summaryrefslogtreecommitdiffstats
path: root/Doc/api/concrete.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Doc/api/concrete.tex')
-rw-r--r--Doc/api/concrete.tex3326
1 files changed, 0 insertions, 3326 deletions
diff --git a/Doc/api/concrete.tex b/Doc/api/concrete.tex
deleted file mode 100644
index ddb19d0..0000000
--- a/Doc/api/concrete.tex
+++ /dev/null
@@ -1,3326 +0,0 @@
-\chapter{Concrete Objects Layer \label{concrete}}
-
-
-The functions in this chapter are specific to certain Python object
-types. Passing them an object of the wrong type is not a good idea;
-if you receive an object from a Python program and you are not sure
-that it has the right type, you must perform a type check first;
-for example, to check that an object is a dictionary, use
-\cfunction{PyDict_Check()}. The chapter is structured like the
-``family tree'' of Python object types.
-
-\warning{While the functions described in this chapter carefully check
-the type of the objects which are passed in, many of them do not check
-for \NULL{} being passed instead of a valid object. Allowing \NULL{}
-to be passed in can cause memory access violations and immediate
-termination of the interpreter.}
-
-
-\section{Fundamental Objects \label{fundamental}}
-
-This section describes Python type objects and the singleton object
-\code{None}.
-
-
-\subsection{Type Objects \label{typeObjects}}
-
-\obindex{type}
-\begin{ctypedesc}{PyTypeObject}
- The C structure of the objects used to describe built-in types.
-\end{ctypedesc}
-
-\begin{cvardesc}{PyObject*}{PyType_Type}
- This is the type object for type objects; it is the same object as
- \code{type} and \code{types.TypeType} in the Python layer.
- \withsubitem{(in module types)}{\ttindex{TypeType}}
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyType_Check}{PyObject *o}
- Return true if the object \var{o} is a type object, including
- instances of types derived from the standard type object. Return
- false in all other cases.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyType_CheckExact}{PyObject *o}
- Return true if the object \var{o} is a type object, but not a
- subtype of the standard type object. Return false in all other
- cases.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyType_HasFeature}{PyObject *o, int feature}
- Return true if the type object \var{o} sets the feature
- \var{feature}. Type features are denoted by single bit flags.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyType_IS_GC}{PyObject *o}
- Return true if the type object includes support for the cycle
- detector; this tests the type flag \constant{Py_TPFLAGS_HAVE_GC}.
- \versionadded{2.0}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyType_IsSubtype}{PyTypeObject *a, PyTypeObject *b}
- Return true if \var{a} is a subtype of \var{b}.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyType_GenericAlloc}{PyTypeObject *type,
- Py_ssize_t nitems}
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyType_GenericNew}{PyTypeObject *type,
- PyObject *args, PyObject *kwds}
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyType_Ready}{PyTypeObject *type}
- Finalize a type object. This should be called on all type objects
- to finish their initialization. This function is responsible for
- adding inherited slots from a type's base class. Return \code{0}
- on success, or return \code{-1} and sets an exception on error.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-
-\subsection{The None Object \label{noneObject}}
-
-\obindex{None}
-Note that the \ctype{PyTypeObject} for \code{None} is not directly
-exposed in the Python/C API. Since \code{None} is a singleton,
-testing for object identity (using \samp{==} in C) is sufficient.
-There is no \cfunction{PyNone_Check()} function for the same reason.
-
-\begin{cvardesc}{PyObject*}{Py_None}
- The Python \code{None} object, denoting lack of value. This object
- has no methods. It needs to be treated just like any other object
- with respect to reference counts.
-\end{cvardesc}
-
-\begin{csimplemacrodesc}{Py_RETURN_NONE}
- Properly handle returning \cdata{Py_None} from within a C function.
- \versionadded{2.4}
-\end{csimplemacrodesc}
-
-
-\section{Numeric Objects \label{numericObjects}}
-
-\obindex{numeric}
-
-
-\subsection{Plain Integer Objects \label{intObjects}}
-
-\obindex{integer}
-\begin{ctypedesc}{PyIntObject}
- This subtype of \ctype{PyObject} represents a Python integer
- object.
-\end{ctypedesc}
-
-\begin{cvardesc}{PyTypeObject}{PyInt_Type}
- This instance of \ctype{PyTypeObject} represents the Python plain
- integer type. This is the same object as \code{int} and
- \code{types.IntType}.
- \withsubitem{(in modules types)}{\ttindex{IntType}}
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyInt_Check}{PyObject *o}
- Return true if \var{o} is of type \cdata{PyInt_Type} or a subtype
- of \cdata{PyInt_Type}.
