diff options
Diffstat (limited to 'Demo/classes/Rat.py')
-rwxr-xr-x | Demo/classes/Rat.py | 310 |
1 files changed, 0 insertions, 310 deletions
diff --git a/Demo/classes/Rat.py b/Demo/classes/Rat.py deleted file mode 100755 index 55543b6..0000000 --- a/Demo/classes/Rat.py +++ /dev/null @@ -1,310 +0,0 @@ -'''\ -This module implements rational numbers. - -The entry point of this module is the function - rat(numerator, denominator) -If either numerator or denominator is of an integral or rational type, -the result is a rational number, else, the result is the simplest of -the types float and complex which can hold numerator/denominator. -If denominator is omitted, it defaults to 1. -Rational numbers can be used in calculations with any other numeric -type. The result of the calculation will be rational if possible. - -There is also a test function with calling sequence - test() -The documentation string of the test function contains the expected -output. -''' - -# Contributed by Sjoerd Mullender - -from types import * - -def gcd(a, b): - '''Calculate the Greatest Common Divisor.''' - while b: - a, b = b, a%b - return a - -def rat(num, den = 1): - # must check complex before float - if isinstance(num, complex) or isinstance(den, complex): - # numerator or denominator is complex: return a complex - return complex(num) / complex(den) - if isinstance(num, float) or isinstance(den, float): - # numerator or denominator is float: return a float - return float(num) / float(den) - # otherwise return a rational - return Rat(num, den) - -class Rat: - '''This class implements rational numbers.''' - - def __init__(self, num, den = 1): - if den == 0: - raise ZeroDivisionError, 'rat(x, 0)' - - # normalize - - # must check complex before float - if (isinstance(num, complex) or - isinstance(den, complex)): - # numerator or denominator is complex: - # normalized form has denominator == 1+0j - self.__num = complex(num) / complex(den) - self.__den = complex(1) - return - if isinstance(num, float) or isinstance(den, float): - # numerator or denominator is float: - # normalized form has denominator == 1.0 - self.__num = float(num) / float(den) - self.__den = 1.0 - return - if (isinstance(num, self.__class__) or - isinstance(den, self.__class__)): - # numerator or denominator is rational - new = num / den - if not isinstance(new, self.__class__): - self.__num = new - if isinstance(new, complex): - self.__den = complex(1) - else: - self.__den = 1.0 - else: - self.__num = new.__num - self.__den = new.__den - else: - # make sure numerator and denominator don't - # have common factors - # this also makes sure that denominator > 0 - g = gcd(num, den) - self.__num = num / g - self.__den = den / g - # try making numerator and denominator of IntType if they fit - try: - numi = int(self.__num) - deni = int(self.__den) - except (OverflowError, TypeError): - pass - else: - if self.__num == numi and self.__den == deni: - self.__num = numi - self.__den = deni - - def __repr__(self): - return 'Rat(%s,%s)' % (self.__num, self.__den) - - def __str__(self): - if self.__den == 1: - return str(self.__num) - else: - return '(%s/%s)' % (str(self.__num), str(self.__den)) - - # a + b - def __add__(a, b): - try: - return rat(a.__num * b.__den + b.__num * a.__den, - a.__den * b.__den) - except OverflowError: - return rat(long(a.__num) * long(b.__den) + - long(b.__num) * long(a.__den), - long(a.__den) * long(b.__den)) - - def __radd__(b, a): - return Rat(a) + b - - # a - b - def __sub__(a, b): - try: - return rat(a.__num * b.__den - b.__num * a.__den, - a.__den * b.__den) - except OverflowError: - return rat(long(a.__num) * long(b.__den) - - long(b.__num) * long(a.__den), - long(a.__den) * long(b.__den)) - - def __rsub__(b, a): - return Rat(a) - b - - # a * b - def __mul__(a, b): - try: - return rat(a.