summaryrefslogtreecommitdiffstats
diff options
context:
space:
mode:
-rw-r--r--Lib/test/test_strtod.py99
-rw-r--r--Python/dtoa.c424
2 files changed, 334 insertions, 189 deletions
diff --git a/Lib/test/test_strtod.py b/Lib/test/test_strtod.py
index 7830021..13b008b 100644
--- a/Lib/test/test_strtod.py
+++ b/Lib/test/test_strtod.py
@@ -100,6 +100,49 @@ class StrtodTests(unittest.TestCase):
"Incorrectly rounded str->float conversion for {}: "
"expected {}, got {}".format(s, expected, got))
+ def test_short_halfway_cases(self):
+ # exact halfway cases with a small number of significant digits
+ for k in 0, 5, 10, 15, 20:
+ # upper = smallest integer >= 2**54/5**k
+ upper = -(-2**54//5**k)
+ # lower = smallest odd number >= 2**53/5**k
+ lower = -(-2**53//5**k)
+ if lower % 2 == 0:
+ lower += 1
+ for i in range(10 * TEST_SIZE):
+ # Select a random odd n in [2**53/5**k,
+ # 2**54/5**k). Then n * 10**k gives a halfway case
+ # with small number of significant digits.
+ n, e = random.randrange(lower, upper, 2), k
+
+ # Remove any additional powers of 5.
+ while n % 5 == 0:
+ n, e = n // 5, e + 1
+ assert n % 10 in (1, 3, 7, 9)
+
+ # Try numbers of the form n * 2**p2 * 10**e, p2 >= 0,
+ # until n * 2**p2 has more than 20 significant digits.
+ digits, exponent = n, e
+ while digits < 10**20:
+ s = '{}e{}'.format(digits, exponent)
+ self.check_strtod(s)
+ # Same again, but with extra trailing zeros.
+ s = '{}e{}'.format(digits * 10**40, exponent - 40)
+ self.check_strtod(s)
+ digits *= 2
+
+ # Try numbers of the form n * 5**p2 * 10**(e - p5), p5
+ # >= 0, with n * 5**p5 < 10**20.
+ digits, exponent = n, e
+ while digits < 10**20:
+ s = '{}e{}'.format(digits, exponent)
+ self.check_strtod(s)
+ # Same again, but with extra trailing zeros.
+ s = '{}e{}'.format(digits * 10**40, exponent - 40)
+ self.check_strtod(s)
+ digits *= 5
+ exponent -= 1
+
def test_halfway_cases(self):
# test halfway cases for the round-half-to-even rule
for i in range(1000):
@@ -164,10 +207,10 @@ class StrtodTests(unittest.TestCase):
self.check_strtod(s)
def test_bigcomp(self):
- DIG10 = 10**50
- for i in range(1000):
- for j in range(TEST_SIZE):
- digits = random.randrange(DIG10)
+ for ndigs in 5, 10, 14, 15, 16, 17, 18, 19, 20, 40, 41, 50:
+ dig10 = 10**ndigs
+ for i in range(100 * TEST_SIZE):
+ digits = random.randrange(dig10)
exponent = random.randrange(-400, 400)
s = '{}e{}'.format(digits, exponent)
self.check_strtod(s)
@@ -254,11 +297,59 @@ class StrtodTests(unittest.TestCase):
# demonstration that original fix for issue 7632 bug 1 was
# buggy; the exit condition was too strong
'247032822920623295e-341',
+ # demonstrate similar problem to issue 7632 bug1: crash
+ # with 'oversized quotient in quorem' message.
