summaryrefslogtreecommitdiffstats
path: root/Demo/classes/Rat.py
diff options
context:
space:
mode:
Diffstat (limited to 'Demo/classes/Rat.py')
-rwxr-xr-xDemo/classes/Rat.py310
1 files changed, 0 insertions, 310 deletions
diff --git a/Demo/classes/Rat.py b/Demo/classes/Rat.py
deleted file mode 100755
index 55543b6..0000000
--- a/Demo/classes/Rat.py
+++ /dev/null
@@ -1,310 +0,0 @@
-'''\
-This module implements rational numbers.
-
-The entry point of this module is the function
- rat(numerator, denominator)
-If either numerator or denominator is of an integral or rational type,
-the result is a rational number, else, the result is the simplest of
-the types float and complex which can hold numerator/denominator.
-If denominator is omitted, it defaults to 1.
-Rational numbers can be used in calculations with any other numeric
-type. The result of the calculation will be rational if possible.
-
-There is also a test function with calling sequence
- test()
-The documentation string of the test function contains the expected
-output.
-'''
-
-# Contributed by Sjoerd Mullender
-
-from types import *
-
-def gcd(a, b):
- '''Calculate the Greatest Common Divisor.'''
- while b:
- a, b = b, a%b
- return a
-
-def rat(num, den = 1):
- # must check complex before float
- if isinstance(num, complex) or isinstance(den, complex):
- # numerator or denominator is complex: return a complex
- return complex(num) / complex(den)
- if isinstance(num, float) or isinstance(den, float):
- # numerator or denominator is float: return a float
- return float(num) / float(den)
- # otherwise return a rational
- return Rat(num, den)
-
-class Rat:
- '''This class implements rational numbers.'''
-
- def __init__(self, num, den = 1):
- if den == 0:
- raise ZeroDivisionError, 'rat(x, 0)'
-
- # normalize
-
- # must check complex before float
- if (isinstance(num, complex) or
- isinstance(den, complex)):
- # numerator or denominator is complex:
- # normalized form has denominator == 1+0j
- self.__num = complex(num) / complex(den)
- self.__den = complex(1)
- return
- if isinstance(num, float) or isinstance(den, float):
- # numerator or denominator is float:
- # normalized form has denominator == 1.0
- self.__num = float(num) / float(den)
- self.__den = 1.0
- return
- if (isinstance(num, self.__class__) or
- isinstance(den, self.__class__)):
- # numerator or denominator is rational
- new = num / den
- if not isinstance(new, self.__class__):
- self.__num = new
- if isinstance(new, complex):
- self.__den = complex(1)
- else:
- self.__den = 1.0
- else:
- self.__num = new.__num
- self.__den = new.__den
- else:
- # make sure numerator and denominator don't
- # have common factors
- # this also makes sure that denominator > 0
- g = gcd(num, den)
- self.__num = num / g
- self.__den = den / g
- # try making numerator and denominator of IntType if they fit
- try:
- numi = int(self.__num)
- deni = int(self.__den)
- except (OverflowError, TypeError):
- pass
- else:
- if self.__num == numi and self.__den == deni:
- self.__num = numi
- self.__den = deni
-
- def __repr__(self):
- return 'Rat(%s,%s)' % (self.__num, self.__den)
-
- def __str__(self):
- if self.__den == 1:
- return str(self.__num)
- else:
- return '(%s/%s)' % (str(self.__num), str(self.__den))
-
- # a + b
- def __add__(a, b):
- try:
- return rat(a.__num * b.__den + b.__num * a.__den,
- a.__den * b.__den)
- except OverflowError:
- return rat(long(a.__num) * long(b.__den) +
- long(b.__num) * long(a.__den),
- long(a.__den) * long(b.__den))
-
- def __radd__(b, a):
- return Rat(a) + b
-
- # a - b
- def __sub__(a, b):
- try:
- return rat(a.__num * b.__den - b.__num * a.__den,
- a.__den * b.__den)
- except OverflowError:
- return rat(long(a.__num) * long(b.__den) -
- long(b.__num) * long(a.__den),
- long(a.__den) * long(b.__den))
-
- def __rsub__(b, a):
- return Rat(a) - b
-
- # a * b