__num * b.__num, a.__den * b.__den) - except OverflowError: - return rat(long(a.__num) * long(b.__num), - long(a.__den) * long(b.__den)) - - def __rmul__(b, a): - return Rat(a) * b - - # a / b - def __div__(a, b): - try: - return rat(a.__num * b.__den, a.__den * b.__num) - except OverflowError: - return rat(long(a.__num) * long(b.__den), - long(a.__den) * long(b.__num)) - - def __rdiv__(b, a): - return Rat(a) / b - - # a % b - def __mod__(a, b): - div = a / b - try: - div = int(div) - except OverflowError: - div = long(div) - return a - b * div - - def __rmod__(b, a): - return Rat(a) % b - - # a ** b - def __pow__(a, b): - if b.__den != 1: - if isinstance(a.__num, complex): - a = complex(a) - else: - a = float(a) - if isinstance(b.__num, complex): - b = complex(b) - else: - b = float(b) - return a ** b - try: - return rat(a.__num ** b.__num, a.__den ** b.__num) - except OverflowError: - return rat(long(a.__num) ** b.__num, - long(a.__den) ** b.__num) - - def __rpow__(b, a): - return Rat(a) ** b - - # -a - def __neg__(a): - try: - return rat(-a.__num, a.__den) - except OverflowError: - # a.__num == sys.maxint - return rat(-long(a.__num), a.__den) - - # abs(a) - def __abs__(a): - return rat(abs(a.__num), a.__den) - - # int(a) - def __int__(a): - return int(a.__num / a.__den) - - # long(a) - def __long__(a): - return long(a.__num) / long(a.__den) - - # float(a) - def __float__(a): - return float(a.__num) / float(a.__den) - - # complex(a) - def __complex__(a): - return complex(a.__num) / complex(a.__den) - - # cmp(a,b) - def __cmp__(a, b): - diff = Rat(a - b) - if diff.__num < 0: - return -1 - elif diff.__num > 0: - return 1 - else: - return 0 - - def __rcmp__(b, a): - return cmp(Rat(a), b) - - # a != 0 - def __nonzero__(a): - return a.__num != 0 - - # coercion - def __coerce__(a, b): - return a, Rat(b) - -def test(): - '''\ - Test function for rat module. - - The expected output is (module some differences in floating - precission): - -1 - -1 - 0 0L 0.1 (0.1+0j) - [Rat(1,2), Rat(-3,10), Rat(1,25), Rat(1,4)] - [Rat(-3,10), Rat(1,25), Rat(1,4), Rat(1,2)] - 0 - (11/10) - (11/10) - 1.1 - OK - 2 1.5 (3/2) (1.5+1.5j) (15707963/5000000) - 2 2 2.0 (2+0j) - - 4 0 4 1 4 0 - 3.5 0.5 3.0 1.33333333333 2.82842712475 1 - (7/2) (1/2) 3 (4/3) 2.82842712475 1 - (3.5+1.5j) (0.5-1.5j) (3+3j) (0.666666666667-0.666666666667j) (1.43248815986+2.43884761145j) 1 - 1.5 1 1.5 (1.5+0j) - - 3.5 -0.5 3.0 0.75 2.25 -1 - 3.0 0.0 2.25 1.0 1.83711730709 0 - 3.0 0.0 2.25 1.0 1.83711730709 1 - (3+1.5j) -1.5j (2.25+2.25j) (0.5-0.5j) (1.50768393746+1.04970907623j) -1 - (3/2) 1 1.5 (1.5+0j) - - (7/2) (-1/2) 3 (3/4) (9/4) -1 - 3.0 0.0 2.25 1.0 1.83711730709 -1 - 3 0 (9/4) 1 1.83711730709 0 - (3+1.5j) -1.5j (2.25+2.25j) (0.5-0.5j) (1.50768393746+1.04970907623j) -1 - (1.5+1.5j) (1.5+1.5j) - - (3.5+1.5j) (-0.5+1.5j) (3+3j) (0.75+0.75j) 4.5j -1 - (3+1.5j) 1.5j (2.25+2.25j) (1+1j) (1.18235814075+2.85446505899j) 1 - (3+1.5j) 1.5j (2.25+2.25j) (1+1j) (1.18235814075+2.85446505899j) 1 - (3+3j) 0j 4.5j (1+0j) (-0.638110484918+0.705394566962j) 0 - ''' - print rat(-1L, 1) - print rat(1, -1) - a = rat(1, 10) - print int(a), long(a), float(a), complex(a) - b = rat(2, 5) - l = [a+b, a-b, a*b, a/b] - print l - l.sort() - print l - print rat(0, 1) - print a+1 - print a+1L - print a+1.0 - try: - print rat(1, 0) - raise SystemError, 'should have been ZeroDivisionError' - except ZeroDivisionError: - print 'OK' - print rat(2), rat(1.5), rat(3, 2), rat(1.5+1.5j), rat(31415926,10000000) - list = [2, 1.5, rat(3,2), 1.5+1.5j] - for i in list: - print i, - if not isinstance(i, complex): - print int(i), float(i), - print complex(i) - print - for j in list: - print i + j, i - j, i * j, i / j, i ** j, - if not (isinstance(i, complex) or - isinstance(j, complex)): - print cmp(i, j) - print - - -if __name__ == '__main__': - test() |