.isnan(NAN)) + self.assert_(cmath.isnan(complex(NAN, 0))) + self.assert_(cmath.isnan(complex(0, NAN))) + self.assert_(cmath.isnan(complex(NAN, NAN))) + self.assert_(cmath.isnan(complex(NAN, INF))) + self.assert_(cmath.isnan(complex(INF, NAN))) + + def test_isinf(self): + self.failIf(cmath.isinf(1)) + self.failIf(cmath.isinf(1j)) + self.failIf(cmath.isinf(NAN)) + self.assert_(cmath.isinf(INF)) + self.assert_(cmath.isinf(complex(INF, 0))) + self.assert_(cmath.isinf(complex(0, INF))) + self.assert_(cmath.isinf(complex(INF, INF))) + self.assert_(cmath.isinf(complex(NAN, INF))) + self.assert_(cmath.isinf(complex(INF, NAN))) + def test_main(): run_unittest(CMathTests) diff --git a/Lib/test/test_float.py b/Lib/test/test_float.py index b9ad8c5..e89d723 100644 --- a/Lib/test/test_float.py +++ b/Lib/test/test_float.py @@ -2,12 +2,12 @@ import unittest, struct import os from test import test_support +import math +from math import isinf, isnan +import operator -def isinf(x): - return x * 0.5 == x - -def isnan(x): - return x != x +INF = float("inf") +NAN = float("nan") class FormatFunctionsTestCase(unittest.TestCase): @@ -239,6 +239,17 @@ class InfNanTest(unittest.TestCase): self.assertEqual(str(1e300 * 1e300 * 0), "nan") self.assertEqual(str(-1e300 * 1e300 * 0), "nan") + def notest_float_nan(self): + self.assert_(NAN.is_nan()) + self.failIf(INF.is_nan()) + self.failIf((0.).is_nan()) + + def notest_float_inf(self): + self.assert_(INF.is_inf()) + self.failIf(NAN.is_inf()) + self.failIf((0.).is_inf()) + + def test_main(): test_support.run_unittest( FormatFunctionsTestCase, diff --git a/Lib/test/test_math.py b/Lib/test/test_math.py index aa44253..b8c23db 100644 --- a/Lib/test/test_math.py +++ b/Lib/test/test_math.py @@ -4,9 +4,45 @@ from test.test_support import run_unittest, verbose import unittest import math +import os +import sys -seps='1e-05' -eps = eval(seps) +eps = 1E-05 +NAN = float('nan') +INF = float('inf') +NINF = float('-inf') + +# locate file with test values +if __name__ == '__main__': + file = sys.argv[0] +else: + file = __file__ +test_dir = os.path.dirname(file) or os.curdir +test_file = os.path.join(test_dir, 'cmath_testcases.txt') + +def parse_testfile(fname): + """Parse a file with test values + + Empty lines or lines starting with -- are ignored + yields id, fn, arg_real, arg_imag, exp_real, exp_imag + """ + with open(fname) as fp: + for line in fp: + # skip comment lines and blank lines + if line.startswith('--') or not line.strip(): + continue + + lhs, rhs = line.split('->') + id, fn, arg_real, arg_imag = lhs.split() + rhs_pieces = rhs.split() + exp_real, exp_imag = rhs_pieces[0], rhs_pieces[1] + flags = rhs_pieces[2:] + + yield (id, fn, + float(arg_real), float(arg_imag), + float(exp_real), float(exp_imag), + flags + ) class MathTests(unittest.TestCase): @@ -28,18 +64,57 @@ class MathTests(unittest.TestCase): self.ftest('acos(-1)', math.acos(-1), math.pi) self.ftest('acos(0)', math.acos(0), math.pi/2) self.ftest('acos(1)', math.acos(1), 0) + self.assertRaises(ValueError, math.acos, INF) + self.assertRaises(ValueError, math.acos, NINF) + self.assert_(math.isnan(math.acos(NAN))) + + def testAcosh(self): + self.assertRaises(TypeError, math.acosh) + self.ftest('acosh(1)', math.acosh(1), 0) + self.ftest('acosh(2)', math.acosh(2), 1.3169578969248168) + self.assertRaises(ValueError, math.acosh, 0) + self.assertRaises(ValueError, math.acosh, -1) + self.assertEquals(math.acosh(INF), INF) + self.assertRaises(ValueError, math.acosh, NINF) + self.assert_(math.isnan(math.acosh(NAN))) def testAsin(self): self.assertRaises(TypeError, math.asin) self.ftest('asin(-1)', math.asin(-1), -math.pi/2) self.ftest('asin(0)', math.asin(0), 0) self.ftest('asin(1)', math.asin(1), math.pi/2) + self.assertRaises(ValueError, math.asin, INF) + self.assertRaises(ValueError, math.asin, NINF) + self.assert_(math.isnan(math.asin(NAN))) + + def testAsinh(self): + self.assertRaises(TypeError, math.asinh) + self.ftest('asinh(0)', math.asinh(0), 0) + self.ftest('asinh(1)', math.asinh(1), 0.88137358701954305) + self.ftest('asinh(-1)', math.asinh(-1), -0.88137358701954305) + self.assertEquals(math.asinh(INF), INF) + self.assertEquals(math.asinh(NINF), NINF) + self.assert_(math.isnan(math.asinh(NAN))) def testAtan(self): self.assertRaises(TypeError, math.atan) self.ftest('atan(-1)', math.atan(-1), -math.pi/4) self.ftest('atan(0)', math.atan(0), 0) self.ftest('atan(1)', math.atan(1), math.pi/4) + self.ftest('atan(inf)', math.atan(INF), math.pi/2) + self.ftest('atan(-inf)', math.atan(-INF), -math.pi/2) + self.assert_(math.isnan(math.atan(NAN))) + + def testAtanh(self): + self.assertRaises(TypeError, math.atan) + self.ftest('atanh(0)', math.atanh(0), 0) + self.ftest('atanh(0.5)', math.atanh(0.5), 0.54930614433405489) + self.ftest('atanh(-0.5)', math.atanh(-0.5), -0.54930614433405489) + self.assertRaises(ValueError, math.atanh, 1) + self.assertRaises(ValueError, math.atanh, -1) + self.assertRaises(ValueError, math.atanh, INF) + self.assertRaises(ValueError, math.atanh, NINF) + self.assert_(math.isnan(math.atanh(NAN))) def testAtan2(self): self.assertRaises(TypeError, math.atan2) @@ -58,6 +133,9 @@ class MathTests(unittest.TestCase): self.ftest('ceil(-0.5)', math.ceil(-0.5), 0) self.ftest('ceil(-1.0)', math.ceil(-1.0), -1) self.ftest('ceil(-1.5)', math.ceil(-1.5), -1) + #self.assertEquals(math.ceil(INF), INF) + #self.assertEquals(math.ceil(NINF), NINF) + #self.assert_(math.isnan(math.ceil(NAN))) class TestCeil: def __ceil__(self): @@ -72,17 +150,55 @@ class MathTests(unittest.TestCase): self.assertRaises(TypeError, math.ceil, t) self.assertRaises(TypeError, math.ceil, t, 0) + if float.__getformat__("double").startswith("IEEE"): + def testCopysign(self): + self.assertRaises(TypeError, math.copysign) + # copysign should let us distinguish signs of zeros + self.assertEquals(copysign(1., 0.), 1.) + self.assertEquals(copysign(1., -0.), -1.) + self.assertEquals(copysign(INF, 0.), INF) + self.assertEquals(copysign(INF, -0.), NINF) + self.assertEquals(copysign(NINF, 0.), INF) + self.assertEquals(copysign(NINF, -0.), NINF) + # and of infinities + self.assertEquals(copysign(1., INF), 1.) + self.assertEquals(copysign(1., NINF), -1.) + self.assertEquals(copysign(INF, INF), INF) + self.assertEquals(copysign(INF, NINF), NINF) + self.assertEquals(copysign(NINF, INF), INF) + self.assertEquals(copysign(NINF, NINF), NINF) + self.assert_(math.isnan(copysign(NAN, 1.))) + self.assert_(math.isnan(copysign(NAN, INF))) + self.assert_(math.isnan(copysign(NAN, NINF))) + self.assert_(math.isnan(copysign(NAN, NAN))) + # copysign(INF, NAN) may be INF or it may be NINF, since + # we don't know whether the sign bit of NAN is set on any + # given platform. + self.assert_(math.isinf(copysign(INF, NAN))) + # similarly, copysign(2., NAN) could be 2. or -2. + self.assertEquals(abs(copysign(2., NAN)), 2.) + def testCos(self): self.assertRaises(TypeError, math.cos) self.ftest('cos(-pi/2)', math.cos(-math.pi/2), 0) self.ftest('cos(0)', math.cos(0), 1) self.ftest('cos(pi/2)', math.cos(math.pi/2), 0) self.ftest('cos(pi)', math.cos(math.pi), -1) + try: + self.assert_(math.isnan(math.cos(INF))) + self.assert_(math.isnan(math.cos(NINF))) + except ValueError: + self.assertRaises(ValueError, math.cos, INF) + self.assertRaises(ValueError, math.cos, NINF) + self.assert_(math.isnan(math.cos(NAN))) def testCosh(self): self.assertRaises(TypeError, math.cosh) self.ftest('cosh(0)', math.cosh(0), 1) self.ftest('cosh(2)-2*cosh(1)**2', math.cosh(2)-2*math.cosh(1)**2, -1) # Thanks to Lambert + self.assertEquals(math.cosh(INF), INF) + self.assertEquals(math.cosh(NINF), INF) + self.assert_(math.isnan(math.cosh(NAN))) def testDegrees(self): self.assertRaises(TypeError, math.degrees) @@ -95,6 +211,9 @@ class MathTests(unittest.TestCase): self.ftest('exp(-1)', math.exp(-1), 1/math.e) self.ftest('exp(0)', math.exp(0), 1) self.ftest('exp(1)', math.exp(1), math.e) + self.assertEquals(math.exp(INF), INF) + self.assertEquals(math.exp(NINF), 0.) + self.assert_(math.isnan(math.exp(NAN))) def testFabs(self): self.assertRaises(TypeError, math.fabs) @@ -115,6 +234,9 @@ class MathTests(unittest.TestCase): # This fails on some platforms - so check it here self.ftest('floor(1.23e167)', math.floor(1.23e167), 1.23e167) self.ftest('floor(-1.23e167)', math.floor(-1.23e167), -1.23e167) + #self.assertEquals(math.ceil(INF), INF) + #self.assertEquals(math.ceil(NINF), NINF) + #self.assert_(math.isnan(math.floor(NAN))) class TestFloor: def __floor__(self): @@ -137,6 +259,19 @@ class MathTests(unittest.TestCase): self.ftest('fmod(-10,1)', math.fmod(-10,1), 0) self.ftest('fmod(-10,0.5)', math.fmod(-10,0.5), 0) self.ftest('fmod(-10,1.5)', math.fmod(-10,1.5), -1) + self.assert_(math.isnan(math.fmod(NAN, 1.))) + self.assert_(math.isnan(math.fmod(1., NAN))) + self.assert_(math.isnan(math.fmod(NAN, NAN))) + self.assertRaises(ValueError, math.fmod, 1., 0.) + self.assertRaises(ValueError, math.fmod, INF, 1.) + self.assertRaises(ValueError, math.fmod, NINF, 1.) + self.assertRaises(ValueError, math.fmod, INF, 0.) + self.assertEquals(math.fmod(3.0, INF), 3.0) + self.assertEquals(math.fmod(-3.0, INF), -3.0) + self.assertEquals(math.fmod(3.0, NINF), 3.0) + self.assertEquals(math.fmod(-3.0, NINF), -3.0) + self.assertEquals(math.fmod(0.0, 3.0), 0.0) + self.assertEquals(math.fmod(0.0, NINF), 0.0) def testFrexp(self): self.assertRaises(TypeError, math.frexp) @@ -152,10 +287,20 @@ class MathTests(unittest.TestCase): testfrexp('frexp(1)', math.frexp(1), (0.5, 1)) testfrexp('frexp(2)', math.frexp(2), (0.5, 2)) + self.assertEquals(math.frexp(INF)[0], INF) + self.assertEquals(math.frexp(NINF)[0], NINF) + self.assert_(math.isnan(math.frexp(NAN)[0])) + def testHypot(self): self.assertRaises(TypeError, math.hypot) self.ftest('hypot(0,0)', math.hypot(0,0), 0) self.ftest('hypot(3,4)', math.hypot(3,4), 5) + self.assertEqual(math.hypot(NAN, INF), INF) + self.assertEqual(math.hypot(INF, NAN), INF) + self.assertEqual(math.hypot(NAN, NINF), INF) + self.assertEqual(math.hypot(NINF, NAN), INF) + self.assert_(math.isnan(math.hypot(1.0, NAN))) + self.assert_(math.isnan(math.hypot(NAN, -2.0))) def testLdexp(self): self.assertRaises(TypeError, math.ldexp) @@ -163,6 +308,13 @@ class MathTests(unittest.TestCase): self.ftest('ldexp(1,1)', math.ldexp(1,1), 2) self.ftest('ldexp(1,-1)', math.ldexp(1,-1), 0.5) self.ftest('ldexp(-1,1)', math.ldexp(-1,1), -2) + self.assertRaises(OverflowError, math.ldexp, 1., 1000000) + self.assertRaises(OverflowError, math.ldexp, -1., 1000000) + self.assertEquals(math.ldexp(1., -1000000), 0.) + self.assertEquals(math.ldexp(-1., -1000000), -0.) + self.assertEquals(math.ldexp(INF, 30), INF) + self.assertEquals(math.ldexp(NINF, -213), NINF) + self.assert_(math.isnan(math.ldexp(NAN, 0))) def testLog(self): self.assertRaises(TypeError, math.log) @@ -172,12 +324,31 @@ class MathTests(unittest.TestCase): self.ftest('log(32,2)', math.log(32,2), 5) self.ftest('log(10**40, 10)', math.log(10**40, 10), 40) self.ftest('log(10**40, 10**20)', math.log(10**40, 10**20), 2) + self.assertEquals(math.log(INF), INF) + self.assertRaises(ValueError, math.log, NINF) + self.assert_(math.isnan(math.log(NAN))) + + def testLog1p(self): + self.assertRaises(TypeError, math.log1p) + self.ftest('log1p(1/e -1)', math.log1p(1/math.e-1), -1) + self.ftest('log1p(0)', math.log1p(0), 0) + self.ftest('log1p(e-1)', math.log1p(math.e-1), 1) + self.ftest('log1p(1)', math.log1p(1), math.log(2)) + self.assertEquals(math.log1p(INF), INF) + self.assertRaises(ValueError, math.log1p, NINF) + self.assert_(math.isnan(math.log1p(NAN))) + n= 2**90 + self.assertAlmostEquals(math.log1p(n), 62.383246250395075) + self.assertAlmostEquals(math.log1p(n), math.log1p(float(n))) def testLog10(self): self.assertRaises(TypeError, math.log10) self.ftest('log10(0.1)', math.log10(0.1), -1) self.ftest('log10(1)', math.log10(1), 0) self.ftest('log10(10)', math.log10(10), 1) + self.assertEquals(math.log(INF), INF) + self.assertRaises(ValueError, math.log10, NINF) + self.assert_(math.isnan(math.log10(NAN))) def testModf(self): self.assertRaises(TypeError, math.modf) @@ -191,12 +362,35 @@ class MathTests(unittest.TestCase): testmodf('modf(1.5)', math.modf(1.5), (0.5, 1.0)) testmodf('modf(-1.5)', math.modf(-1.5), (-0.5, -1.0)) + self.assertEquals(math.modf(INF), (0.0, INF)) + self.assertEquals(math.modf(NINF), (-0.0, NINF)) + + modf_nan = math.modf(NAN) + self.assert_(math.isnan(modf_nan[0])) + self.assert_(math.isnan(modf_nan[1])) + def testPow(self): self.assertRaises(TypeError, math.pow) self.ftest('pow(0,1)', math.pow(0,1), 0) self.ftest('pow(1,0)', math.pow(1,0), 1) self.ftest('pow(2,1)', math.pow(2,1), 2) self.ftest('pow(2,-1)', math.pow(2,-1), 0.5) + self.assertEqual(math.pow(INF, 1), INF) + self.assertEqual(math.pow(NINF, 1), NINF) + self.assertEqual((math.pow(1, INF)), 1.) + self.assertEqual((math.pow(1, NINF)), 1.) + self.assert_(math.isnan(math.pow(NAN, 1))) + self.assert_(math.isnan(math.pow(2, NAN))) + self.assert_(math.isnan(math.pow(0, NAN))) + self.assertEqual(math.pow(1, NAN), 1) + self.assertEqual(1**NAN, 1) + self.assertEqual(1**INF, 1) + self.assertEqual(1**NINF, 1) + self.assertEqual(1**0, 1) + self.assertEqual(1.