+ '99037485700245683102805043437346965248029601286431e-373',
+ '99617639833743863161109961162881027406769510558457e-373',
+ '98852915025769345295749278351563179840130565591462e-372',
+ '99059944827693569659153042769690930905148015876788e-373',
+ '98914979205069368270421829889078356254059760327101e-372',
# issue 7632 bug 5: the following 2 strings convert differently
'1000000000000000000000000000000000000000e-16',
'10000000000000000000000000000000000000000e-17',
+ # issue 7632 bug 7
+ '991633793189150720000000000000000000000000000000000000000e-33',
+ # And another, similar, failing halfway case
+ '4106250198039490000000000000000000000000000000000000000e-38',
# issue 7632 bug 8: the following produced 10.0
'10.900000000000000012345678912345678912345',
+ # exercise exit conditions in bigcomp comparison loop
+ '2602129298404963083833853479113577253105939995688e2',
+ '260212929840496308383385347911357725310593999568896e0',
+ '26021292984049630838338534791135772531059399956889601e-2',
+ '260212929840496308383385347911357725310593999568895e0',
+ '260212929840496308383385347911357725310593999568897e0',
+ '260212929840496308383385347911357725310593999568996e0',
+ '260212929840496308383385347911357725310593999568866e0',
+ # 2**53
+ '9007199254740992.00',
+ # 2**1024 - 2**970: exact overflow boundary. All values
+ # smaller than this should round to something finite; any value
+ # greater than or equal to this one overflows.
+ '179769313486231580793728971405303415079934132710037' #...
+ '826936173778980444968292764750946649017977587207096' #...
+ '330286416692887910946555547851940402630657488671505' #...
+ '820681908902000708383676273854845817711531764475730' #...
+ '270069855571366959622842914819860834936475292719074' #...
+ '168444365510704342711559699508093042880177904174497792',
+ # 2**1024 - 2**970 - tiny
+ '179769313486231580793728971405303415079934132710037' #...
+ '826936173778980444968292764750946649017977587207096' #...
+ '330286416692887910946555547851940402630657488671505' #...
+ '820681908902000708383676273854845817711531764475730' #...
+ '270069855571366959622842914819860834936475292719074' #...
+ '168444365510704342711559699508093042880177904174497791.999',
+ # 2**1024 - 2**970 + tiny
+ '179769313486231580793728971405303415079934132710037' #...
+ '826936173778980444968292764750946649017977587207096' #...
+ '330286416692887910946555547851940402630657488671505' #...
+ '820681908902000708383676273854845817711531764475730' #...
+ '270069855571366959622842914819860834936475292719074' #...
+ '168444365510704342711559699508093042880177904174497792.001',
+ # 1 - 2**-54, +-tiny
+ '999999999999999944488848768742172978818416595458984375e-54',
+ '9999999999999999444888487687421729788184165954589843749999999e-54',
+ '9999999999999999444888487687421729788184165954589843750000001e-54',
]
for s in test_strings:
self.check_strtod(s)
diff --git a/Python/dtoa.c b/Python/dtoa.c
index de3ca9e..9ca2dd9 100644
--- a/Python/dtoa.c
+++ b/Python/dtoa.c
@@ -270,7 +270,7 @@ typedef union { double d; ULong L[2]; } U;
typedef struct BCinfo BCinfo;
struct
BCinfo {
- int dsign, e0, nd, nd0, scale;
+ int e0, nd, nd0, scale;
};
#define FFFFFFFF 0xffffffffUL
@@ -967,8 +967,8 @@ diff(Bigint *a, Bigint *b)
return c;
}
-/* Given a positive normal double x, return the difference between x and the next
- double up. Doesn't give correct results for subnormals. */
+/* Given a positive normal double x, return the difference between x and the
+ next double up. Doesn't give correct results for subnormals. */
static double
ulp(U *x)
@@ -1276,9 +1276,6 @@ sulp(U *x, BCinfo *bc)
bc is a struct containing information gathered during the parsing and
estimation steps of _Py_dg_strtod. Description of fields follows:
- bc->dsign is 1 if rv < decimal value, 0 if rv >= decimal value. In
- normal use, it should almost always be 1 when bigcomp is entered.