- def __mul__(a, b):
- try:
- return rat(a.__num * b.__num, a.__den * b.__den)
- except OverflowError:
- return rat(long(a.__num) * long(b.__num),
- long(a.__den) * long(b.__den))
-
- def __rmul__(b, a):
- return Rat(a) * b
-
- # a / b
- def __div__(a, b):
- try:
- return rat(a.__num * b.__den, a.__den * b.__num)
- except OverflowError:
- return rat(long(a.__num) * long(b.__den),
- long(a.__den) * long(b.__num))
-
- def __rdiv__(b, a):
- return Rat(a) / b
-
- # a % b
- def __mod__(a, b):
- div = a / b
- try:
- div = int(div)
- except OverflowError:
- div = long(div)
- return a - b * div
-
- def __rmod__(b, a):
- return Rat(a) % b
-
- # a ** b
- def __pow__(a, b):
- if b.__den != 1:
- if isinstance(a.__num, complex):
- a = complex(a)
- else:
- a = float(a)
- if isinstance(b.__num, complex):
- b = complex(b)
- else:
- b = float(b)
- return a ** b
- try:
- return rat(a.__num ** b.__num, a.__den ** b.__num)
- except OverflowError:
- return rat(long(a.__num) ** b.__num,
- long(a.__den) ** b.__num)
-
- def __rpow__(b, a):
- return Rat(a) ** b
-
- # -a
- def __neg__(a):
- try:
- return rat(-a.__num, a.__den)
- except OverflowError:
- # a.__num == sys.maxint
- return rat(-long(a.__num), a.__den)
-
- # abs(a)
- def __abs__(a):
- return rat(abs(a.__num), a.__den)
-
- # int(a)
- def __int__(a):
- return int(a.__num / a.__den)
-
- # long(a)
- def __long__(a):
- return long(a.__num) / long(a.__den)
-
- # float(a)
- def __float__(a):
- return float(a.__num) / float(a.__den)
-
- # complex(a)
- def __complex__(a):
- return complex(a.__num) / complex(a.__den)
-
- # cmp(a,b)
- def __cmp__(a, b):
- diff = Rat(a - b)
- if diff.__num < 0:
- return -1
- elif diff.__num > 0:
- return 1
- else:
- return 0
-
- def __rcmp__(b, a):
- return cmp(Rat(a), b)
-
- # a != 0
- def __nonzero__(a):
- return a.__num != 0
-
- # coercion
- def __coerce__(a, b):
- return a, Rat(b)
-
-def test():
- '''\
- Test function for rat module.
-
- The expected output is (module some differences in floating
- precission):
- -1
- -1
- 0 0L 0.1 (0.1+0j)
- [Rat(1,2), Rat(-3,10), Rat(1,25), Rat(1,4)]
- [Rat(-3,10), Rat(1,25), Rat(1,4), Rat(1,2)]
- 0
- (11/10)
- (11/10)
- 1.1
- OK
- 2 1.5 (3/2) (1.5+1.5j) (15707963/5000000)
- 2 2 2.0 (2+0j)
-
- 4 0 4 1 4 0
- 3.5 0.5 3.0 1.33333333333 2.82842712475 1
- (7/2) (1/2) 3 (4/3) 2.82842712475 1
- (3.5+1.5j) (0.5-1.5j) (3+3j) (0.666666666667-0.666666666667j) (1.43248815986+2.43884761145j) 1
- 1.5 1 1.5 (1.5+0j)
-
- 3.5 -0.5 3.0 0.75 2.25 -1
- 3.0 0.0 2.25 1.0 1.83711730709 0
- 3.0 0.0 2.25 1.0 1.83711730709 1
- (3+1.5j) -1.5j (2.25+2.25j) (0.5-0.5j) (1.50768393746+1.04970907623j) -1
- (3/2) 1 1.5 (1.5+0j)
-
- (7/2) (-1/2) 3 (3/4) (9/4) -1
- 3.0 0.0 2.25 1.0 1.83711730709 -1
- 3 0 (9/4) 1 1.83711730709 0
- (3+1.5j) -1.5j (2.25+2.25j) (0.5-0.5j) (1.50768393746+1.04970907623j) -1
- (1.5+1.5j) (1.5+1.5j)
-
- (3.5+1.5j) (-0.5+1.5j) (3+3j) (0.75+0.75j) 4.5j -1
- (3+1.5j) 1.5j (2.25+2.25j) (1+1j) (1.18235814075+2.85446505899j) 1
- (3+1.5j) 1.5j (2.25+2.25j) (1+1j) (1.18235814075+2.85446505899j) 1
- (3+3j) 0j 4.5j (1+0j) (-0.638110484918+0.705394566962j) 0
- '''
- print rat(-1L, 1)
- print rat(1, -1)
- a = rat(1, 10)
- print int(a), long(a), float(a), complex(a)
- b = rat(2, 5)
- l = [a+b, a-b, a*b, a/b]
- print l
- l.sort()
- print l
- print rat(0, 1)
- print a+1
- print a+1L
- print a+1.0
- try:
- print rat(1, 0)
- raise SystemError, 'should have been ZeroDivisionError'
- except ZeroDivisionError:
- print 'OK'
- print rat(2), rat(1.5), rat(3, 2), rat(1.5+1.5j), rat(31415926,10000000)
- list = [2, 1.5, rat(3,2), 1.5+1.5j]
- for i in list:
- print i,
- if not isinstance(i, complex):
- print int(i), float(i),
- print complex(i)
- print
- for j in list:
- print i + j, i - j, i * j, i / j, i ** j,
- if not (isinstance(i, complex) or
- isinstance(j, complex)):
- print cmp(i, j)
- print
-
-
-if __name__ == '__main__':
- test()