**NAN, 1) + self.assertEqual(1.**INF, 1) + self.assertEqual(1.**NINF, 1) + self.assertEqual(1.**0, 1) def testRadians(self): self.assertRaises(TypeError, math.radians) @@ -209,29 +403,52 @@ class MathTests(unittest.TestCase): self.ftest('sin(0)', math.sin(0), 0) self.ftest('sin(pi/2)', math.sin(math.pi/2), 1) self.ftest('sin(-pi/2)', math.sin(-math.pi/2), -1) + try: + self.assert_(math.isnan(math.sin(INF))) + self.assert_(math.isnan(math.sin(NINF))) + except ValueError: + self.assertRaises(ValueError, math.sin, INF) + self.assertRaises(ValueError, math.sin, NINF) + self.assert_(math.isnan(math.sin(NAN))) def testSinh(self): self.assertRaises(TypeError, math.sinh) self.ftest('sinh(0)', math.sinh(0), 0) self.ftest('sinh(1)**2-cosh(1)**2', math.sinh(1)**2-math.cosh(1)**2, -1) self.ftest('sinh(1)+sinh(-1)', math.sinh(1)+math.sinh(-1), 0) + self.assertEquals(math.sinh(INF), INF) + self.assertEquals(math.sinh(-INF), -INF) + self.assert_(math.isnan(math.sinh(NAN))) def testSqrt(self): self.assertRaises(TypeError, math.sqrt) self.ftest('sqrt(0)', math.sqrt(0), 0) self.ftest('sqrt(1)', math.sqrt(1), 1) self.ftest('sqrt(4)', math.sqrt(4), 2) + self.assertEquals(math.sqrt(INF), INF) + self.assertRaises(ValueError, math.sqrt, NINF) + self.assert_(math.isnan(math.sqrt(NAN))) def testTan(self): self.assertRaises(TypeError, math.tan) self.ftest('tan(0)', math.tan(0), 0) self.ftest('tan(pi/4)', math.tan(math.pi/4), 1) self.ftest('tan(-pi/4)', math.tan(-math.pi/4), -1) + try: + self.assert_(math.isnan(math.tan(INF))) + self.assert_(math.isnan(math.tan(NINF))) + except: + self.assertRaises(ValueError, math.tan, INF) + self.assertRaises(ValueError, math.tan, NINF) + self.assert_(math.isnan(math.tan(NAN))) def testTanh(self): self.assertRaises(TypeError, math.tanh) self.ftest('tanh(0)', math.tanh(0), 0) self.ftest('tanh(1)+tanh(-1)', math.tanh(1)+math.tanh(-1), 0) + self.ftest('tanh(inf)', math.tanh(INF), 1) + self.ftest('tanh(-inf)', math.tanh(NINF), -1) + self.assert_(math.isnan(math.tanh(NAN))) def test_trunc(self): self.assertEqual(math.trunc(1), 1) @@ -326,9 +543,27 @@ class MathTests(unittest.TestCase): else: self.fail("sqrt(-1) didn't raise ValueError") + def test_testfile(self): + if not float.__getformat__("double").startswith("IEEE"): + return + for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file): + # Skip if either the input or result is complex, or if + # flags is nonempty + if ai != 0. or ei != 0. or flags: + continue + if fn in ['rect', 'polar']: + # no real versions of rect, polar + continue + func = getattr(math, fn) + result = func(ar) + self.ftest("%s:%s(%r)" % (id, fn, ar), result, er) def test_main(): - run_unittest(MathTests) + from doctest import DocFileSuite + suite = unittest.TestSuite() + suite.addTest(unittest.makeSuite(MathTests)) + suite.addTest(DocFileSuite("ieee754.txt")) + run_unittest(suite) if __name__ == '__main__': test_main() diff --git a/Makefile.pre.in b/Makefile.pre.in index 2a77354..d9627e0 100644 --- a/Makefile.pre.in +++ b/Makefile.pre.in @@ -276,6 +276,7 @@ PYTHON_OBJS= \ Python/peephole.o \ Python/pyarena.o \ Python/pyfpe.o \ + Python/pymath.o \ Python/pystate.o \ Python/pythonrun.o \ Python/structmember.o \ @@ -622,6 +623,7 @@ PYTHON_HEADERS= \ Include/pydebug.h \ Include/pyerrors.h \ Include/pyfpe.h \ + Include/pymath.h \ Include/pygetopt.h \ Include/pymem.h \ Include/pyport.h \ diff --git a/Modules/cmathmodule.c b/Modules/cmathmodule.c index ec48ce8..8e3c31e 100644 --- a/Modules/cmathmodule.c +++ b/Modules/cmathmodule.c @@ -3,31 +3,172 @@ /* much code borrowed from mathmodule.c */ #include "Python.h" +/* we need DBL_MAX, DBL_MIN, DBL_EPSILON, DBL_MANT_DIG and FLT_RADIX from + float.h. We assume that FLT_RADIX is either 2 or 16. */ +#include <float.h> -#ifndef M_PI -#define M_PI (3.141592653589793239) +#if (FLT_RADIX != 2 && FLT_RADIX != 16) +#error "Modules/cmathmodule.c expects FLT_RADIX to be 2 or 16" #endif -/* First, the C functions that do the real work */ +#ifndef M_LN2 +#define M_LN2 (0.6931471805599453094) /* natural log of 2 */ +#endif + +#ifndef M_LN10 +#define M_LN10 (2.302585092994045684) /* natural log of 10 */ +#endif -/* constants */ -static Py_complex c_one = {1., 0.}; -static Py_complex c_half = {0.5, 0.}; -static Py_complex c_i = {0., 1.}; -static Py_complex c_halfi = {0., 0.5}; +/* + CM_LARGE_DOUBLE is used to avoid spurious overflow in the sqrt, log, + inverse trig and inverse hyperbolic trig functions. Its log is used in the + evaluation of exp, cos, cosh, sin, sinh, tan, and tanh to avoid unecessary + overflow. + */ + +#define CM_LARGE_DOUBLE (DBL_MAX/4.) +#define CM_SQRT_LARGE_DOUBLE (sqrt(CM_LARGE_DOUBLE)) +#define CM_LOG_LARGE_DOUBLE (log(CM_LARGE_DOUBLE)) +#define CM_SQRT_DBL_MIN (sqrt(DBL_MIN)) + +/* + CM_SCALE_UP is an odd integer chosen such that multiplication by + 2**CM_SCALE_UP is sufficient to turn a subnormal into a normal. + CM_SCALE_DOWN is (-(CM_SCALE_UP+1)/2). These scalings are used to compute + square roots accurately when the real and imaginary parts of the argument + are subnormal. +*/ + +#if FLT_RADIX==2 +#define CM_SCALE_UP (2*(DBL_MANT_DIG/2) + 1) +#elif FLT_RADIX==16 +#define CM_SCALE_UP (4*DBL_MANT_DIG+1) +#endif +#define CM_SCALE_DOWN (-(CM_SCALE_UP+1)/2) /* forward declarations */ -static Py_complex c_log(Py_complex); -static Py_complex c_prodi(Py_complex); +static Py_complex c_asinh(Py_complex); +static Py_complex c_atanh(Py_complex); +static Py_complex c_cosh(Py_complex); +static Py_complex c_sinh(Py_complex); static Py_complex c_sqrt(Py_complex); +static Py_complex c_tanh(Py_complex); static PyObject * math_error(void); +/* Code to deal with special values (infinities, NaNs, etc.). */ + +/* special_type takes a double and returns an integer code indicating + the type of the double as follows: +*/ + +enum special_types { + ST_NINF, /* 0, negative infinity */ + ST_NEG, /* 1, negative finite number (nonzero) */ + ST_NZERO, /* 2, -0. */ + ST_PZERO, /* 3, +0. */ + ST_POS, /* 4, positive finite number (nonzero) */ + ST_PINF, /* 5, positive infinity */ + ST_NAN, /* 6, Not a Number */ +}; + +static enum special_types +special_type(double d) +{ + if (Py_IS_FINITE(d)) { + if (d != 0) { + if (copysign(1., d) == 1.) + return ST_POS; + else + return ST_NEG; + } + else { + if (copysign(1., d) == 1.) + return ST_PZERO; + else + return ST_NZERO; + } + } + if (Py_IS_NAN(d)) + return ST_NAN; + if (copysign(1., d) == 1.) + return ST_PINF; + else + return ST_NINF; +} + +#define SPECIAL_VALUE(z, table) \ + if (!Py_IS_FINITE((z).real) || !Py_IS_FINITE((z).imag)) { \ + errno = 0; \ + return table[special_type((z).real)] \ + [special_type((z).imag)]; \ + } + +#define P Py_MATH_PI +#define P14 0.25*Py_MATH_PI +#define P12 0.5*Py_MATH_PI +#define P34 0.75*Py_MATH_PI +#ifdef MS_WINDOWS +/* On Windows HUGE_VAL is an extern variable and not a constant. Since the + special value arrays need a constant we have to roll our own infinity + and nan. */ +# define INF (DBL_MAX*DBL_MAX) +# define N (INF*0.) +#else +# define INF Py_HUGE_VAL +# define N Py_NAN +#endif /* MS_WINDOWS */ +#define U -9.5426319407711027e33 /* unlikely value, used as placeholder */ + +/* First, the C functions that do the real work. Each of the c_* + functions computes and returns the C99 Annex G recommended result + and also sets errno as follows: errno = 0 if no floating-point + exception is associated with the result; errno = EDOM if C99 Annex + G recommends raising divide-by-zero or invalid for this result; and + errno = ERANGE where the overflow floating-point signal should be + raised. +*/ + +static Py_complex acos_special_values[7][7] = { + {{P34,INF},{P,INF}, {P,INF}, {P,-INF}, {P,-INF}, {P34,-INF},{N,INF}}, + {{P12,INF},{U,U}, {U,U}, {U,U}, {U,U}, {P12,-INF},{N,N}}, + {{P12,INF},{U,U}, {P12,0.},{P12,-0.},{U,U}, {P12,-INF},{P12,N}}, + {{P12,INF},{U,U}, {P12,0.},{P12,-0.},{U,U}, {P12,-INF},{P12,N}}, + {{P12,INF},{U,U}, {U,U}, {U,U}, {U,U}, {P12,-INF},{N,N}}, + {{P14,INF},{0.,INF},{0.,INF},{0.,-INF},{0.,-INF},{P14,-INF},{N,INF}}, + {{N,INF}, {N,N}, {N,N}, {N,N}, {N,N}, {N,-INF}, {N,N}} +}; static Py_complex -c_acos(Py_complex x) +c_acos(Py_complex z) { - return c_neg(c_prodi(c_log(c_sum(x,c_prod(c_i, - c_sqrt(c_diff(c_one,c_prod(x,x)))))))); + Py_complex s1, s2, r; + + SPECIAL_VALUE(z, acos_special_values); + + if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) { + /* avoid unnecessary overflow for large arguments */ + r.real = atan2(fabs(z.imag), z.real); + /* split into cases to make sure that the branch cut has the + correct continuity on systems with unsigned zeros */ + if (z.real < 0.) { + r.imag = -copysign(log(hypot(z.real/2., z.imag/2.)) + + M_LN2*2., z.imag); + } else { + r.imag = copysign(log(hypot(z.real/2., z.imag/2.)) + + M_LN2*2., -z.imag); + } + } else { + s1.real = 1.-z.real; + s1.imag = -z.imag; + s1 = c_sqrt(s1); + s2.real = 1.+z.real; + s2.imag = z.imag; + s2 = c_sqrt(s2); + r.real = 2.*atan2(s1.real, s2.real); + r.imag = asinh(s2.real*s1.imag - s2.imag*s1.real); + } + errno = 0; + return r; } PyDoc_STRVAR(c_acos_doc, @@ -36,14 +177,39 @@ PyDoc_STRVAR(c_acos_doc, "Return the arc cosine of x."); +static Py_complex acosh_special_values[7][7] = { + {{INF,-P34},{INF,-P}, {INF,-P}, {INF,P}, {INF,P}, {INF,P34},{INF,N}}, + {{INF,-P12},{U,U}, {U,U}, {U,U}, {U,U}, {INF,P12},{N,N}}, + {{INF,-P12},{U,U}, {0.,-P12},{0.,P12},{U,U}, {INF,P12},{N,N}}, + {{INF,-P12},{U,U}, {0.,-P12},{0.,P12},{U,U}, {INF,P12},{N,N}}, + {{INF,-P12},{U,U}, {U,U}, {U,U}, {U,U}, {INF,P12},{N,N}}, + {{INF,-P14},{INF,-0.},{INF,-0.},{INF,0.},{INF,0.},{INF,P14},{INF,N}}, + {{INF,N}, {N,N}, {N,N}, {N,N}, {N,N}, {INF,N}, {N,N}} +}; + static Py_complex -c_acosh(Py_complex x) +c_acosh(Py_complex z) { - Py_complex z; - z = c_sqrt(c_half); - z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x,c_one)), - c_sqrt(c_diff(x,c_one))))); - return c_sum(z, z); + Py_complex s1, s2, r; + + SPECIAL_VALUE(z, acosh_special_values); + + if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) { + /* avoid unnecessary overflow for large arguments */ + r.real = log(hypot(z.real/2., z.imag/2.)) + M_LN2*2.; + r.imag = atan2(z.imag, z.real); + } else { + s1.real = z.real - 1.; + s1.imag = z.imag; + s1 = c_sqrt(s1); + s2.real = z.real + 1.; + s2.imag = z.imag; + s2 = c_sqrt(s2); + r.real = asinh(s1.real*s2.real + s1.imag*s2.imag); + r.imag = 2.*atan2(s1.imag, s2.real); + } + errno = 0; + return r; } PyDoc_STRVAR(c_acosh_doc, @@ -53,14 +219,16 @@ PyDoc_STRVAR(c_acosh_doc, static Py_complex -c_asin(Py_complex x) +c_asin(Py_complex z) { - /* -i * log[(sqrt(1-x**2) + i*x] */ - const Py_complex squared = c_prod(x, x); - const Py_complex sqrt_1_minus_x_sq = c_sqrt(c_diff(c_one, squared)); - return c_neg(c_prodi(c_log( - c_sum(sqrt_1_minus_x_sq, c_prodi(x)) - ) ) ); + /* asin(z) = -i asinh(iz) */ + Py_complex s, r; + s.real = -z.imag; + s.imag = z.real; + s = c_asinh(s); + r.real = s.imag; + r.imag = -s.real; + return r; } PyDoc_STRVAR(c_asin_doc, @@ -69,14 +237,44 @@ PyDoc_STRVAR(c_asin_doc, "Return the arc sine of x."); +static Py_complex asinh_special_values[7][7] = { + {{-INF,-P14},{-INF,-0.},{-INF,-0.},{-INF,0.},{-INF,0.},{-INF,P14},{-INF,N}}, + {{-INF,-P12},{U,U}, {U,U}, {U,U}, {U,U}, {-INF,P12},{N,N}}, + {{-INF,-P12},{U,U}, {-0.,-0.}, {-0.,0.}, {U,U}, {-INF,P12},{N,N}}, + {{INF,-P12}, {U,U}, {0.,-0.}, {0.,0.}, {U,U}, {INF,P12}, {N,N}}, + {{INF,-P12}, {U,U}, {U,U}, {U,U}, {U,U}, {INF,P12}, {N,N}}, + {{INF,-P14}, {INF,-0.}, {INF,-0.}, {INF,0.}, {INF,0.}, {INF,P14}, {INF,N}}, + {{INF,N}, {N,N}, {N,-0.}, {N,0.