-
bc->e0 gives the exponent of the input value, such that dv = (integer
given by the bd->nd digits of s0) * 10**e0
@@ -1387,47 +1384,37 @@ bigcomp(U *rv, const char *s0, BCinfo *bc)
}
}
- /* if b >= d, round down */
- if (cmp(b, d) >= 0) {
+ /* Compare s0 with b/d: set dd to -1, 0, or 1 according as s0 < b/d, s0 ==
+ * b/d, or s0 > b/d. Here the digits of s0 are thought of as representing
+ * a number in the range [0.1, 1). */
+ if (cmp(b, d) >= 0)
+ /* b/d >= 1 */
dd = -1;
- goto ret;
- }
+ else {
+ i = 0;
+ for(;;) {
+ b = multadd(b, 10, 0);
+ if (b == NULL) {
+ Bfree(d);
+ return -1;
+ }
+ dd = s0[i < nd0 ? i : i+1] - '0' - quorem(b, d);
+ i++;
- /* Compare b/d with s0 */
- for(i = 0; i < nd0; i++) {
- b = multadd(b, 10, 0);
- if (b == NULL) {
- Bfree(d);
- return -1;
- }
- dd = *s0++ - '0' - quorem(b, d);
- if (dd)
- goto ret;
- if (!b->x[0] && b->wds == 1) {
- if (i < nd - 1)
- dd = 1;
- goto ret;
- }
- }
- s0++;
- for(; i < nd; i++) {
- b = multadd(b, 10, 0);
- if (b == NULL) {
- Bfree(d);
- return -1;
- }
- dd = *s0++ - '0' - quorem(b, d);
- if (dd)
- goto ret;
- if (!b->x[0] && b->wds == 1) {
- if (i < nd - 1)
- dd = 1;
- goto ret;
+ if (dd)
+ break;
+ if (!b->x[0] && b->wds == 1) {
+ /* b/d == 0 */
+ dd = i < nd;
+ break;
+ }
+ if (!(i < nd)) {
+ /* b/d != 0, but digits of s0 exhausted */
+ dd = -1;
+ break;
+ }
}
}
- if (b->x[0] || b->wds > 1)
- dd = -1;
- ret:
Bfree(b);
Bfree(d);
if (dd > 0 || (dd == 0 && odd))
@@ -1438,128 +1425,130 @@ bigcomp(U *rv, const char *s0, BCinfo *bc)
double
_Py_dg_strtod(const char *s00, char **se)
{
- int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, e, e1, error;
- int esign, i, j, k, nd, nd0, nf, nz, nz0, sign;
+ int bb2, bb5, bbe, bd2, bd5, bbbits, bs2, c, dsign, e, e1, error;
+ int esign, i, j, k, lz, nd, nd0, sign;
const char *s, *s0, *s1;
double aadj, aadj1;
U aadj2, adj, rv, rv0;
- ULong y, z, abse;
+ ULong y, z, abs_exp;
Long L;
BCinfo bc;
Bigint *bb, *bb1, *bd, *bd0, *bs, *delta;
- sign = nz0 = nz = 0;
dval(&rv) = 0.;
- for(s = s00;;s++) switch(*s) {
- case '-':
- sign = 1;
- /* no break */
- case '+':
- if (*++s)
- goto break2;
- /* no break */
- case 0:
- goto ret0;
- /* modify original dtoa.c so that it doesn't accept leading whitespace
- case '\t':
- case '\n':
- case '\v':
- case '\f':
- case '\r':
- case ' ':
- continue;
- */
- default:
- goto break2;
- }
- break2:
- if (*s == '0') {
- nz0 = 1;
- while(*++s == '0') ;
- if (!*s)
- goto ret;
+
+ /* Start parsing. */
+ c = *(s = s00);
+
+ /* Parse optional sign, if present. */
+ sign = 0;
+ switch (c) {
+ case '-':
+ sign = 1;
+ /* no break */
+ case '+':
+ c = *++s;
}
- s0 = s;
- for(nd = nf = 0; (c = *s) >= '0' && c <= '9'; nd++, s++)
- ;
- nd0 = nd;
+
+ /* Skip leading zeros: lz is true iff there were leading zeros. */
+ s1 = s;
+ while (c == '0')
+ c = *++s;
+ lz = s != s1;
+
+ /* Point s0 at the first nonzero digit (if any). nd0 will be the position
+ of the point relative to s0. nd will be the total number of digits
+ ignoring leading zeros. */
+ s0 = s1 = s;
+ while ('0' <= c && c <= '9')
+ c = *++s;
+ nd0 = nd = s - s1;
+
+ /* Parse decimal point and following digits. */
if (c == '.') {
c = *++s;
if (!nd) {
- for(; c == '0'; c = *++s)
- nz++;
- if (c > '0' && c <= '9') {
- s0 = s;
- nf += nz;
- nz = 0;
- goto have_dig;
- }
- goto dig_done;
- }
- for(; c >= '0' && c <= '9'; c = *++s) {
- have_dig:
- nz++;
- if (c -= '0') {
- nf += nz;
- nd += nz;
- nz = 0;
- }
+ s1 = s;
+ while (c == '0')
+ c = *++s;
+ lz = lz || s != s1;
+ nd0 -= s - s1;
+ s0 = s;
}
+ s1 = s;
+ while ('0' <= c && c <= '9')
+ c = *++s;
+ nd += s - s1;
+ }
+
+ /* Now lz is true if and only if there were leading zero digits, and nd
+ gives the total number of digits ignoring leading zeros. A valid input
+ must have at least one digit. */
+ if (!nd && !lz) {
+ if (se)
+ *se = (char *)s00;
+ goto parse_error;
}
- dig_done:
+
+ /* Parse exponent. */
e = 0;
if (c == 'e' || c == 'E') {
- if (!nd && !nz && !nz0) {
- goto ret0;
- }
s00 = s;
+ c = *++s;
+
+ /* Exponent sign. */
esign = 0;
- switch(c = *++s) {
+ switch (c) {
case '-':
esign = 1;
+ /* no break */
case '+':
c = *++s;
}
- if (c >= '0' && c <= '9') {
- while(c == '0')
- c = *++s;
- if (c > '0' && c <= '9') {
- abse = c - '0';
- s1 = s;
- while((c = *++s) >= '0' && c <= '9')
- abse = 10*abse + c - '0';
- if (s - s1 > 8 || abse > MAX_ABS_EXP)
- /* Avoid confusion from exponents
- * so large that e might overflow.
- */
- e = (int)MAX_ABS_EXP; /* safe for 16 bit ints */
- else
- e = (int)abse;
- if (esign)
- e = -e;
- }
- else
- e = 0;
+
+ /* Skip zeros. lz is true iff there are leading zeros. */
+ s1 = s;
+ while (c == '0')
+ c = *++s;
+ lz = s != s1;
+
+ /* Get absolute value of the exponent. */
+ s1 = s;
+ abs_exp = 0;
+ while ('0' <= c && c <= '9') {
+ abs_exp = 10*abs_exp + (c - '0');
+ c = *++s;
}
+
+ /* abs_exp will be correct modulo 2**32. But 10**9 < 2**32, so if
+ there are at most 9 significant exponent digits then overflow is
+ impossible. */
+ if (s - s1 > 9 || abs_exp > MAX_ABS_EXP)
+ e = (int)MAX_ABS_EXP;
else
+ e = (int)abs_exp;
+ if (esign)
+ e = -e;
+
+ /* A valid exponent must have at least one digit. */
+ if (s == s1 && !lz)
s = s00;
}
- if (!nd) {
- if (!nz && !nz0) {
- ret0:
- s = s00;
- sign = 0;
- }
- goto ret;
- }
- e -= nf;
- if (!nd0)
+
+ /* Adjust exponent to take into account position of the point. */
+ e -= nd - nd0;
+ if (nd0 <= 0)
nd0 = nd;
- /* strip trailing zeros */
+ /* Finished parsing. Set se to indicate how far we parsed */
+ if (se)
+ *se = (char *)s;
+
+ /* If all digits were zero, exit with return value +-0.0. Otherwise,
+ strip trailing zeros: scan back until we hit a nonzero digit. */
+ if (!nd)
+ goto ret;
for (i = nd; i > 0; ) {
- /* scan back until we hit a nonzero digit. significant digit 'i'
- is s0[i] if i < nd0, s0[i+1] if i >= nd0. */
--i;
if (s0[i < nd0 ? i : i+1] != '0') {
++i;
@@ -1571,28 +1560,21 @@ _Py_dg_strtod(const char *s00, char **se)
if (nd0 > nd)
nd0 = nd;
- /* Now we have nd0 digits, starting at s0, followed by a
- * decimal point, followed by nd-nd0 digits. The number we're
- * after is the integer represented by those digits times
- * 10**e */
-
- bc.e0 = e1 = e;
-
- /* Summary of parsing results. The parsing stage gives values
- * s0, nd0, nd, e, sign, where:
+ /* Summary of parsing results. After parsing, and dealing with zero
+ * inputs, we have values s0, nd0, nd, e, sign, where:
*
- * - s0 points to the first significant digit of the input string s00;
+ * - s0 points to the first significant digit of the input string
*
* - nd is the total number of significant digits (here, and
* below, 'significant digits' means the set of digits of the
* significand of the input that remain after ignoring leading
- * and trailing zeros.
+ * and trailing zeros).
*
- * - nd0 indicates the position of the decimal point (if
- * present): so the nd significant digits are in s0[0:nd0] and
- * s0[nd0+1:nd+1] using the usual Python half-open slice
- * notation. (If nd0 < nd, then s0[nd0] necessarily contains
- * a '.' character; if nd0 == nd, then it could be anything.)
+ * - nd0 indicates the position of the decimal point, if present; it
+ * satisfies 1 <= nd0 <= nd. The nd significant digits are in
+ * s0[0:nd0] and s0[nd0+1:nd+1] using the usual Python half-open slice
+ * notation. (If nd0 < nd, then s0[nd0] contains a '.' character; if
+ * nd0 == nd, then s0[nd0] could be any non-digit character.)
*
* - e is the adjusted exponent: the absolute value of the number
* represented by the original input string is n * 10**e, where
@@ -1614,6 +1596,7 @@ _Py_dg_strtod(const char *s00, char **se)
* gives the value represented by the first min(16, nd) sig. digits.
*/
+ bc.e0 = e1 = e;
y = z = 0;
for (i = 0; i < nd; i++) {
if (i < 9)
@@ -1666,14 +1649,8 @@ _Py_dg_strtod(const char *s00, char **se)
if ((i = e1 & 15))
dval(&rv) *= tens[i];
if (e1 &= ~15) {
- if (e1 > DBL_MAX_10_EXP) {
- ovfl:
- errno = ERANGE;
- /* Can't trust HUGE_VAL */
- word0(&rv) = Exp_mask;
- word1(&rv) = 0;
- goto ret;
- }
+ if (e1 > DBL_MAX_10_EXP)
+ goto ovfl;
e1 >>= 4;
for(j = 0; e1 > 1; j++, e1 >>= 1)
if (e1 & 1)
@@ -1695,6 +1672,16 @@ _Py_dg_strtod(const char *s00, char **se)
}
}
else if (e1 < 0) {
+ /* The input decimal value lies in [10**e1, 10**(e1+16)).
+
+ If e1 <= -512, underflow immediately.
+ If e1 <= -256, set bc.scale to 2*P.
+
+ So for input value < 1e-256, bc.scale is always set;
+ for input value >= 1e-240, bc.scale is never set.
+ For input values in [1e-256, 1e-240), bc.scale may or may
+ not be set. */
+
e1 = -e1;
if ((i = e1 & 15))
dval(&rv) /= tens[i];
@@ -1719,12 +1706,8 @@ _Py_dg_strtod(const char *s00, char **se)
else
word1(&rv) &= 0xffffffff << j;
}
- if (!dval(&rv)) {
- undfl:
- dval(&rv) = 0.;
- errno = ERANGE;
- goto ret;
- }
+ if (!dval(&rv))
+ goto undfl;
}
}
@@ -1769,7 +1752,34 @@ _Py_dg_strtod(const char *s00, char **se)
if (bd0 == NULL)
goto failed_malloc;
+ /* Notation for the comments below. Write:
+
+ - dv for the absolute value of the number represented by the original
+ decimal input string.
+
+ - if we've truncated dv, write tdv for the truncated value.
+ Otherwise, set tdv == dv.
+
+ - srv for the quantity rv/2^bc.scale; so srv is the current binary
+ approximation to tdv (and dv). It should be exactly representable
+ in an IEEE 754 double.
+ */
+
for(;;) {
+
+ /* This is the main correction loop for _Py_dg_strtod.
+
+ We've got a decimal value tdv, and a floating-point approximation
+ srv=rv/2^bc.scale to tdv. The aim is to determine whether srv is
+ close enough (i.e., within 0.5 ulps) to tdv, and to compute a new
+ approximation if not.