}, {N,N}, {INF,N}, {N,N}} +}; + static Py_complex -c_asinh(Py_complex x) +c_asinh(Py_complex z) { - Py_complex z; - z = c_sqrt(c_half); - z = c_log(c_prod(z, c_sum(c_sqrt(c_sum(x, c_i)), - c_sqrt(c_diff(x, c_i))))); - return c_sum(z, z); + Py_complex s1, s2, r; + + SPECIAL_VALUE(z, asinh_special_values); + + if (fabs(z.real) > CM_LARGE_DOUBLE || fabs(z.imag) > CM_LARGE_DOUBLE) { + if (z.imag >= 0.) { + r.real = copysign(log(hypot(z.real/2., z.imag/2.)) + + M_LN2*2., z.real); + } else { + r.real = -copysign(log(hypot(z.real/2., z.imag/2.)) + + M_LN2*2., -z.real); + } + r.imag = atan2(z.imag, fabs(z.real)); + } else { + s1.real = 1.+z.imag; + s1.imag = -z.real; + s1 = c_sqrt(s1); + s2.real = 1.-z.imag; + s2.imag = z.real; + s2 = c_sqrt(s2); + r.real = asinh(s1.real*s2.imag-s2.real*s1.imag); + r.imag = atan2(z.imag, s1.real*s2.real-s1.imag*s2.imag); + } + errno = 0; + return r; } PyDoc_STRVAR(c_asinh_doc, @@ -86,9 +284,37 @@ PyDoc_STRVAR(c_asinh_doc, static Py_complex -c_atan(Py_complex x) +c_atan(Py_complex z) { - return c_prod(c_halfi,c_log(c_quot(c_sum(c_i,x),c_diff(c_i,x)))); + /* atan(z) = -i atanh(iz) */ + Py_complex s, r; + s.real = -z.imag; + s.imag = z.real; + s = c_atanh(s); + r.real = s.imag; + r.imag = -s.real; + return r; +} + +/* Windows screws up atan2 for inf and nan */ +static double +c_atan2(Py_complex z) +{ + if (Py_IS_NAN(z.real) || Py_IS_NAN(z.imag)) + return Py_NAN; + if (Py_IS_INFINITY(z.imag)) { + if (Py_IS_INFINITY(z.real)) { + if (copysign(1., z.real) == 1.) + /* atan2(+-inf, +inf) == +-pi/4 */ + return copysign(0.25*Py_MATH_PI, z.imag); + else + /* atan2(+-inf, -inf) == +-pi*3/4 */ + return copysign(0.75*Py_MATH_PI, z.imag); + } + /* atan2(+-inf, x) == +-pi/2 for finite x */ + return copysign(0.5*Py_MATH_PI, z.imag); + } + return atan2(z.imag, z.real); } PyDoc_STRVAR(c_atan_doc, @@ -97,10 +323,61 @@ PyDoc_STRVAR(c_atan_doc, "Return the arc tangent of x."); +static Py_complex atanh_special_values[7][7] = { + {{-0.,-P12},{-0.,-P12},{-0.,-P12},{-0.,P12},{-0.,P12},{-0.,P12},{-0.,N}}, + {{-0.,-P12},{U,U}, {U,U}, {U,U}, {U,U}, {-0.,P12},{N,N}}, + {{-0.,-P12},{U,U}, {-0.,-0.}, {-0.,0.}, {U,U}, {-0.,P12},{-0.,N}}, + {{0.,-P12}, {U,U}, {0.,-0.}, {0.,0.}, {U,U}, {0.,P12}, {0.,N}}, + {{0.,-P12}, {U,U}, {U,U}, {U,U}, {U,U}, {0.,P12}, {N,N}}, + {{0.,-P12}, {0.,-P12}, {0.,-P12}, {0.,P12}, {0.,P12}, {0.,P12}, {0.,N}}, + {{0.,-P12}, {N,N}, {N,N}, {N,N}, {N,N}, {0.,P12}, {N,N}} +}; + static Py_complex -c_atanh(Py_complex x) +c_atanh(Py_complex z) { - return c_prod(c_half,c_log(c_quot(c_sum(c_one,x),c_diff(c_one,x)))); + Py_complex r; + double ay, h; + + SPECIAL_VALUE(z, atanh_special_values); + + /* Reduce to case where z.real >= 0., using atanh(z) = -atanh(-z). */ + if (z.real < 0.) { + return c_neg(c_atanh(c_neg(z))); + } + + ay = fabs(z.imag); + if (z.real > CM_SQRT_LARGE_DOUBLE || ay > CM_SQRT_LARGE_DOUBLE) { + /* + if abs(z) is large then we use the approximation + atanh(z) ~ 1/z +/- i*pi/2 (+/- depending on the sign + of z.imag) + */ + h = hypot(z.real/2., z.imag/2.); /* safe from overflow */ + r.real = z.real/4./h/h; + /* the two negations in the next line cancel each other out + except when working with unsigned zeros: they're there to + ensure that the branch cut has the correct continuity on + systems that don't support signed zeros */ + r.imag = -copysign(Py_MATH_PI/2., -z.imag); + errno = 0; + } else if (z.real == 1. && ay < CM_SQRT_DBL_MIN) { + /* C99 standard says: atanh(1+/-0.) should be inf +/- 0i */ + if (ay == 0.) { + r.real = INF; + r.imag = z.imag; + errno = EDOM; + } else { + r.real = -log(sqrt(ay)/sqrt(hypot(ay, 2.))); + r.imag = copysign(atan2(2., -ay)/2, z.imag); + errno = 0; + } + } else { + r.real = log1p(4.*z.real/((1-z.real)*(1-z.real) + ay*ay))/4.; + r.imag = -atan2(-2.*z.imag, (1-z.real)*(1+z.real) - ay*ay)/2.; + errno = 0; + } + return r; } PyDoc_STRVAR(c_atanh_doc, @@ -110,11 +387,13 @@ PyDoc_STRVAR(c_atanh_doc, static Py_complex -c_cos(Py_complex x) +c_cos(Py_complex z) { + /* cos(z) = cosh(iz) */ Py_complex r; - r.real = cos(x.real)*cosh(x.imag); - r.imag = -sin(x.real)*sinh(x.imag); + r.real = -z.imag; + r.imag = z.real; + r = c_cosh(r); return r; } @@ -124,12 +403,64 @@ PyDoc_STRVAR(c_cos_doc, "Return the cosine of x."); +/* cosh(infinity + i*y) needs to be dealt with specially */ +static Py_complex cosh_special_values[7][7] = { + {{INF,N},{U,U},{INF,0.}, {INF,-0.},{U,U},{INF,N},{INF,N}}, + {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, + {{N,0.}, {U,U},{1.,0.}, {1.,-0.}, {U,U},{N,0.}, {N,0.}}, + {{N,0.}, {U,U},{1.,-0.}, {1.,0.}, {U,U},{N,0.}, {N,0.}}, + {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, + {{INF,N},{U,U},{INF,-0.},{INF,0.}, {U,U},{INF,N},{INF,N}}, + {{N,N}, {N,N},{N,0.}, {N,0.}, {N,N},{N,N}, {N,N}} +}; + static Py_complex -c_cosh(Py_complex x) +c_cosh(Py_complex z) { Py_complex r; - r.real = cos(x.imag)*cosh(x.real); - r.imag = sin(x.imag)*sinh(x.real); + double x_minus_one; + + /* special treatment for cosh(+/-inf + iy) if y is not a NaN */ + if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { + if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) && + (z.imag != 0.)) { + if (z.real > 0) { + r.real = copysign(INF, cos(z.imag)); + r.imag = copysign(INF, sin(z.imag)); + } + else { + r.real = copysign(INF, cos(z.imag)); + r.imag = -copysign(INF, sin(z.imag)); + } + } + else { + r = cosh_special_values[special_type(z.real)] + [special_type(z.imag)]; + } + /* need to set errno = EDOM if y is +/- infinity and x is not + a NaN */ + if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real)) + errno = EDOM; + else + errno = 0; + return r; + } + + if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) { + /* deal correctly with cases where cosh(z.real) overflows but + cosh(z) does not. */ + x_minus_one = z.real - copysign(1., z.real); + r.real = cos(z.imag) * cosh(x_minus_one) * Py_MATH_E; + r.imag = sin(z.imag) * sinh(x_minus_one) * Py_MATH_E; + } else { + r.real = cos(z.imag) * cosh(z.real); + r.imag = sin(z.imag) * sinh(z.real); + } + /* detect overflow, and set errno accordingly */ + if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag)) + errno = ERANGE; + else + errno = 0; return r; } @@ -139,13 +470,65 @@ PyDoc_STRVAR(c_cosh_doc, "Return the hyperbolic cosine of x."); +/* exp(infinity + i*y) and exp(-infinity + i*y) need special treatment for + finite y */ +static Py_complex exp_special_values[7][7] = { + {{0.,0.},{U,U},{0.,-0.}, {0.,0.}, {U,U},{0.,0.},{0.,0.}}, + {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, + {{N,N}, {U,U},{1.,-0.}, {1.,0.}, {U,U},{N,N}, {N,N}}, + {{N,N}, {U,U},{1.,-0.}, {1.,0.}, {U,U},{N,N}, {N,N}}, + {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, + {{INF,N},{U,U},{INF,-0.},{INF,0.},{U,U},{INF,N},{INF,N}}, + {{N,N}, {N,N},{N,-0.}, {N,0.}, {N,N},{N,N}, {N,N}} +}; + static Py_complex -c_exp(Py_complex x) +c_exp(Py_complex z) { Py_complex r; - double l = exp(x.real); - r.real = l*cos(x.imag); - r.imag = l*sin(x.imag); + double l; + + if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { + if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) + && (z.imag != 0.)) { + if (z.real > 0) { + r.real = copysign(INF, cos(z.imag)); + r.imag = copysign(INF, sin(z.imag)); + } + else { + r.real = copysign(0., cos(z.imag)); + r.imag = copysign(0., sin(z.imag)); + } + } + else { + r = exp_special_values[special_type(z.real)] + [special_type(z.imag)]; + } + /* need to set errno = EDOM if y is +/- infinity and x is not + a NaN and not -infinity */ + if (Py_IS_INFINITY(z.imag) && + (Py_IS_FINITE(z.real) || + (Py_IS_INFINITY(z.real) && z.real > 0))) + errno = EDOM; + else + errno = 0; + return r; + } + + if (z.real > CM_LOG_LARGE_DOUBLE) { + l = exp(z.real-1.); + r.real = l*cos(z.imag)*Py_MATH_E; + r.imag = l*sin(z.imag)*Py_MATH_E; + } else { + l = exp(z.real); + r.real = l*cos(z.imag); + r.imag = l*sin(z.imag); + } + /* detect overflow, and set errno accordingly */ + if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag)) + errno = ERANGE; + else + errno = 0; return r; } @@ -155,24 +538,97 @@ PyDoc_STRVAR(c_exp_doc, "Return the exponential value e**x."); +static Py_complex log_special_values[7][7] = { + {{INF,-P34},{INF,-P}, {INF,-P}, {INF,P}, {INF,P}, {INF,P34}, {INF,N}}, + {{INF,-P12},{U,U}, {U,U}, {U,U}, {U,U}, {INF,P12}, {N,N}}, + {{INF,-P12},{U,U}, {-INF,-P}, {-INF,P}, {U,U}, {INF,P12}, {N,N}}, + {{INF,-P12},{U,U}, {-INF,-0.},{-INF,0.},{U,U}, {INF,P12}, {N,N}}, + {{INF,-P12},{U,U}, {U,U}, {U,U}, {U,U}, {INF,P12}, {N,N}}, + {{INF,-P14},{INF,-0.},{INF,-0.}, {INF,0.}, {INF,0.},{INF,P14}, {INF,N}}, + {{INF,N}, {N,N}, {N,N}, {N,N}, {N,N}, {INF,N}, {N,N}} +}; + static Py_complex -c_log(Py_complex x) +c_log(Py_complex z) { + /* + The usual formula for the real part is log(hypot(z.real, z.imag)). + There are four situations where this formula is potentially + problematic: + + (1) the absolute value of z is subnormal. Then hypot is subnormal, + so has fewer than the usual number of bits of accuracy, hence may + have large relative error. This then gives a large absolute error + in the log. This can be solved by rescaling z by a suitable power + of 2. + + (2) the absolute value of z is greater than DBL_MAX (e.g. when both + z.real and z.imag are within a factor of 1/sqrt(2) of DBL_MAX) + Again, rescaling solves this. + + (3) the absolute value of z is close to 1. In this case it's + difficult to achieve good accuracy, at least in part because a + change of 1ulp in the real or imaginary part of z can result in a + change of billions of ulps in the correctly rounded answer. + + (4) z = 0. The simplest thing to do here is to call the + floating-point log with an argument of 0, and let its behaviour + (returning -infinity, signaling a floating-point exception, setting + errno, or whatever) determine that of c_log. So the usual formula + is fine here. + + */ + Py_complex r; - double l = hypot(x.real,x.imag); - r.imag = atan2(x.imag, x.real); - r.real = log(l); + double ax, ay, am, an, h; + + SPECIAL_VALUE(z, log_special_values); + + ax = fabs(z.real); + ay = fabs(z.imag); + + if (ax > CM_LARGE_DOUBLE || ay > CM_LARGE_DOUBLE) { + r.real = log(hypot(ax/2., ay/2.)) + M_LN2; + } else if (ax < DBL_MIN && ay < DBL_MIN) { + if (ax > 0. || ay > 0.) { + /* catch cases where hypot(ax, ay) is subnormal */ + r.real = log(hypot(ldexp(ax, DBL_MANT_DIG), + ldexp(ay, DBL_MANT_DIG))) - DBL_MANT_DIG*M_LN2; + } + else { + /* log(+/-0. +/- 0i) */ + r.real = -INF; + r.imag = atan2(z.imag, z.real); + errno = EDOM; + return r; + } + } else { + h = hypot(ax, ay); + if (0.71 <= h && h <= 1.73) { + am = ax > ay ? ax : ay; /* max(ax, ay) */ + an = ax > ay ? ay : ax; /* min(ax, ay) */ + r.real = log1p((am-1)*(am+1)+an*an)/2.; + } else { + r.real = log(h); + } + } + r.imag = atan2(z.imag, z.real); + errno = 0; return r; } static Py_complex -c_log10(Py_complex x) +c_log10(Py_complex z) { Py_complex r; - double l = hypot(x.real,x.imag); - r.imag = atan2(x.imag, x.real)/log(10.); - r.real = log10(l); + int errno_save; + + r = c_log(z); + errno_save = errno; /* just in case the divisions affect errno */ + r.real = r.real / M_LN10; + r.imag = r.imag / M_LN10; + errno = errno_save; return r; } @@ -182,23 +638,16 @@ PyDoc_STRVAR(c_log10_doc, "Return the base-10 logarithm of x."); -/* internal function not available from Python */ -static Py_complex -c_prodi(Py_complex x) -{ - Py_complex r; - r.real = -x.imag; - r.imag = x.real; - return r; -} - - static Py_complex -c_sin(Py_complex x) +c_sin(Py_complex z) { - Py_complex r; - r.real = sin(x.real) * cosh(x.imag); - r.imag = cos(x.real) * sinh(x.imag); + /* sin(z) = -i sin(iz) */ + Py_complex s, r; + s.real = -z.imag; + s.imag = z.real; + s = c_sinh(s); + r.real = s.imag; + r.imag = -s.real; return r; } @@ -208,12 +657,63 @@ PyDoc_STRVAR(c_sin_doc, "Return the sine of x."); +/* sinh(infinity + i*y) needs to be dealt with specially */ +static Py_complex sinh_special_values[7][7] = { + {{INF,N},{U,U},{-INF,-0.},{-INF,0.},{U,U},{INF,N},{INF,N}}, + {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, + {{0.,N}, {U,U},{-0.,-0.}, {-0.,0.}, {U,U},{0.,N}, {0.,N}}, + {{0.,N}, {U,U},{0.,-0.}, {0.,0.}, {U,U},{0.,N}, {0.,N}}, + {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, + {{INF,N},{U,U},{INF,-0.}, {INF,0.}, {U,U},{INF,N},{INF,N}}, + {{N,N}, {N,N},{N,-0.}, {N,0.}, {N,N},{N,N}, {N,N}} +}; + static Py_complex -c_sinh(Py_complex x) +c_sinh(Py_complex z) { Py_complex r; - r.real = cos(x.imag) * sinh(x.real); - r.imag = sin(x.imag) * cosh(x.real); + double x_minus_one; + + /* special treatment for sinh(+/-inf + iy) if y is finite and + nonzero */ + if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { + if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) + && (z.imag != 0.)) { + if (z.real > 0) { + r.real = copysign(INF, cos(z.imag)); + r.imag = copysign(INF, sin(z.imag)); + } + else { + r.real = -copysign(INF, cos(z.imag)); + r.imag = copysign(INF, sin(z.imag)); + } + } + else { + r = sinh_special_values[special_type(z.real)] + [special_type(z.imag)]; + } + /* need to set errno = EDOM if y is +/- infinity and x is not + a NaN */ + if (Py_IS_INFINITY(z.imag) && !Py_IS_NAN(z.real)) + errno = EDOM; + else + errno = 0; + return r; + } + + if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) { + x_minus_one = z.real - copysign(1., z.real); + r.real = cos(z.imag) * sinh(x_minus_one) * Py_MATH_E; + r.imag = sin(z.imag) * cosh(x_minus_one) * Py_MATH_E; + } else { + r.real = cos(z.imag) * sinh(z.real); + r.imag = sin(z.imag) * cosh(z.real); + } + /* detect overflow, and set errno accordingly */ + if (Py_IS_INFINITY(r.real) || Py_IS_INFINITY(r.imag)) + errno = ERANGE; + else + errno = 0; return r; } @@ -223,29 +723,80 @@ PyDoc_STRVAR(c_sinh_doc, "Return the hyperbolic sine of x."); +static Py_complex sqrt_special_values[7][7] = { + {{INF,-INF},{0.,-INF},{0.,-INF},{0.,INF},{0.,INF},{INF,INF},{N,INF}}, + {{INF,-INF},{U,U}, {U,U}, {U,U}, {U,U}, {INF,INF},{N,N}}, + {{INF,-INF},{U,U}, {0.,-0.}, {0.,0.}, {U,U}, {INF,INF},{N,N}}, + {{INF,-INF},{U,U}, {0.,-0.}, {0.,0.}, {U,U}, {INF,INF},{N,N}}, + {{INF,-INF},{U,U}, {U,U}, {U,U}, {U,U}, {INF,INF},{N,N}}, + {{INF,-INF},{INF,-0.},{INF,-0.},{INF,0.},{INF,0.},{INF,INF},{INF,N}}, + {{INF,-INF},{N,N}, {N,N}, {N,N}, {N,N}, {INF,INF},{N,N}} +}; + static Py_complex -c_sqrt(Py_complex x) +c_sqrt(Py_complex z) { + /* + Method: use symmetries to reduce to the case when x = z.real and y + = z.imag are nonnegative. Then the real part of the result is + given by + + s = sqrt((x + hypot(x, y))/2) + + and the imaginary part is + + d = (y/2)/s + + If either x or y is very large then there's a risk of overflow in + computation of the expression x + hypot(x, y). We can avoid this + by rewriting the formula for s as: + + s = 2*sqrt(x/8 + hypot(x/8, y/8)) + + This costs us two extra multiplications/divisions, but avoids the + overhead of checking for x and y large. + + If both x and y are subnormal then hypot(x, y) may also be + subnormal, so will lack full precision. We solve this by rescaling + x and y by a sufficiently large power of 2 to ensure that x and y + are normal. + */ + + Py_complex r; double s,d; - if (x.real == 0. && x.imag == 0.) - r = x; - else { - s = sqrt(0.5*(fabs(x.real) + hypot(x.real,x.imag))); - d = 0.5*x.imag/s; - if (x.real > 0.) { - r.real = s; - r.imag = d; - } - else if (x.imag >= 0.) { - r.real = d; - r.imag = s; - } - else { - r.real = -d; - r.imag = -s; - } + double ax, ay; + + SPECIAL_VALUE(z, sqrt_special_values); + + if (z.real == 0. && z.imag == 0.) { + r.real = 0.; + r.imag = z.imag; + return r; + } + + ax = fabs(z.real); + ay = fabs(z.imag); + + if (ax < DBL_MIN && ay < DBL_MIN && (ax > 0. || ay > 0.)) { + /* here we catch cases where hypot(ax, ay) is subnormal */ + ax = ldexp(ax, CM_SCALE_UP); + s = ldexp(sqrt(ax + hypot(ax, ldexp(ay, CM_SCALE_UP))), + CM_SCALE_DOWN); + } else { + ax /= 8.; + s = 2.*sqrt(ax + hypot(ax, ay/8.)); + } + d = ay/(2.*s); + + if (z.real >= 0.) { + r.real = s; + r.imag = copysign(d, z.imag); + } else { + r.real = d; + r.imag = copysign(s, z.imag); } + errno = 0; return r; } @@ -256,23 +807,15 @@ PyDoc_STRVAR(c_sqrt_doc, static Py_complex -c_tan(Py_complex x) +c_tan(Py_complex z) { - Py_complex r; - double sr,cr,shi,chi; - double rs,is,rc,ic; - double d; - sr = sin(x.real); - cr = cos(x.real); - shi = sinh(x.imag); - chi = cosh(x.imag); - rs = sr * chi; - is = cr * shi; - rc = cr * chi; - ic = -sr * shi; - d = rc*rc + ic * ic; - r.real = (rs*rc + is*ic) / d; - r.imag = (is*rc - rs*ic) / d; + /* tan(z) = -i tanh(iz) */ + Py_complex s, r; + s.real = -z.imag; + s.imag = z.real; + s = c_tanh(s); + r.real = s.imag; + r.imag = -s.real; return r; } @@ -282,24 +825,78 @@ PyDoc_STRVAR(c_tan_doc, "Return the tangent of x."); +/* tanh(infinity + i*y) needs to be dealt with specially */ +static Py_complex tanh_special_values[7][7] = { + {{-1.,0.},{U,U},{-1.,-0.},{-1.,0.},{U,U},{-1.,0.},{-1.,0.}}, + {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, + {{N,N}, {U,U},{-0.,-0.},{-0.,0.},{U,U},{N,N}, {N,N}}, + {{N,N}, {U,U},{0.,-0.}, {0.,0.}, {U,U},{N,N}, {N,N}}, + {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, + {{1.,0.}, {U,U},{1.,-0.}, {1.,0.}, {U,U},{1.,0.}, {1.,0.}}, + {{N,N}, {N,N},{N,-0.}, {N,0.}, {N,N},{N,N}, {N,N}} +}; + static Py_complex -c_tanh(Py_complex x) +c_tanh(Py_complex z) { + /* Formula: + + tanh(x+iy) = (tanh(x)(1+tan(y)^2) + i tan(y)(1-tanh(x))^2) / + (1+tan(y)^2 tanh(x)^2) + + To avoid excessive roundoff error, 1-tanh(x)^2 is better computed + as 1/cosh(x)^2. When abs(x) is large, we approximate 1-tanh(x)^2 + by 4 exp(-2*x) instead, to avoid possible overflow in the + computation of cosh(x). + + */ + Py_complex r; - double si,ci,shr,chr; - double rs,is,rc,ic; - double d; - si = sin(x.imag); - ci = cos(x.imag); - shr = sinh(x.real); - chr = cosh(x.real); - rs = ci * shr; - is = si * chr; - rc = ci * chr; - ic = si * shr; - d = rc*rc + ic*ic; - r.real = (rs*rc + is*ic) / d; - r.imag = (is*rc - rs*ic) / d; + double tx, ty, cx, txty, denom; + + /* special treatment for tanh(+/-inf + iy) if y is finite and + nonzero */ + if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { + if (Py_IS_INFINITY(z.real) && Py_IS_FINITE(z.imag) + && (z.imag != 0.)) { + if (z.real > 0) { + r.real = 1.0; + r.imag = copysign(0., + 2.*sin(z.imag)*cos(z.imag)); + } + else { + r.real = -1.0; + r.imag = copysign(0., + 2.*sin(z.imag)*cos(z.imag)); + } + } + else { + r = tanh_special_values[special_type(z.real)] + [special_type(z.imag)]; + } + /* need to set errno = EDOM if z.imag is +/-infinity and + z.real is finite */ + if (Py_IS_INFINITY(z.imag) && Py_IS_FINITE(z.real)) + errno = EDOM; + else + errno = 0; + return r; + } + + /* danger of overflow in 2.*z.imag !*/ + if (fabs(z.real) > CM_LOG_LARGE_DOUBLE) { + r.real = copysign(1., z.real); + r.imag = 4.*sin(z.imag)*cos(z.imag)*exp(-2.*fabs(z.real)); + } else { + tx = tanh(z.real); + ty = tan(z.imag); + cx = 1./cosh(z.real); + txty = tx*ty; + denom = 1. + txty*txty; + r.real = tx*(1.+ty*ty)/denom; + r.imag = ((ty/denom)*cx)*cx; + } + errno = 0; return r; } @@ -308,6 +905,7 @@ PyDoc_STRVAR(c_tanh_doc, "\n" "Return the hyperbolic tangent of x."); + static PyObject * cmath_log(PyObject *self, PyObject *args) { @@ -325,7 +923,6 @@ cmath_log(PyObject *self, PyObject *args) PyFPE_END_PROTECT(x) if (errno != 0) return math_error(); - Py_ADJUST_ERANGE2(x.real, x.imag); return PyComplex_FromCComplex(x); } @@ -351,18 +948,24 @@ math_error(void) static PyObject * math_1(PyObject *args, Py_complex (*func)(Py_complex)) { - Py_complex x; + Py_complex x,r ; if (!PyArg_ParseTuple(args, "D", &x)) return NULL; errno = 0; - PyFPE_START_PROTECT("complex function", return 0) - x = (*func)(x); - PyFPE_END_PROTECT(x) - Py_ADJUST_ERANGE2(x.real, x.imag); - if (errno != 0) - return math_error(); - else - return PyComplex_FromCComplex(x); + PyFPE_START_PROTECT("complex function", return 0); + r = (*func)(x); + PyFPE_END_PROTECT(r); + if (errno == EDOM) { + PyErr_SetString(PyExc_ValueError, "math domain error"); + return NULL; + } + else if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, "math range error"); + return NULL; + } + else { + return PyComplex_FromCComplex(r); + } } #define FUNC1(stubname, func) \ @@ -386,6 +989,151 @@ FUNC1(cmath_sqrt, c_sqrt) FUNC1(cmath_tan, c_tan) FUNC1(cmath_tanh, c_tanh) +static PyObject * +cmath_phase(PyObject *self, PyObject *args) +{ + Py_complex z; + double phi; + if (!PyArg_ParseTuple(args, "D:phase", &z)) + return NULL; + errno = 0; + PyFPE_START_PROTECT("arg function", return 0) + phi = c_atan2(z); + PyFPE_END_PROTECT(r) + if (errno != 0) + return math_error(); + else + return PyFloat_FromDouble(phi); +} + +PyDoc_STRVAR(cmath_phase_doc, +"phase(z) -> float\n\n\ +Return argument, also known as the phase angle, of a complex."); + +static PyObject * +cmath_polar(PyObject *self, PyObject *args) +{ + Py_complex z; + double r, phi; + if (!PyArg_ParseTuple(args, "D:polar", &z)) + return NULL; + PyFPE_START_PROTECT("polar function", return 0) + phi = c_atan2(z); /* should not cause any exception */ + r = c_abs(z); /* sets errno to ERANGE on overflow; otherwise 0 */ + PyFPE_END_PROTECT(r) + if (errno != 0) + return math_error(); + else + return Py_BuildValue("dd", r, phi); +} + +PyDoc_STRVAR(cmath_polar_doc, +"polar(z) -> r: float, phi: float\n\n\ +Convert a complex from rectangular coordinates to polar coordinates. r is\n\ +the distance from 0 and phi the phase angle."); + +/* + rect() isn't covered by the C99 standard, but it's not too hard to + figure out 'spirit of C99' rules for special value handing: + + rect(x, t) should behave like exp(log(x) + it) for positive-signed x + rect(x, t) should behave like -exp(log(-x) + it) for negative-signed x + rect(nan, t) should behave like exp(nan + it), except that rect(nan, 0) + gives nan +- i0 with the sign of the imaginary part unspecified. + +*/ + +static Py_complex rect_special_values[7][7] = { + {{INF,N},{U,U},{-INF,0.},{-INF,-0.},{U,U},{INF,N},{INF,N}}, + {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, + {{0.,0.},{U,U},{-0.,0.}, {-0.,-0.}, {U,U},{0.,0.},{0.,0.}}, + {{0.,0.},{U,U},{0.,-0.}, {0.,0.}, {U,U},{0.,0.},{0.,0.}}, + {{N,N}, {U,U},{U,U}, {U,U}, {U,U},{N,N}, {N,N}}, + {{INF,N},{U,U},{INF,-0.},{INF,0.}, {U,U},{INF,N},{INF,N}}, + {{N,N}, {N,N},{N,0.}, {N,0.}, {N,N},{N,N}, {N,N}} +}; + +static PyObject * +cmath_rect(PyObject *self, PyObject *args) +{ + Py_complex z; + double r, phi; + if (!PyArg_ParseTuple(args, "dd:rect", &r, &phi)) + return NULL; + errno = 0; + PyFPE_START_PROTECT("rect function", return 0) + + /* deal with special values */ + if (!Py_IS_FINITE(r) || !Py_IS_FINITE(phi)) { + /* if r is +/-infinity and phi is finite but nonzero then + result is (+-INF +-INF i), but we need to compute cos(phi) + and sin(phi) to figure out the signs. */ + if (Py_IS_INFINITY(r) && (Py_IS_FINITE(phi) + && (phi != 0.))) { + if (r > 0) { + z.real = copysign(INF, cos(phi)); + z.imag = copysign(INF, sin(phi)); + } + else { + z.real = -copysign(INF, cos(phi)); + z.imag = -copysign(INF, sin(phi)); + } + } + else { + z = rect_special_values[special_type(r)] + [special_type(phi)]; + } + /* need to set errno = EDOM if r is a nonzero number and phi + is infinite */ + if (r != 0. && !Py_IS_NAN(r) && Py_IS_INFINITY(phi)) + errno = EDOM; + else + errno = 0; + } + else { + z.real = r * cos(phi); + z.imag = r * sin(phi); + errno = 0; + } + + PyFPE_END_PROTECT(z) + if (errno != 0) + return math_error(); + else + return PyComplex_FromCComplex(z); +} + +PyDoc_STRVAR(cmath_rect_doc, +"rect(r, phi) -> z: complex\n\n\ +Convert from polar coordinates to rectangular coordinates."); + +static PyObject * +cmath_isnan(PyObject *self, PyObject *args) +{ + Py_complex z; + if (!PyArg_ParseTuple(args, "D:isnan", &z)) + return NULL; + return PyBool_FromLong(Py_IS_NAN(z.real) || Py_IS_NAN(z.imag)); +} + +PyDoc_STRVAR(cmath_isnan_doc, +"isnan(z) -> bool\n\ +Checks if the real or imaginary part of z not a number (NaN)"); + +static PyObject * +cmath_isinf(PyObject *self, PyObject *args) +{ + Py_complex z; + if (!PyArg_ParseTuple(args, "D:isnan", &z)) + return NULL; + return PyBool_FromLong(Py_IS_INFINITY(z.real) || + Py_IS_INFINITY(z.imag)); +} + +PyDoc_STRVAR(cmath_isinf_doc, +"isinf(z) -> bool\n\ +Checks if the real or imaginary part of z is infinite."); + PyDoc_STRVAR(module_doc, "This module is always available. It provides access to mathematical\n" @@ -401,8 +1149,13 @@ static PyMethodDef cmath_methods[] = { {"cos", cmath_cos, METH_VARARGS, c_cos_doc}, {"cosh", cmath_cosh, METH_VARARGS, c_cosh_doc}, {"exp", cmath_exp, METH_VARARGS, c_exp_doc}, + {"isinf", cmath_isinf, METH_VARARGS, cmath_isinf_doc}, + {"isnan", cmath_isnan, METH_VARARGS, cmath_isnan_doc}, {"log", cmath_log, METH_VARARGS, cmath_log_doc}, {"log10", cmath_log10, METH_VARARGS, c_log10_doc}, + {"phase", cmath_phase, METH_VARARGS, cmath_phase_doc}, + {"polar", cmath_polar, METH_VARARGS, cmath_polar_doc}, + {"rect", cmath_rect, METH_VARARGS, cmath_rect_doc}, {"sin", cmath_sin, METH_VARARGS, c_sin_doc}, {"sinh", cmath_sinh, METH_VARARGS, c_sinh_doc}, {"sqrt", cmath_sqrt, METH_VARARGS, c_sqrt_doc}, @@ -421,6 +1174,6 @@ initcmath(void) return; PyModule_AddObject(m, "pi", - PyFloat_FromDouble(atan(1.0) * 4.0)); - PyModule_AddObject(m, "e", PyFloat_FromDouble(exp(1.0))); + PyFloat_FromDouble(Py_MATH_PI)); + PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E)); } diff --git a/Modules/mathmodule.c b/Modules/mathmodule.c index cf2bf64..8c48316 100644 --- a/Modules/mathmodule.c +++ b/Modules/mathmodule.c @@ -1,17 +1,60 @@ /* Math module -- standard C math library functions, pi and e */ +/* Here are some comments from Tim Peters, extracted from the + discussion attached to http://bugs.python.org/issue1640. They + describe the general aims of the math module with respect to + special values, IEEE-754 floating-point exceptions, and Python + exceptions. + +These are the "spirit of 754" rules: + +1. If the mathematical result is a real number, but of magnitude too +large to approximate by a machine float, overflow is signaled and the +result is an infinity (with the appropriate sign). + +2. If the mathematical result is a real number, but of magnitude too +small to approximate by a machine float, underflow is signaled and the +result is a zero (with the appropriate sign). + +3. At a singularity (a value x such that the limit of f(y) as y +approaches x exists and is an infinity), "divide by zero" is signaled +and the result is an infinity (with the appropriate sign). This is +complicated a little by that the left-side and right-side limits may +not be the same; e.g., 1/x approaches +inf or -inf as x approaches 0 +from the positive or negative directions. In that specific case, the +sign of the zero determines the result of 1/0. + +4. At a point where a function has no defined result in the extended +reals (i.e., the reals plus an infinity or two), invalid operation is +signaled and a NaN is returned. + +And these are what Python has historically /tried/ to do (but not +always successfully, as platform libm behavior varies a lot): + +For #1, raise OverflowError. + +For #2, return a zero (with the appropriate sign if that happens by +accident ;-)). + +For #3 and #4, raise ValueError. It may have made sense to raise +Python's ZeroDivisionError in #3, but historically that's only been +raised for division by zero and mod by zero. + +*/ + +/* + In general, on an IEEE-754 platform the aim is to follow the C99 + standard, including Annex 'F', whenever possible. Where the + standard recommends raising the 'divide-by-zero' or 'invalid' + floating-point exceptions, Python should raise a ValueError. Where + the standard recommends raising 'overflow', Python should raise an + OverflowError. In all other circumstances a value should be + returned. + */ + #include "Python.h" #include "longintrepr.h" /* just for SHIFT */ -#ifndef _MSC_VER -#ifndef __STDC__ -extern double fmod (double, double); -extern double frexp (double, int *); -extern double ldexp (double, int); -extern double modf (double, double *); -#endif /* __STDC__ */ -#endif /* _MSC_VER */ - #ifdef _OSF_SOURCE /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */ extern double copysign(double, double); @@ -52,41 +95,111 @@ is_error(double x) return result; } +/* + math_1 is used to wrap a libm function f that takes a double + arguments and returns a double. + + The error reporting follows these rules, which are designed to do + the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 + platforms. + + - a NaN result from non-NaN inputs causes ValueError to be raised + - an infinite result from finite inputs causes OverflowError to be + raised if can_overflow is 1, or raises ValueError if can_overflow + is 0. + - if the result is finite and errno == EDOM then ValueError is + raised + - if the result is finite and nonzero and errno == ERANGE then + OverflowError is raised + + The last rule is used to catch overflow on platforms which follow + C89 but for which HUGE_VAL is not an infinity. + + For the majority of one-argument functions these rules are enough + to ensure that Python's functions behave as specified in 'Annex F' + of the C99 standard, with the 'invalid' and 'divide-by-zero' + floating-point exceptions mapping to Python's ValueError and the + 'overflow' floating-point exception mapping to OverflowError. + math_1 only works for functions that don't have singularities *and* + the possibility of overflow; fortunately, that covers everything we + care about right now. +*/ + static PyObject * math_1_to_whatever(PyObject *arg, double (*func) (double), - PyObject *(*from_double_func) (double)) + PyObject *(*from_double_func) (double), + int can_overflow) { - double x = PyFloat_AsDouble(arg); + double x, r; + x = PyFloat_AsDouble(arg); if (x == -1.0 && PyErr_Occurred()) return NULL; errno = 0; - PyFPE_START_PROTECT("in math_1", return 0) - x = (*func)(x); - PyFPE_END_PROTECT(x) - Py_SET_ERRNO_ON_MATH_ERROR(x); - if (errno && is_error(x)) + PyFPE_START_PROTECT("in math_1", return 0); + r = (*func)(x); + PyFPE_END_PROTECT(r); + if (Py_IS_NAN(r)) { + if (!Py_IS_NAN(x)) + errno = EDOM; + else + errno = 0; + } + else if (Py_IS_INFINITY(r)) { + if (Py_IS_FINITE(x)) + errno = can_overflow ? ERANGE : EDOM; + else + errno = 0; + } + if (errno && is_error(r)) return NULL; else - return (*from_double_func)(x); + return (*from_double_func)(r); } +/* + math_2 is used to wrap a libm function f that takes two double + arguments and returns a double. + + The error reporting follows these rules, which are designed to do + the right thing on C89/C99 platforms and IEEE 754/non IEEE 754 + platforms. + + - a NaN result from non-NaN inputs causes ValueError to be raised + - an infinite result from finite inputs causes OverflowError to be + raised. + - if the result is finite and errno == EDOM then ValueError is + raised + - if the result is finite and nonzero and errno == ERANGE then + OverflowError is raised + + The last rule is used to catch overflow on platforms which follow + C89 but for which HUGE_VAL is not an infinity. + + For most two-argument functions (copysign, fmod, hypot, atan2) + these rules are enough to ensure that Python's functions behave as + specified in 'Annex F' of the C99 standard, with the 'invalid' and + 'divide-by-zero' floating-point exceptions mapping to Python's + ValueError and the 'overflow' floating-point exception mapping to + OverflowError. +*/ + static PyObject * -math_1(PyObject *arg, double (*func) (double)) +math_1(PyObject *arg, double (*func) (double), int can_overflow) { - return math_1_to_whatever(arg, func, PyFloat_FromDouble); + return math_1_to_whatever(arg, func, PyFloat_FromDouble, can_overflow); } static PyObject * -math_1_to_int(PyObject *arg, double (*func) (double)) +math_1_to_int(PyObject *arg, double (*func) (double), int can_overflow) { - return math_1_to_whatever(arg, func, PyLong_FromDouble); + return math_1_to_whatever(arg, func, PyLong_FromDouble, can_overflow); } static PyObject * math_2(PyObject *args, double (*func) (double, double), char *funcname) { PyObject *ox, *oy; - double x, y; + double x, y, r; if (! PyArg_UnpackTuple(args, funcname, 2, 2, &ox, &oy)) return NULL; x = PyFloat_AsDouble(ox); @@ -94,19 +207,30 @@ math_2(PyObject *args, double (*func) (double, double), char *funcname) if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) return NULL; errno = 0; - PyFPE_START_PROTECT("in math_2", return 0) - x = (*func)(x, y); - PyFPE_END_PROTECT(x) - Py_SET_ERRNO_ON_MATH_ERROR(x); - if (errno && is_error(x)) + PyFPE_START_PROTECT("in math_2", return 0); + r = (*func)(x, y); + PyFPE_END_PROTECT(r); + if (Py_IS_NAN(r)) { + if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) + errno = EDOM; + else + errno = 0; + } + else if (Py_IS_INFINITY(r)) { + if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) + errno = ERANGE; + else + errno = 0; + } + if (errno && is_error(r)) return NULL; else - return PyFloat_FromDouble(x); + return PyFloat_FromDouble(r); } -#define FUNC1(funcname, func, docstring) \ +#define FUNC1(funcname, func, can_overflow, docstring) \ static PyObject * math_##funcname(PyObject *self, PyObject *args) { \ - return math_1(args, func); \ + return math_1(args, func, can_overflow); \ }\ PyDoc_STRVAR(math_##funcname##_doc, docstring); @@ -116,15 +240,21 @@ math_2(PyObject *args, double (*func) (double, double), char *funcname) }\ PyDoc_STRVAR(math_##funcname##_doc, docstring); -FUNC1(acos, acos, +FUNC1(acos, acos, 0, "acos(x)\n\nReturn the arc cosine (measured in radians) of x.") -FUNC1(asin, asin, +FUNC1(acosh, acosh, 0, + "acosh(x)\n\nReturn the hyperbolic arc cosine (measured in radians) of x.") +FUNC1(asin, asin, 0, "asin(x)\n\nReturn the arc sine (measured in radians) of x.") -FUNC1(atan, atan, +FUNC1(asinh, asinh, 0, + "asinh(x)\n\nReturn the hyperbolic arc sine (measured in radians) of x.") +FUNC1(atan, atan, 0, "atan(x)\n\nReturn the arc tangent (measured in radians) of x.") FUNC2(atan2, atan2, "atan2(y, x)\n\nReturn the arc tangent (measured in radians) of y/x.\n" "Unlike atan(y/x), the signs of both x and y are considered.") +FUNC1(atanh, atanh, 0, + "atanh(x)\n\nReturn the hyperbolic arc tangent (measured in radians) of x.") static PyObject * math_ceil(PyObject *self, PyObject *number) { static PyObject *ceil_str = NULL; @@ -138,7 +268,7 @@ static PyObject * math_ceil(PyObject *self, PyObject *number) { method = _PyType_Lookup(Py_TYPE(number), ceil_str); if (method == NULL) - return math_1_to_int(number, ceil); + return math_1_to_int(number, ceil, 0); else return PyObject_CallFunction(method, "O", number); } @@ -147,23 +277,15 @@ PyDoc_STRVAR(math_ceil_doc, "ceil(x)\n\nReturn the ceiling of x as an int.\n" "This is the smallest integral value >= x."); -FUNC1(cos, cos, +FUNC2(copysign, copysign, + "copysign(x,y)\n\nReturn x with the sign of y.") +FUNC1(cos, cos, 0, "cos(x)\n\nReturn the cosine of x (measured in radians).") -FUNC1(cosh, cosh, +FUNC1(cosh, cosh, 1, "cosh(x)\n\nReturn the hyperbolic cosine of x.") - -#ifdef MS_WINDOWS -# define copysign _copysign -# define HAVE_COPYSIGN 1 -#endif -#ifdef HAVE_COPYSIGN -FUNC2(copysign, copysign, - "copysign(x,y)\n\nReturn x with the sign of y."); -#endif - -FUNC1(exp, exp, +FUNC1(exp, exp, 1, "exp(x)\n\nReturn e raised to the power of x.") -FUNC1(fabs, fabs, +FUNC1(fabs, fabs, 0, "fabs(x)\n\nReturn the absolute value of the float x.") static PyObject * math_floor(PyObject *self, PyObject *number) { @@ -178,7 +300,7 @@ static PyObject * math_floor(PyObject *self, PyObject *number) { method = _PyType_Lookup(Py_TYPE(number), floor_str); if (method == NULL) - return math_1_to_int(number, floor); + return math_1_to_int(number, floor, 0); else return PyObject_CallFunction(method, "O", number); } @@ -187,22 +309,18 @@ PyDoc_STRVAR(math_floor_doc, "floor(x)\n\nReturn the floor of x as an int.\n" "This is the largest integral value <= x."); -FUNC2(fmod, fmod, - "fmod(x,y)\n\nReturn fmod(x, y), according to platform C." - " x % y may differ.") -FUNC2(hypot, hypot, - "hypot(x,y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y).") -FUNC2(pow, pow, - "pow(x,y)\n\nReturn x**y (x to the power of y).") -FUNC1(sin, sin, +FUNC1(log1p, log1p, 1, + "log1p(x)\n\nReturn the natural logarithm of 1+x (base e).