+
+ To determine whether srv is close enough to tdv, compute integers
+ bd, bb and bs proportional to tdv, srv and 0.5 ulp(srv)
+ respectively, and then use integer arithmetic to determine whether
+ |tdv - srv| is less than, equal to, or greater than 0.5 ulp(srv).
+ */
+
bd = Balloc(bd0->k);
if (bd == NULL) {
Bfree(bd0);
@@ -1782,6 +1792,7 @@ _Py_dg_strtod(const char *s00, char **se)
Bfree(bd0);
goto failed_malloc;
}
+ /* tdv = bd * 10^e; srv = bb * 2^(bbe - scale) */
bs = i2b(1);
if (bs == NULL) {
Bfree(bb);
@@ -1802,6 +1813,17 @@ _Py_dg_strtod(const char *s00, char **se)
bb2 += bbe;
else
bd2 -= bbe;
+
+ /* At this stage e = bd2 - bb2 + bbe = bd5 - bb5, so:
+
+ tdv = bd * 2^(bbe + bd2 - bb2) * 5^(bd5 - bb5)
+ srv = bb * 2^(bbe - scale).
+
+ Compute j such that
+
+ 0.5 ulp(srv) = 2^(bbe - scale - j)
+ */
+
bs2 = bb2;
j = bbe - bc.scale;
i = j + bbbits - 1; /* logb(rv) */
@@ -1809,9 +1831,26 @@ _Py_dg_strtod(const char *s00, char **se)
j += P - Emin;
else
j = P + 1 - bbbits;
+
+ /* Now we have:
+
+ M * tdv = bd * 2^(bd2 + scale + j) * 5^bd5
+ M * srv = bb * 2^(bb2 + j) * 5^bb5
+ M * 0.5 ulp(srv) = 2^bs2 * 5^bb5
+
+ where M is the constant (currently) represented by 2^(j + scale +
+ bb2 - bbe) * 5^bb5.
+ */
+
bb2 += j;
bd2 += j;
bd2 += bc.scale;
+
+ /* After the adjustments above, tdv, srv and 0.5 ulp(srv) are
+ proportional to: bd * 2^bd2 * 5^bd5, bb * 2^bb2 * 5^bb5, and
+ bs * 2^bs2 * 5^bb5, respectively. */
+
+ /* Remove excess powers of 2. i = min(bb2, bd2, bs2). */
i = bb2 < bd2 ? bb2 : bd2;
if (i > bs2)
i = bs2;
@@ -1820,6 +1859,8 @@ _Py_dg_strtod(const char *s00, char **se)
bd2 -= i;
bs2 -= i;
}
+
+ /* Scale bb, bd, bs by the appropriate powers of 2 and 5. */
if (bb5 > 0) {
bs = pow5mult(bs, bb5);
if (bs == NULL) {
@@ -1874,6 +1915,11 @@ _Py_dg_strtod(const char *s00, char **se)
goto failed_malloc;
}
}
+
+ /* Now bd, bb and bs are scaled versions of tdv, srv and 0.5 ulp(srv),
+ respectively. Compute the difference |tdv - srv|, and compare
+ with 0.5 ulp(srv). */
+
delta = diff(bb, bd);
if (delta == NULL) {
Bfree(bb);
@@ -1882,11 +1928,11 @@ _Py_dg_strtod(const char *s00, char **se)
Bfree(bd0);
goto failed_malloc;
}
- bc.dsign = delta->sign;
+ dsign = delta->sign;
delta->sign = 0;
i = cmp(delta, bs);
if (bc.nd > nd && i <= 0) {
- if (bc.dsign)
+ if (dsign)
break; /* Must use bigcomp(). */
/* Here rv overestimates the truncated decimal value by at most
@@ -1908,7 +1954,7 @@ _Py_dg_strtod(const char *s00, char **se)
rv / 2^bc.scale >= 2^-1021. */
if (j - bc.scale >= 2) {
dval(&rv) -= 0.5 * sulp(&rv, &bc);
- break;
+ break; /* Use bigcomp. */
}
}
@@ -1922,7 +1968,7 @@ _Py_dg_strtod(const char *s00, char **se)
/* Error is less than half an ulp -- check for
* special case of mantissa a power of two.