\n\ + The result is computed in a way which is accurate for x near zero.") +FUNC1(sin, sin, 0, "sin(x)\n\nReturn the sine of x (measured in radians).") -FUNC1(sinh, sinh, +FUNC1(sinh, sinh, 1, "sinh(x)\n\nReturn the hyperbolic sine of x.") -FUNC1(sqrt, sqrt, +FUNC1(sqrt, sqrt, 0, "sqrt(x)\n\nReturn the square root of x.") -FUNC1(tan, tan, +FUNC1(tan, tan, 0, "tan(x)\n\nReturn the tangent of x (measured in radians).") -FUNC1(tanh, tanh, +FUNC1(tanh, tanh, 0, "tanh(x)\n\nReturn the hyperbolic tangent of x.") static PyObject * @@ -244,13 +362,17 @@ math_frexp(PyObject *self, PyObject *arg) double x = PyFloat_AsDouble(arg); if (x == -1.0 && PyErr_Occurred()) return NULL; - errno = 0; - x = frexp(x, &i); - Py_SET_ERRNO_ON_MATH_ERROR(x); - if (errno && is_error(x)) - return NULL; - else - return Py_BuildValue("(di)", x, i); + /* deal with special cases directly, to sidestep platform + differences */ + if (Py_IS_NAN(x) || Py_IS_INFINITY(x) || !x) { + i = 0; + } + else { + PyFPE_START_PROTECT("in math_frexp", return 0); + x = frexp(x, &i); + PyFPE_END_PROTECT(x); + } + return Py_BuildValue("(di)", x, i); } PyDoc_STRVAR(math_frexp_doc, @@ -263,19 +385,24 @@ PyDoc_STRVAR(math_frexp_doc, static PyObject * math_ldexp(PyObject *self, PyObject *args) { - double x; + double x, r; int exp; if (! PyArg_ParseTuple(args, "di:ldexp", &x, &exp)) return NULL; errno = 0; - PyFPE_START_PROTECT("ldexp", return 0) - x = ldexp(x, exp); - PyFPE_END_PROTECT(x) - Py_SET_ERRNO_ON_MATH_ERROR(x); - if (errno && is_error(x)) + PyFPE_START_PROTECT("in math_ldexp", return 0) + r = ldexp(x, exp); + PyFPE_END_PROTECT(r) + if (Py_IS_FINITE(x) && Py_IS_INFINITY(r)) + errno = ERANGE; + /* Windows MSVC8 sets errno = EDOM on ldexp(NaN, i); + we unset it to avoid raising a ValueError here. */ + if (errno == EDOM) + errno = 0; + if (errno && is_error(r)) return NULL; else - return PyFloat_FromDouble(x); + return PyFloat_FromDouble(r); } PyDoc_STRVAR(math_ldexp_doc, @@ -288,12 +415,10 @@ math_modf(PyObject *self, PyObject *arg) if (x == -1.0 && PyErr_Occurred()) return NULL; errno = 0; + PyFPE_START_PROTECT("in math_modf", return 0); x = modf(x, &y); - Py_SET_ERRNO_ON_MATH_ERROR(x); - if (errno && is_error(x)) - return NULL; - else - return Py_BuildValue("(dd)", x, y); + PyFPE_END_PROTECT(x); + return Py_BuildValue("(dd)", x, y); } PyDoc_STRVAR(math_modf_doc, @@ -332,7 +457,7 @@ loghelper(PyObject* arg, double (*func)(double), char *funcname) } /* Else let libm handle it by itself. */ - return math_1(arg, func); + return math_1(arg, func, 0); } static PyObject * @@ -375,6 +500,141 @@ math_log10(PyObject *self, PyObject *arg) PyDoc_STRVAR(math_log10_doc, "log10(x) -> the base 10 logarithm of x."); +static PyObject * +math_fmod(PyObject *self, PyObject *args) +{ + PyObject *ox, *oy; + double r, x, y; + if (! PyArg_UnpackTuple(args, "fmod", 2, 2, &ox, &oy)) + return NULL; + x = PyFloat_AsDouble(ox); + y = PyFloat_AsDouble(oy); + if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) + return NULL; + /* fmod(x, +/-Inf) returns x for finite x. */ + if (Py_IS_INFINITY(y) && Py_IS_FINITE(x)) + return PyFloat_FromDouble(x); + errno = 0; + PyFPE_START_PROTECT("in math_fmod", return 0); + r = fmod(x, y); + PyFPE_END_PROTECT(r); + if (Py_IS_NAN(r)) { + if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) + errno = EDOM; + else + errno = 0; + } + if (errno && is_error(r)) + return NULL; + else + return PyFloat_FromDouble(r); +} + +PyDoc_STRVAR(math_fmod_doc, +"fmod(x,y)\n\nReturn fmod(x, y), according to platform C." +" x % y may differ."); + +static PyObject * +math_hypot(PyObject *self, PyObject *args) +{ + PyObject *ox, *oy; + double r, x, y; + if (! PyArg_UnpackTuple(args, "hypot", 2, 2, &ox, &oy)) + return NULL; + x = PyFloat_AsDouble(ox); + y = PyFloat_AsDouble(oy); + if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) + return NULL; + /* hypot(x, +/-Inf) returns Inf, even if x is a NaN. */ + if (Py_IS_INFINITY(x)) + return PyFloat_FromDouble(fabs(x)); + if (Py_IS_INFINITY(y)) + return PyFloat_FromDouble(fabs(y)); + errno = 0; + PyFPE_START_PROTECT("in math_hypot", return 0); + r = hypot(x, y); + PyFPE_END_PROTECT(r); + if (Py_IS_NAN(r)) { + if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) + errno = EDOM; + else + errno = 0; + } + else if (Py_IS_INFINITY(r)) { + if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) + errno = ERANGE; + else + errno = 0; + } + if (errno && is_error(r)) + return NULL; + else + return PyFloat_FromDouble(r); +} + +PyDoc_STRVAR(math_hypot_doc, +"hypot(x,y)\n\nReturn the Euclidean distance, sqrt(x*x + y*y)."); + +/* pow can't use math_2, but needs its own wrapper: the problem is + that an infinite result can arise either as a result of overflow + (in which case OverflowError should be raised) or as a result of + e.g. 0.**-5. (for which ValueError needs to be raised.) +*/ + +static PyObject * +math_pow(PyObject *self, PyObject *args) +{ + PyObject *ox, *oy; + double r, x, y; + + if (! PyArg_UnpackTuple(args, "pow", 2, 2, &ox, &oy)) + return NULL; + x = PyFloat_AsDouble(ox); + y = PyFloat_AsDouble(oy); + if ((x == -1.0 || y == -1.0) && PyErr_Occurred()) + return NULL; + /* 1**x and x**0 return 1., even if x is a NaN or infinity. */ + if (x == 1.0 || y == 0.0) + return PyFloat_FromDouble(1.); + errno = 0; + PyFPE_START_PROTECT("in math_pow", return 0); + r = pow(x, y); + PyFPE_END_PROTECT(r); + if (Py_IS_NAN(r)) { + if (!Py_IS_NAN(x) && !Py_IS_NAN(y)) + errno = EDOM; + else + errno = 0; + } + /* an infinite result arises either from: + + (A) (+/-0.)**negative, + (B) overflow of x**y with both x and y finite (and x nonzero) + (C) (+/-inf)**positive, or + (D) x**inf with |x| > 1, or x**-inf with |x| < 1. + + In case (A) we want ValueError to be raised. In case (B) + OverflowError should be raised. In cases (C) and (D) the infinite + result should be returned. + */ + else if (Py_IS_INFINITY(r)) { + if (x == 0.) + errno = EDOM; + else if (Py_IS_FINITE(x) && Py_IS_FINITE(y)) + errno = ERANGE; + else + errno = 0; + } + + if (errno && is_error(r)) + return NULL; + else + return PyFloat_FromDouble(r); +} + +PyDoc_STRVAR(math_pow_doc, +"pow(x,y)\n\nReturn x**y (x to the power of y)."); + static const double degToRad = Py_MATH_PI / 180.0; static const double radToDeg = 180.0 / Py_MATH_PI; @@ -428,16 +688,16 @@ PyDoc_STRVAR(math_isinf_doc, "isinf(x) -> bool\n\ Checks if float x is infinite (positive or negative)"); - static PyMethodDef math_methods[] = { {"acos", math_acos, METH_O, math_acos_doc}, + {"acosh", math_acosh, METH_O, math_acosh_doc}, {"asin", math_asin, METH_O, math_asin_doc}, + {"asinh", math_asinh, METH_O, math_asinh_doc}, {"atan", math_atan, METH_O, math_atan_doc}, {"atan2", math_atan2, METH_VARARGS, math_atan2_doc}, + {"atanh", math_atanh, METH_O, math_atanh_doc}, {"ceil", math_ceil, METH_O, math_ceil_doc}, -#ifdef HAVE_COPYSIGN {"copysign", math_copysign, METH_VARARGS, math_copysign_doc}, -#endif {"cos", math_cos, METH_O, math_cos_doc}, {"cosh", math_cosh, METH_O, math_cosh_doc}, {"degrees", math_degrees, METH_O, math_degrees_doc}, @@ -451,6 +711,7 @@ static PyMethodDef math_methods[] = { {"isnan", math_isnan, METH_O, math_isnan_doc}, {"ldexp", math_ldexp, METH_VARARGS, math_ldexp_doc}, {"log", math_log, METH_VARARGS, math_log_doc}, + {"log1p", math_log1p, METH_O, math_log1p_doc}, {"log10", math_log10, METH_O, math_log10_doc}, {"modf", math_modf, METH_O, math_modf_doc}, {"pow", math_pow, METH_VARARGS, math_pow_doc}, @@ -472,27 +733,15 @@ PyDoc_STRVAR(module_doc, PyMODINIT_FUNC initmath(void) { - PyObject *m, *d, *v; + PyObject *m; m = Py_InitModule3("math", math_methods, module_doc); if (m == NULL) goto finally; - d = PyModule_GetDict(m); - if (d == NULL) - goto finally; - - if (!(v = PyFloat_FromDouble(Py_MATH_PI))) - goto finally; - if (PyDict_SetItemString(d, "pi", v) < 0) - goto finally; - Py_DECREF(v); - if (!(v = PyFloat_FromDouble(Py_MATH_E))) - goto finally; - if (PyDict_SetItemString(d, "e", v) < 0) - goto finally; - Py_DECREF(v); + PyModule_AddObject(m, "pi", PyFloat_FromDouble(Py_MATH_PI)); + PyModule_AddObject(m, "e", PyFloat_FromDouble(Py_MATH_E)); - finally: + finally: return; } diff --git a/Objects/complexobject.c b/Objects/complexobject.c index 90b970e..acd5a4a 100644 --- a/Objects/complexobject.c +++ b/Objects/complexobject.c @@ -187,6 +187,38 @@ c_powi(Py_complex x, long n) } +double +c_abs(Py_complex z) +{ + /* sets errno = ERANGE on overflow; otherwise errno = 0 */ + double result; + + if (!Py_IS_FINITE(z.real) || !Py_IS_FINITE(z.imag)) { + /* C99 rules: if either the real or the imaginary part is an + infinity, return infinity, even if the other part is a + NaN. */ + if (Py_IS_INFINITY(z.real)) { + result = fabs(z.real); + errno = 0; + return result; + } + if (Py_IS_INFINITY(z.imag)) { + result = fabs(z.imag); + errno = 0; + return result; + } + /* either the real or imaginary part is a NaN, + and neither is infinite. Result should be NaN. */ + return Py_NAN; + } + result = hypot(z.real, z.imag); + if (!Py_IS_FINITE(result)) + errno = ERANGE; + else + errno = 0; + return result; +} + static PyObject * complex_subtype_from_c_complex(PyTypeObject *type, Py_complex cval) { @@ -321,8 +353,7 @@ complex_to_buf(char *buf, int bufsz, PyComplexObject *v, int precision) if (!Py_IS_FINITE(v->cval.imag)) { if (Py_IS_NAN(v->cval.imag)) strncpy(buf, "nan*j", 6); - /* else if (copysign(1, v->cval.imag) == 1) */ - else if (v->cval.imag > 0) + else if (copysign(1, v->cval.imag) == 1) strncpy(buf, "inf*j", 6); else strncpy(buf, "-inf*j", 7); @@ -578,9 +609,16 @@ static PyObject * complex_abs(PyComplexObject *v) { double result; + PyFPE_START_PROTECT("complex_abs", return 0) - result = hypot(v->cval.real,v->cval.imag); + result = c_abs(v->cval); PyFPE_END_PROTECT(result) + + if (errno == ERANGE) { + PyErr_SetString(PyExc_OverflowError, + "absolute value too large"); + return NULL; + } return PyFloat_FromDouble(result); } @@ -658,9 +696,29 @@ complex_getnewargs(PyComplexObject *v) return Py_BuildValue("(D)", &v->cval); } +#if 0 +static PyObject * +complex_is_finite(PyObject *self) +{ + Py_complex c; + c = ((PyComplexObject *)self)->cval; + return PyBool_FromLong((long)(Py_IS_FINITE(c.real) && + Py_IS_FINITE(c.imag))); +} + +PyDoc_STRVAR(complex_is_finite_doc, +"complex.is_finite() -> bool\n" +"\n" +"Returns True if the real and the imaginary part is finite."); +#endif + static PyMethodDef complex_methods[] = { {"conjugate", (PyCFunction)complex_conjugate, METH_NOARGS, complex_conjugate_doc}, +#if 0 + {"is_finite", (PyCFunction)complex_is_finite, METH_NOARGS, + complex_is_finite_doc}, +#endif {"__getnewargs__", (PyCFunction)complex_getnewargs, METH_NOARGS}, {NULL, NULL} /* sentinel */ }; diff --git a/Objects/doubledigits.c b/Objects/doubledigits.c deleted file mode 100644 index 1f1c91c..0000000 --- a/Objects/doubledigits.c +++ /dev/null @@ -1,601 +0,0 @@ -/* Free-format floating point printer - * - * Based on "Floating-Point Printer Sample Code", by Robert G. Burger, - * http://www.cs.indiana.edu/~burger/fp/index.html - */ - -#include "Python.h" - -#if defined(__alpha) || defined(__i386) || defined(_M_IX86) || defined(_M_X64) || defined(_M_IA64) -#define LITTLE_ENDIAN_IEEE_DOUBLE -#elif !(defined(__ppc__) || defined(sparc) || defined(__sgi) || defined(_IBMR2) || defined(hpux)) -#error unknown machine type -#endif - -#if defined(_M_IX86) -#define UNSIGNED64 unsigned __int64 -#elif defined(__alpha) -#define UNSIGNED64 unsigned long -#else -#define UNSIGNED64 unsigned long long -#endif - -#ifndef U32 -#define U32 unsigned int -#endif - -/* exponent stored + 1024, hidden bit to left of decimal point */ -#define bias 1023 -#define bitstoright 52 -#define m1mask 0xf -#define hidden_bit 0x100000 -#ifdef LITTLE_ENDIAN_IEEE_DOUBLE -struct dblflt { - unsigned int m4: 16; - unsigned int m3: 16; - unsigned int m2: 16; - unsigned int m1: 4; - unsigned int e: 11; - unsigned int s: 1; -}; -#else -/* Big Endian IEEE Double Floats */ -struct dblflt { - unsigned int s: 1; - unsigned int e: 11; - unsigned int m1: 4; - unsigned int m2: 16; - unsigned int m3: 16; - unsigned int m4: 16; -}; -#endif -#define float_radix 2.147483648e9 - - -typedef UNSIGNED64 Bigit; -#define BIGSIZE 24 -#define MIN_E -1074 -#define MAX_FIVE 325 -#define B_P1 ((Bigit)1 << 52) - -typedef struct { - int l; - Bigit d[BIGSIZE]; -} Bignum; - -static Bignum R, S, MP, MM, five[MAX_FIVE]; -static Bignum S2, S3, S4, S5, S6, S7, S8, S9; -static int ruf, k, s_n, use_mp, qr_shift, sl, slr; - -static void mul10(Bignum *x); -static void big_short_mul(Bignum *x, Bigit y, Bignum *z); -/* -static void print_big(Bignum *x); -*/ -static int estimate(int n); -static void one_shift_left(int y, Bignum *z); -static void short_shift_left(Bigit x, int y, Bignum *z); -static void big_shift_left(Bignum *x, int y, Bignum *z); -static int big_comp(Bignum *x, Bignum *y); -static int sub_big(Bignum *x, Bignum *y, Bignum *z); -static void add_big(Bignum *x, Bignum *y, Bignum *z); -static int add_cmp(void); -static int qr(void); - -/*static int _PyFloat_Digits(char *buf, double v, int *signum);*/ -/*static void _PyFloat_DigitsInit(void);*/ - -#define ADD(x, y, z, k) {\ - Bigit x_add, z_add;\ - x_add = (x);\ - if ((k))\ - z_add = x_add + (y) + 1, (k) = (z_add <= x_add);\ - else\ - z_add = x_add + (y), (k) = (z_add < x_add);\ - (z) = z_add;\ -} - -#define SUB(x, y, z, b) {\ - Bigit x_sub, y_sub;\ - x_sub = (x); y_sub = (y);\ - if ((b))\ - (z) = x_sub - y_sub - 1, b = (y_sub >= x_sub);\ - else\ - (z) = x_sub - y_sub, b = (y_sub > x_sub);\ -} - -#define MUL(x, y, z, k) {\ - Bigit x_mul, low, high;\ - x_mul = (x);\ - low = (x_mul & 0xffffffff) * (y) + (k);\ - high = (x_mul >> 32) * (y) + (low >> 32);\ - (k) = high >> 32;\ - (z) = (low & 0xffffffff) | (high << 32);\ -} - -#define SLL(x, y, z, k) {\ - Bigit x_sll = (x);\ - (z) = (x_sll << (y)) | (k);\ - (k) = x_sll >> (64 - (y));\ -} - -static void -mul10(Bignum *x) -{ - int i, l; - Bigit *p, k; - - l = x->l; - for (i = l, p = &x->d[0], k = 0; i >= 0; i--) - MUL(*p, 10, *p++, k); - if (k != 0) - *p = k, x->l = l+1; -} - -static void -big_short_mul(Bignum *x, Bigit y, Bignum *z) -{ - int i, xl, zl; - Bigit *xp, *zp, k; - U32 high, low; - - xl = x->l; - xp = &x->d[0]; - zl = xl; - zp = &z->d[0]; - high = y >> 32; - low = y & 0xffffffff; - for (i = xl, k = 0; i >= 0; i--, xp++, zp++) { - Bigit xlow, xhigh, z0, t, c, z1; - xlow = *xp & 0xffffffff; - xhigh = *xp >> 32; - z0 = (xlow * low) + k; /* Cout is (z0 < k) */ - t = xhigh * low; - z1 = (xlow * high) + t; - c = (z1 < t); - t = z0 >> 32; - z1 += t; - c += (z1 < t); - *zp = (z1 << 32) | (z0 & 0xffffffff); - k = (xhigh * high) + (c << 32) + (z1 >> 32) + (z0 < k); - } - if (k != 0) - *zp = k, zl++; - z->l = zl; -} - -/* -static void -print_big(Bignum *x) -{ - int i; - Bigit *p; - - printf("#x"); - i = x->l; - p = &x->d[i]; - for (p = &x->d[i]; i >= 0; i--) { - Bigit b = *p--; - printf("%08x%08x", (int)(b >> 32), (int)(b & 0xffffffff)); - } -} -*/ - -static int -estimate(int n) -{ - if (n < 0) - return (int)(n*0.3010299956639812); - else - return 1+(int)(n*0.3010299956639811); -} - -static void -one_shift_left(int y, Bignum *z) -{ - int n, m, i; - Bigit *zp; - - n = y / 64; - m = y % 64; - zp = &z->d[0]; - for (i = n; i > 0; i--) *zp++ = 0; - *zp = (Bigit)1 << m; - z->l = n; -} - -static void -short_shift_left(Bigit x, int y, Bignum *z) -{ - int n, m, i, zl; - Bigit *zp; - - n = y / 64; - m = y % 64; - zl = n; - zp = &(z->d[0]); - for (i = n; i > 0; i--) *zp++ = 0; - if (m == 0) - *zp = x; - else { - Bigit high = x >> (64 - m); - *zp = x << m; - if (high != 0) - *++zp = high, zl++; - } - z->l = zl; -} - -static void -big_shift_left(Bignum *x, int y, Bignum *z) -{ - int n, m, i, xl, zl; - Bigit *xp, *zp, k; - - n = y / 64; - m = y % 64; - xl = x->l; - xp = &(x->d[0]); - zl = xl + n; - zp = &(z->d[0]); - for (i = n; i > 0; i--) *zp++ = 0; - if (m == 0) - for (i = xl; i >= 0; i--) *zp++ = *xp++; - else { - for (i = xl, k = 0; i >= 0; i--) - SLL(*xp++, m, *zp++, k); - if (k != 0) - *zp = k, zl++; - } - z->l = zl; -} - - -static int -big_comp(Bignum *x, Bignum *y) -{ - int i, xl, yl; - Bigit *xp, *yp; - - xl = x->l; - yl = y->l; - if (xl > yl) return 1; - if (xl < yl) return -1; - xp = &x->d[xl]; - yp = &y->d[xl]; - for (i = xl; i >= 0; i--, xp--, yp--) { - Bigit a = *xp; - Bigit b = *yp; - - if (a > b) return 1; - else if (a < b) return -1; - } - return 0; -} - -static int -sub_big(Bignum *x, Bignum *y, Bignum *z) -{ - int xl, yl, zl, b, i; - Bigit *xp, *yp, *zp; - - xl = x->l; - yl = y->l; - if (yl > xl) return 1; - xp = &x->d[0]; - yp = &y->d[0]; - zp = &z->d[0]; - - for (i = yl, b = 0; i >= 0; i--) - SUB(*xp++, *yp++, *zp++, b); - for (i = xl-yl; b && i > 0; i--) { - Bigit x_sub; - x_sub = *xp++; - *zp++ = x_sub - 1; - b = (x_sub == 0); - } - for (; i > 0; i--) *zp++ = *xp++; - if (b) return 1; - zl = xl; - while (*--zp == 0) zl--; - z->l = zl; - return 0; -} - -static void -add_big(Bignum *x, Bignum *y, Bignum *z) -{ - int xl, yl, k, i; - Bigit *xp, *yp, *zp; - - xl = x->l; - yl = y->l; - if (yl > xl) { - int tl; - Bignum *tn; - tl = xl; xl = yl; yl = tl; - tn = x; x = y; y = tn; - } - - xp = &x->d[0]; - yp = &y->d[0]; - zp = &z->d[0]; - - for (i = yl, k = 0; i >= 0; i--) - ADD(*xp++, *yp++, *zp++, k); - for (i = xl-yl; k && i > 0; i--) { - Bigit z_add; - z_add = *xp++ + 1; - k = (z_add == 0); - *zp++ = z_add; - } - for (; i > 0; i--) *zp++ = *xp++; - if (k) - *zp = 1, z->l = xl+1; - else - z->l = xl; -} - -static int -add_cmp() -{ - int rl, ml, sl, suml; - static Bignum sum; - - rl = R.l; - ml = (use_mp ? MP.l : MM.l); - sl = S.l; - - suml = rl >= ml ? rl : ml; - if ((sl > suml+1) || ((sl == suml+1) && (S.d[sl] > 1))) return -1; - if (sl < suml) return 1; - - add_big(&R, (use_mp ? &MP : &MM), &sum); - return big_comp(&sum, &S); -} - -static int -qr() -{ - if (big_comp(&R, &S5) < 0) - if (big_comp(&R, &S2) < 0) - if (big_comp(&R, &S) < 0) - return 0; - else { - sub_big(&R, &S, &R); - return 1; - } - else if (big_comp(&R, &S3) < 0) { - sub_big(&R, &S2, &R); - return 2; - } - else if (big_comp(&R, &S4) < 0) { - sub_big(&R, &S3, &R); - return 3; - } - else { - sub_big(&R, &S4, &R); - return 4; - } - else if (big_comp(&R, &S7) < 0) - if (big_comp(&R, &S6) < 0) { - sub_big(&R, &S5, &R); - return 5; - } - else { - sub_big(&R, &S6, &R); - return 6; - } - else if (big_comp(&R, &S9) < 0) - if (big_comp(&R, &S8) < 0) { - sub_big(&R, &S7, &R); - return 7; - } - else { - sub_big(&R, &S8, &R); - return 8; - } - else { - sub_big(&R, &S9, &R); - return 9; - } -} - -#define OUTDIG(d) { *buf++ = (d) + '0'; *buf = 0; return k; } - -int -_PyFloat_Digits(char *buf, double v, int *signum) -{ - struct dblflt *x; - int sign, e, f_n, m_n, i, d, tc1, tc2; - Bigit f; - - /* decompose float into sign, mantissa & exponent */ - x = (struct dblflt *)&v; - sign = x->s; - e = x->e; - f = (Bigit)(x->m1 << 16 | x->m2) << 32 | (U32)(x->m3 << 16 | x->m4); - if (e != 0) { - e = e - bias - bitstoright; - f |= (Bigit)hidden_bit << 32; - } - else if (f != 0) - /* denormalized */ - e = 1 - bias - bitstoright; - - *signum = sign; - if (f == 0) { - *buf++ = '0'; - *buf = 0; - return 0; - } - - ruf = !(f & 1); /* ruf = (even? f) */ - - /* Compute the scaling factor estimate, k */ - if (e > MIN_E) - k = estimate(e+52); - else { - int n; - Bigit y; - - for (n = e+52, y = (Bigit)1 << 52; f < y; n--) y >>= 1; - k = estimate(n); - } - - if (e >= 0) - if (f != B_P1) - use_mp = 0, f_n = e+1, s_n = 1, m_n = e; - else - use_mp = 1, f_n = e+2, s_n = 2, m_n = e; - else - if ((e == MIN_E) || (f != B_P1)) - use_mp = 0, f_n = 1, s_n = 1-e, m_n = 0; - else - use_mp = 1, f_n = 2, s_n = 2-e, m_n = 0; - - /* Scale it! */ - if (k == 0) { - short_shift_left(f, f_n, &R); - one_shift_left(s_n, &S); - one_shift_left(m_n, &MM); - if (use_mp) one_shift_left(m_n+1, &MP); - qr_shift = 1; - } - else if (k > 0) { - s_n += k; - if (m_n >= s_n) - f_n -= s_n, m_n -= s_n, s_n = 0; - else - f_n -= m_n, s_n -= m_n, m_n = 0; - short_shift_left(f, f_n, &R); - big_shift_left(&five[k-1], s_n, &S); - one_shift_left(m_n, &MM); - if (use_mp) one_shift_left(m_n+1, &MP); - qr_shift = 0; - } - else { - Bignum *power = &five[-k-1]; - - s_n += k; - big_short_mul(power, f, &S); - big_shift_left(&S, f_n, &R); - one_shift_left(s_n, &S); - big_shift_left(power, m_n, &MM); - if (use_mp) big_shift_left(power, m_n+1, &MP); - qr_shift = 1; - } - - /* fixup */ - if (add_cmp() <= -ruf) { - k--; - mul10(&R); - mul10(&MM); - if (use_mp) mul10(&MP); - } - - /* - printf("\nk = %d\n", k); - printf("R = "); print_big(&R); - printf("\nS = "); print_big(&S); - printf("\nM- = "); print_big(&MM); - if (use_mp) printf("\nM+ = "), print_big(&MP); - putchar('\n'); - fflush(0); - */ - - if (qr_shift) { - sl = s_n / 64; - slr = s_n % 64; - } - else { - big_shift_left(&S, 1, &S2); - add_big(&S2, &S, &S3); - big_shift_left(&S2, 1, &S4); - add_big(&S4, &S, &S5); - add_big(&S4, &S2, &S6); - add_big(&S4, &S3, &S7); - big_shift_left(&S4, 1, &S8); - add_big(&S8, &S, &S9); - } - -again: - if (qr_shift) { /* Take advantage of the fact that S = (ash 1 s_n) */ - if (R.l < sl) - d = 0; - else if (R.l == sl) { - Bigit *p; - - p = &R.d[sl]; - d = *p >> slr; - *p &= ((Bigit)1 << slr) - 1; - for (i = sl; (i > 0) && (*p == 0); i--) p--; - R.l = i; - } - else { - Bigit *p; - - p = &R.d[sl+1]; - d = *p << (64 - slr) | *(p-1) >> slr; - p--; - *p &= ((Bigit)1 << slr) - 1; - for (i = sl; (i > 0) && (*p == 0); i--) p--; - R.l = i; - } - } - else /* We need to do quotient-remainder */ - d = qr(); - - tc1 = big_comp(&R, &MM) < ruf; - tc2 = add_cmp() > -ruf; - if (!tc1) - if (!tc2) { - mul10(&R); - mul10(&MM); - if (use_mp) mul10(&MP); - *buf++ = d + '0'; - goto again; - } - else - OUTDIG(d+1) - else - if (!tc2) - OUTDIG(d) - else { - big_shift_left(&R, 1, &MM); - if (big_comp(&MM, &S) == -1) - OUTDIG(d) - else - OUTDIG(d+1) - } -} - -void -_PyFloat_DigitsInit() -{ - int n, i, l; - Bignum *b; - Bigit *xp, *zp, k; - - five[0].l = l = 0; - five[0].d[0] = 5; - for (n = MAX_FIVE-1, b = &five[0]; n > 0; n--) { - xp = &b->d[0]; - b++; - zp = &b->d[0]; - for (i = l, k = 0; i >= 0; i--) - MUL(*xp++, 5, *zp++, k); - if (k != 0) - *zp = k, l++; - b->l = l; - } - - /* - for (n = 1, b = &five[0]; n <= MAX_FIVE; n++) { - big_shift_left(b++, n, &R); - print_big(&R); - putchar('\n'); - } - fflush(0); - */ -} diff --git a/Objects/floatobject.c b/Objects/floatobject.c index 745dfc3..a748abb 100644 --- a/Objects/floatobject.c +++ b/Objects/floatobject.c @@ -16,10 +16,6 @@ #include <ieeefp.h> #endif -#if !defined(__STDC__) -extern double fmod(double, double); -extern double pow(double, double); -#endif #ifdef _OSF_SOURCE /* OSF1 5.1 doesn't make this available with XOPEN_SOURCE_EXTENDED defined */ @@ -224,11 +220,11 @@ PyFloat_FromString(PyObject *v) p++; } if (PyOS_strnicmp(p, "inf", 4) == 0) { - return PyFloat_FromDouble(sign * Py_HUGE_VAL); + Py_RETURN_INF(sign); } #ifdef Py_NAN if(PyOS_strnicmp(p, "nan", 4) == 0) { - return PyFloat_FromDouble(Py_NAN); + Py_RETURN_NAN; } #endif PyOS_snprintf(buffer, sizeof(buffer), @@ -378,110 +374,6 @@ format_float(char *buf, size_t buflen, PyFloatObject *v, int precision) format_double(buf, buflen, PyFloat_AS_DOUBLE(v), precision); } -#ifdef Py_BROKEN_REPR -/* The following function is based on Tcl_PrintDouble, - * from tclUtil.c. - */ - -#define is_infinite(d) ( (d) > DBL_MAX || (d) < -DBL_MAX ) -#define is_nan(d) ((d) != (d)) - -static void -format_double_repr(char *dst, double value) -{ - char *p, c; - int exp; - int signum; - char buffer[30]; - - /* - * Handle NaN. - */ - - if (is_nan(value)) { - strcpy(dst, "nan"); - return; - } - - /* - * Handle infinities. - */ - - if (is_infinite(value)) { - if (value < 0) { - strcpy(dst, "-inf"); - } else { - strcpy(dst, "inf"); - } - return; - } - - /* - * Ordinary (normal and denormal) values. - */ - - exp = _PyFloat_Digits(buffer, value, &signum)+1; - if (signum) { - *dst++ = '-'; - } - p = buffer; - if (exp < -3 || exp > 17) { - /* - * E format for numbers < 1e-3 or >= 1e17. - */ - - *dst++ = *p++; - c = *p; - if (c != '\0') { - *dst++ = '.'; - while (c != '\0') { - *dst++ = c; - c = *++p; - } - } - sprintf(dst, "e%+d", exp-1); - } else { - /* - * F format for others. - */ - - if (exp <= 0) { - *dst++ = '0'; - } - c = *p; - while (exp-- > 0) { - if (c != '\0') { - *dst++ = c; - c = *++p; - } else { - *dst++ = '0'; - } - } - *dst++ = '.'; - if (c == '\0') { - *dst++ = '0'; - } else { - while (++exp < 0) { - *dst++ = '0'; - } - while (c != '\0') { - *dst++ = c; - c = *++p; - } - } - *dst++ = '\0'; - } -} - -static void -format_float_repr(char *buf, PyFloatObject *v) -{ - assert(PyFloat_Check(v)); - format_double_repr(buf, PyFloat_AS_DOUBLE(v)); -} - -#endif /* Py_BROKEN_REPR */ - /* Macro and helper that convert PyObject obj to a C double and store the value in dbl. If conversion to double raises an exception, obj is set to NULL, and the function invoking this macro returns NULL. If @@ -534,13 +426,8 @@ convert_to_double(PyObject **v, double *dbl) static PyObject * float_repr(PyFloatObject *v) { -#ifdef Py_BROKEN_REPR - char buf[30]; - format_float_repr(buf, v); -#else char buf[100]; format_float(buf, sizeof(buf), v, PREC_REPR); -#endif return PyUnicode_FromString(buf); } @@ -804,10 +691,13 @@ float_div(PyObject *v, PyObject *w) double a,b; CONVERT_TO_DOUBLE(v, a); CONVERT_TO_DOUBLE(w, b); +#ifdef Py_NAN if (b == 0.0) { - PyErr_SetString(PyExc_ZeroDivisionError, "float division"); + PyErr_SetString(PyExc_ZeroDivisionError, + "float division"); return NULL; } +#endif PyFPE_START_PROTECT("divide", return 0) a = a / b; PyFPE_END_PROTECT(a) @@ -819,12 +709,15 @@ float_rem(PyObject *v, PyObject *w) { double vx, wx; double mod; - CONVERT_TO_DOUBLE(v, vx); - CONVERT_TO_DOUBLE(w, wx); + CONVERT_TO_DOUBLE(v, vx); + CONVERT_TO_DOUBLE(w, wx); +#ifdef Py_NAN if (wx == 0.0) { - PyErr_SetString(PyExc_ZeroDivisionError, "float