*/
- if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask
+ if (dsign || word1(&rv) || word0(&rv) & Bndry_mask
|| (word0(&rv) & Exp_mask) <= (2*P+1)*Exp_msk1
) {
break;
@@ -1945,7 +1991,7 @@ _Py_dg_strtod(const char *s00, char **se)
}
if (i == 0) {
/* exactly half-way between */
- if (bc.dsign) {
+ if (dsign) {
if ((word0(&rv) & Bndry_mask1) == Bndry_mask1
&& word1(&rv) == (
(bc.scale &&
@@ -1957,7 +2003,7 @@ _Py_dg_strtod(const char *s00, char **se)
+ Exp_msk1
;
word1(&rv) = 0;
- bc.dsign = 0;
+ dsign = 0;
break;
}
}
@@ -1972,7 +2018,7 @@ _Py_dg_strtod(const char *s00, char **se)
/* accept rv */
break;
/* rv = smallest denormal */
- if (bc.nd >nd)
+ if (bc.nd > nd)
break;
goto undfl;
}
@@ -1984,7 +2030,7 @@ _Py_dg_strtod(const char *s00, char **se)
}
if (!(word1(&rv) & LSB))
break;
- if (bc.dsign)
+ if (dsign)
dval(&rv) += ulp(&rv);
else {
dval(&rv) -= ulp(&rv);
@@ -1994,11 +2040,11 @@ _Py_dg_strtod(const char *s00, char **se)
goto undfl;
}
}
- bc.dsign = 1 - bc.dsign;
+ dsign = 1 - dsign;
break;
}
if ((aadj = ratio(delta, bs)) <= 2.) {
- if (bc.dsign)
+ if (dsign)
aadj = aadj1 = 1.;
else if (word1(&rv) || word0(&rv) & Bndry_mask) {
if (word1(&rv) == Tiny1 && !word0(&rv)) {
@@ -2022,7 +2068,7 @@ _Py_dg_strtod(const char *s00, char **se)
}
else {
aadj *= 0.5;
- aadj1 = bc.dsign ? aadj : -aadj;
+ aadj1 = dsign ? aadj : -aadj;
if (Flt_Rounds == 0)
aadj1 += 0.5;
}
@@ -2058,7 +2104,7 @@ _Py_dg_strtod(const char *s00, char **se)
if ((z = (ULong)aadj) <= 0)
z = 1;
aadj = z;
- aadj1 = bc.dsign ? aadj : -aadj;
+ aadj1 = dsign ? aadj : -aadj;
}
dval(&aadj2) = aadj1;
word0(&aadj2) += (2*P+1)*Exp_msk1 - y;
@@ -2075,7 +2121,7 @@ _Py_dg_strtod(const char *s00, char **se)
L = (Long)aadj;
aadj -= L;
/* The tolerances below are conservative. */
- if (bc.dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
+ if (dsign || word1(&rv) || word0(&rv) & Bndry_mask) {
if (aadj < .4999999 || aadj > .5000001)
break;
}
@@ -2104,20 +2150,28 @@ _Py_dg_strtod(const char *s00, char **se)
word0(&rv0) = Exp_1 - 2*P*Exp_msk1;
word1(&rv0) = 0;
dval(&rv) *= dval(&rv0);
- /* try to avoid the bug of testing an 8087 register value */
- if (!(word0(&rv) & Exp_mask))
- errno = ERANGE;
}
+
ret:
- if (se)
- *se = (char *)s;
return sign ? -dval(&rv) : dval(&rv);
+ parse_error:
+ return 0.0;
+
failed_malloc:
- if (se)
- *se = (char *)s00;
errno = ENOMEM;
return -1.0;
+
+ undfl:
+ return sign ? -0.0 : 0.0;
+
+ ovfl:
+ errno = ERANGE;
+ /* Can't trust HUGE_VAL */
+ word0(&rv) = Exp_mask;
+ word1(&rv) = 0;
+ return sign ? -dval(&rv) : dval(&rv);
+
}
static char *