modulo"); + PyErr_SetString(PyExc_ZeroDivisionError, + "float modulo"); return NULL; } +#endif PyFPE_START_PROTECT("modulo", return 0) mod = fmod(vx, wx); /* note: checking mod*wx < 0 is incorrect -- underflows to @@ -928,6 +821,9 @@ float_pow(PyObject *v, PyObject *w, PyObject *z) } return PyFloat_FromDouble(0.0); } + if (iv == 1.0) { /* 1**w is 1, even 1**inf and 1**nan */ + return PyFloat_FromDouble(1.0); + } if (iv < 0.0) { /* Whether this is an error is a mess, and bumps into libm * bugs so we have to figure it out ourselves. @@ -995,6 +891,57 @@ float_bool(PyFloatObject *v) } static PyObject * +float_is_integer(PyObject *v) +{ + double x = PyFloat_AsDouble(v); + PyObject *o; + + if (x == -1.0 && PyErr_Occurred()) + return NULL; + if (!Py_IS_FINITE(x)) + Py_RETURN_FALSE; + PyFPE_START_PROTECT("is_integer", return NULL) + o = (floor(x) == x) ? Py_True : Py_False; + PyFPE_END_PROTECT(x) + if (errno != 0) { + PyErr_SetFromErrno(errno == ERANGE ? PyExc_OverflowError : + PyExc_ValueError); + return NULL; + } + Py_INCREF(o); + return o; +} + +#if 0 +static PyObject * +float_is_inf(PyObject *v) +{ + double x = PyFloat_AsDouble(v); + if (x == -1.0 && PyErr_Occurred()) + return NULL; + return PyBool_FromLong((long)Py_IS_INFINITY(x)); +} + +static PyObject * +float_is_nan(PyObject *v) +{ + double x = PyFloat_AsDouble(v); + if (x == -1.0 && PyErr_Occurred()) + return NULL; + return PyBool_FromLong((long)Py_IS_NAN(x)); +} + +static PyObject * +float_is_finite(PyObject *v) +{ + double x = PyFloat_AsDouble(v); + if (x == -1.0 && PyErr_Occurred()) + return NULL; + return PyBool_FromLong((long)Py_IS_FINITE(x)); +} +#endif + +static PyObject * float_trunc(PyObject *v) { double x = PyFloat_AsDouble(v); @@ -1368,7 +1315,7 @@ PyDoc_STRVAR(float__format__doc, static PyMethodDef float_methods[] = { - {"conjugate", (PyCFunction)float_float, METH_NOARGS, + {"conjugate", (PyCFunction)float_float, METH_NOARGS, "Returns self, the complex conjugate of any float."}, {"__trunc__", (PyCFunction)float_trunc, METH_NOARGS, "Returns the Integral closest to x between 0 and x."}, @@ -1377,6 +1324,16 @@ static PyMethodDef float_methods[] = { "When an argument is passed, works like built-in round(x, ndigits)."}, {"as_integer_ratio", (PyCFunction)float_as_integer_ratio, METH_NOARGS, float_as_integer_ratio_doc}, + {"is_integer", (PyCFunction)float_is_integer, METH_NOARGS, + "Returns True if the float is an integer."}, +#if 0 + {"is_inf", (PyCFunction)float_is_inf, METH_NOARGS, + "Returns True if the float is positive or negative infinite."}, + {"is_finite", (PyCFunction)float_is_finite, METH_NOARGS, + "Returns True if the float is finite, neither infinite nor NaN."}, + {"is_nan", (PyCFunction)float_is_nan, METH_NOARGS, + "Returns True if the float is not a number (NaN)."}, +#endif {"__getnewargs__", (PyCFunction)float_getnewargs, METH_NOARGS}, {"__getformat__", (PyCFunction)float_getformat, METH_O|METH_CLASS, float_getformat_doc}, @@ -1534,10 +1491,6 @@ _PyFloat_Init(void) double_format = detected_double_format; float_format = detected_float_format; -#ifdef Py_BROKEN_REPR - /* Initialize floating point repr */ - _PyFloat_DigitsInit(); -#endif /* Init float info */ if (FloatInfoType.tp_name == 0) PyStructSequence_InitType(&FloatInfoType, &floatinfo_desc); diff --git a/Objects/longobject.c b/Objects/longobject.c index 44b040c..d88a13e 100644 --- a/Objects/longobject.c +++ b/Objects/longobject.c @@ -3611,9 +3611,21 @@ long_round(PyObject *self, PyObject *args) #undef UNDEF_NDIGITS } +#if 0 +static PyObject * +long_is_finite(PyObject *v) +{ + Py_RETURN_TRUE; +} +#endif + static PyMethodDef long_methods[] = { {"conjugate", (PyCFunction)long_long, METH_NOARGS, "Returns self, the complex conjugate of any int."}, +#if 0 + {"is_finite", (PyCFunction)long_is_finite, METH_NOARGS, + "Returns always True."}, +#endif {"__trunc__", (PyCFunction)long_long, METH_NOARGS, "Truncating an Integral returns itself."}, {"__floor__", (PyCFunction)long_long, METH_NOARGS, diff --git a/PC/VC6/pythoncore.dsp b/PC/VC6/pythoncore.dsp index de8860f..969e9df 100644 --- a/PC/VC6/pythoncore.dsp +++ b/PC/VC6/pythoncore.dsp @@ -587,6 +587,10 @@ SOURCE=..\..\Python\pyfpe.c # End Source File
# Begin Source File
+SOURCE=..\..\Python\pymath.c
+# End Source File
+# Begin Source File
+
SOURCE=..\..\Python\pystate.c
# End Source File
# Begin Source File
diff --git a/PC/VS7.1/pythoncore.vcproj b/PC/VS7.1/pythoncore.vcproj index 304b119..cc46faf 100644 --- a/PC/VS7.1/pythoncore.vcproj +++ b/PC/VS7.1/pythoncore.vcproj @@ -698,6 +698,9 @@ RelativePath="..\..\Python\pyfpe.c"> </File> <File + RelativePath="..\..\Python\pymath.c"> + </File> + <File RelativePath="..\..\Python\pystate.c"> </File> <File diff --git a/PC/VS8.0/pythoncore.vcproj b/PC/VS8.0/pythoncore.vcproj index b63ed88..6bc4715 100644 --- a/PC/VS8.0/pythoncore.vcproj +++ b/PC/VS8.0/pythoncore.vcproj @@ -1707,6 +1707,10 @@ >
</File>
<File
+ RelativePath="..\..\Python\pymath.c"
+ >
+ </File>
+ <File
RelativePath="..\..\Python\pystate.c"
>
</File>
diff --git a/PC/pyconfig.h b/PC/pyconfig.h index 4291192..e38e823 100644 --- a/PC/pyconfig.h +++ b/PC/pyconfig.h @@ -207,12 +207,13 @@ typedef _W64 int ssize_t; #endif /* MS_WIN32 && !MS_WIN64 */ typedef int pid_t; -#define hypot _hypot #include <float.h> #define Py_IS_NAN _isnan #define Py_IS_INFINITY(X) (!_finite(X) && !_isnan(X)) #define Py_IS_FINITE(X) _finite(X) +#define copysign _copysign +#define hypot _hypot #endif /* _MSC_VER */ @@ -392,7 +393,7 @@ Py_NO_ENABLE_SHARED to find out. Also support MS_NO_COREDLL for b/w compat */ /* Fairly standard from here! */ /* Define to 1 if you have the `copysign' function. */ -/* #define HAVE_COPYSIGN 1*/ +#define HAVE_COPYSIGN 1 /* Define to 1 if you have the `isinf' function. */ #define HAVE_ISINF 1 diff --git a/PCbuild/pythoncore.vcproj b/PCbuild/pythoncore.vcproj index 1f69bca..c93bc71 100644 --- a/PCbuild/pythoncore.vcproj +++ b/PCbuild/pythoncore.vcproj @@ -871,6 +871,10 @@ > </File> <File + RelativePath="..\Include\pymath.h" + > + </File> + <File RelativePath="..\Include\pymem.h" > </File> @@ -1707,6 +1711,10 @@ > </File> <File + RelativePath="..\Python\pymath.c" + > + </File> + <File RelativePath="..\Python\pystate.c" > </File> diff --git a/Python/hypot.c b/Python/hypot.c deleted file mode 100644 index a18ce16..0000000 --- a/Python/hypot.c +++ /dev/null @@ -1,25 +0,0 @@ -/* hypot() replacement */ - -#include "Python.h" - -#ifndef HAVE_HYPOT -double hypot(double x, double y) -{ - double yx; - - x = fabs(x); - y = fabs(y); - if (x < y) { - double temp = x; - x = y; - y = temp; - } - if (x == 0.) - return 0.; - else { - yx = y/x; - return x*sqrt(1.+yx*yx); - } -} -#endif /* HAVE_HYPOT */ - diff --git a/Python/pymath.c b/Python/pymath.c new file mode 100644 index 0000000..7c00106 --- /dev/null +++ b/Python/pymath.c @@ -0,0 +1,232 @@ +#include "Python.h" + +#ifndef HAVE_HYPOT +double hypot(double x, double y) +{ + double yx; + + x = fabs(x); + y = fabs(y); + if (x < y) { + double temp = x; + x = y; + y = temp; + } + if (x == 0.) + return 0.; + else { + yx = y/x; + return x*sqrt(1.+yx*yx); + } +} +#endif /* HAVE_HYPOT */ + +#ifndef HAVE_COPYSIGN +static double +copysign(double x, double y) +{ + /* use atan2 to distinguish -0. from 0. */ + if (y > 0. || (y == 0. && atan2(y, -1.) > 0.)) { + return fabs(x); + } else { + return -fabs(x); + } +} +#endif /* HAVE_COPYSIGN */ + +#ifndef HAVE_LOG1P +double +log1p(double x) +{ + /* For x small, we use the following approach. Let y be the nearest + float to 1+x, then + + 1+x = y * (1 - (y-1-x)/y) + + so log(1+x) = log(y) + log(1-(y-1-x)/y). Since (y-1-x)/y is tiny, + the second term is well approximated by (y-1-x)/y. If abs(x) >= + DBL_EPSILON/2 or the rounding-mode is some form of round-to-nearest + then y-1-x will be exactly representable, and is computed exactly + by (y-1)-x. + + If abs(x) < DBL_EPSILON/2 and the rounding mode is not known to be + round-to-nearest then this method is slightly dangerous: 1+x could + be rounded up to 1+DBL_EPSILON instead of down to 1, and in that + case y-1-x will not be exactly representable any more and the + result can be off by many ulps. But this is easily fixed: for a + floating-point number |x| < DBL_EPSILON/2., the closest + floating-point number to log(1+x) is exactly x. + */ + + double y; + if (fabs(x) < DBL_EPSILON/2.) { + return x; + } else if (-0.5 <= x && x <= 1.) { + /* WARNING: it's possible than an overeager compiler + will incorrectly optimize the following two lines + to the equivalent of "return log(1.+x)". If this + happens, then results from log1p will be inaccurate + for small x. */ + y = 1.+x; + return log(y)-((y-1.)-x)/y; + } else { + /* NaNs and infinities should end up here */ + return log(1.+x); + } +} +#endif /* HAVE_LOG1P */ + +/* + * ==================================================== + * Copyright (C) 1993 by Sun Microsystems, Inc. All rights reserved. + * + * Developed at SunPro, a Sun Microsystems, Inc. business. + * Permission to use, copy, modify, and distribute this + * software is freely granted, provided that this notice + * is preserved. + * ==================================================== + */ + +static const double ln2 = 6.93147180559945286227E-01; +static const double two_pow_m28 = 3.7252902984619141E-09; /* 2**-28 */ +static const double two_pow_p28 = 268435456.0; /* 2**28 */ +static const double zero = 0.0; + +/* asinh(x) + * Method : + * Based on + * asinh(x) = sign(x) * log [ |x| + sqrt(x*x+1) ] + * we have + * asinh(x) := x if 1+x*x=1, + * := sign(x)*(log(x)+ln2)) for large |x|, else + * := sign(x)*log(2|x|+1/(|x|+sqrt(x*x+1))) if|x|>2, else + * := sign(x)*log1p(|x| + x^2/(1 + sqrt(1+x^2))) + */ + +#ifndef HAVE_ASINH +double +asinh(double x) +{ + double w; + double absx = fabs(x); + + if (Py_IS_NAN(x) || Py_IS_INFINITY(x)) { + return x+x; + } + if (absx < two_pow_m28) { /* |x| < 2**-28 */ + return x; /* return x inexact except 0 */ + } + if (absx > two_pow_p28) { /* |x| > 2**28 */ + w = log(absx)+ln2; + } + else if (absx > 2.0) { /* 2 < |x| < 2**28 */ + w = log(2.0*absx + 1.0 / (sqrt(x*x + 1.0) + absx)); + } + else { /* 2**-28 <= |x| < 2= */ + double t = x*x; + w = log1p(absx + t / (1.0 + sqrt(1.0 + t))); + } + return copysign(w, x); + +} +#endif /* HAVE_ASINH */ + +/* acosh(x) + * Method : + * Based on + * acosh(x) = log [ x + sqrt(x*x-1) ] + * we have + * acosh(x) := log(x)+ln2, if x is large; else + * acosh(x) := log(2x-1/(sqrt(x*x-1)+x)) if x>2; else + * acosh(x) := log1p(t+sqrt(2.0*t+t*t)); where t=x-1. + * + * Special cases: + * acosh(x) is NaN with signal if x<1. + * acosh(NaN) is NaN without signal. + */ + +#ifndef HAVE_ACOSH +double +acosh(double x) +{ + if (Py_IS_NAN(x)) { + return x+x; + } + if (x < 1.) { /* x < 1; return a signaling NaN */ + errno = EDOM; +#ifdef Py_NAN + return Py_NAN; +#else + return (x-x)/(x-x); +#endif + } + else if (x >= two_pow_p28) { /* x > 2**28 */ + if (Py_IS_INFINITY(x)) { + return x+x; + } else { + return log(x)+ln2; /* acosh(huge)=log(2x) */ + } + } + else if (x == 1.) { + return 0.0; /* acosh(1) = 0 */ + } + else if (x > 2.) { /* 2 < x < 2**28 */ + double t = x*x; + return log(2.0*x - 1.0 / (x + sqrt(t - 1.0))); + } + else { /* 1 < x <= 2 */ + double t = x - 1.0; + return log1p(t + sqrt(2.0*t + t*t)); + } +} +#endif /* HAVE_ACOSH */ + +/* atanh(x) + * Method : + * 1.Reduced x to positive by atanh(-x) = -atanh(x) + * 2.For x>=0.5 + * 1 2x x + * atanh(x) = --- * log(1 + -------) = 0.5 * log1p(2 * --------) + * 2 1 - x 1 - x + * + * For x<0.5 + * atanh(x) = 0.5*log1p(2x+2x*x/(1-x)) + * + * Special cases: + * atanh(x) is NaN if |x| >= 1 with signal; + * atanh(NaN) is that NaN with no signal; + * + */ + +#ifndef HAVE_ATANH +double +atanh(double x) +{ + double absx; + double t; + + if (Py_IS_NAN(x)) { + return x+x; + } + absx = fabs(x); + if (absx >= 1.) { /* |x| >= 1 */ + errno = EDOM; +#ifdef Py_NAN + return Py_NAN; +#else + return x/zero; +#endif + } + if (absx < two_pow_m28) { /* |x| < 2**-28 */ + return x; + } + if (absx < 0.5) { /* |x| < 0.5 */ + t = absx+absx; + t = 0.5 * log1p(t + t*absx / (1.0 - absx)); + } + else { /* 0.5 <= |x| <= 1.0 */ + t = 0.5 * log1p((absx + absx) / (1.0 - absx)); + } + return copysign(t, x); +} +#endif /* HAVE_ATANH */ @@ -1,5 +1,5 @@ #! /bin/sh -# From configure.in Revision: 62003 . +# From configure.in Revision: 62146 . # Guess values for system-dependent variables and create Makefiles. # Generated by GNU Autoconf 2.61 for python 3.0. # |