- \versionchanged[Allowed subtypes to be accepted]{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyInt_CheckExact}{PyObject *o}
- Return true if \var{o} is of type \cdata{PyInt_Type}, but not a
- subtype of \cdata{PyInt_Type}.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyInt_FromString}{char *str, char **pend,
- int base}
- Return a new \ctype{PyIntObject} or \ctype{PyLongObject} based on the
- string value in \var{str}, which is interpreted according to the radix in
- \var{base}. If \var{pend} is non-\NULL{}, \code{*\var{pend}} will point to
- the first character in \var{str} which follows the representation of the
- number. If \var{base} is \code{0}, the radix will be determined based on
- the leading characters of \var{str}: if \var{str} starts with \code{'0x'}
- or \code{'0X'}, radix 16 will be used; if \var{str} starts with
- \code{'0'}, radix 8 will be used; otherwise radix 10 will be used. If
- \var{base} is not \code{0}, it must be between \code{2} and \code{36},
- inclusive. Leading spaces are ignored. If there are no digits,
- \exception{ValueError} will be raised. If the string represents a number
- too large to be contained within the machine's \ctype{long int} type and
- overflow warnings are being suppressed, a \ctype{PyLongObject} will be
- returned. If overflow warnings are not being suppressed, \NULL{} will be
- returned in this case.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyInt_FromLong}{long ival}
- Create a new integer object with a value of \var{ival}.
-
- The current implementation keeps an array of integer objects for all
- integers between \code{-5} and \code{256}, when you create an int in
- that range you actually just get back a reference to the existing
- object. So it should be possible to change the value of \code{1}. I
- suspect the behaviour of Python in this case is undefined. :-)
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyInt_FromSsize_t}{Py_ssize_t ival}
- Create a new integer object with a value of \var{ival}.
- If the value exceeds \code{LONG_MAX}, a long integer object is
- returned.
-
- \versionadded{2.5}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{long}{PyInt_AsLong}{PyObject *io}
- Will first attempt to cast the object to a \ctype{PyIntObject}, if
- it is not already one, and then return its value. If there is an
- error, \code{-1} is returned, and the caller should check
- \code{PyErr_Occurred()} to find out whether there was an error, or
- whether the value just happened to be -1.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{long}{PyInt_AS_LONG}{PyObject *io}
- Return the value of the object \var{io}. No error checking is
- performed.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{unsigned long}{PyInt_AsUnsignedLongMask}{PyObject *io}
- Will first attempt to cast the object to a \ctype{PyIntObject} or
- \ctype{PyLongObject}, if it is not already one, and then return its
- value as unsigned long. This function does not check for overflow.
- \versionadded{2.3}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{unsigned PY_LONG_LONG}{PyInt_AsUnsignedLongLongMask}{PyObject *io}
- Will first attempt to cast the object to a \ctype{PyIntObject} or
- \ctype{PyLongObject}, if it is not already one, and then return its
- value as unsigned long long, without checking for overflow.
- \versionadded{2.3}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_ssize_t}{PyInt_AsSsize_t}{PyObject *io}
- Will first attempt to cast the object to a \ctype{PyIntObject} or
- \ctype{PyLongObject}, if it is not already one, and then return its
- value as \ctype{Py_ssize_t}.
- \versionadded{2.5}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{long}{PyInt_GetMax}{}
- Return the system's idea of the largest integer it can handle
- (\constant{LONG_MAX}\ttindex{LONG_MAX}, as defined in the system
- header files).
-\end{cfuncdesc}
-
-\subsection{Boolean Objects \label{boolObjects}}
-
-Booleans in Python are implemented as a subclass of integers. There
-are only two booleans, \constant{Py_False} and \constant{Py_True}. As
-such, the normal creation and deletion functions don't apply to
-booleans. The following macros are available, however.
-
-\begin{cfuncdesc}{int}{PyBool_Check}{PyObject *o}
- Return true if \var{o} is of type \cdata{PyBool_Type}.
- \versionadded{2.3}
-\end{cfuncdesc}
-
-\begin{cvardesc}{PyObject*}{Py_False}
- The Python \code{False} object. This object has no methods. It needs to
- be treated just like any other object with respect to reference counts.
-\end{cvardesc}
-
-\begin{cvardesc}{PyObject*}{Py_True}
- The Python \code{True} object. This object has no methods. It needs to
- be treated just like any other object with respect to reference counts.
-\end{cvardesc}
-
-\begin{csimplemacrodesc}{Py_RETURN_FALSE}
- Return \constant{Py_False} from a function, properly incrementing its
- reference count.
-\versionadded{2.4}
-\end{csimplemacrodesc}
-
-\begin{csimplemacrodesc}{Py_RETURN_TRUE}
- Return \constant{Py_True} from a function, properly incrementing its
- reference count.
-\versionadded{2.4}
-\end{csimplemacrodesc}
-
-\begin{cfuncdesc}{PyObject*}{PyBool_FromLong}{long v}
- Return a new reference to \constant{Py_True} or \constant{Py_False}
- depending on the truth value of \var{v}.
-\versionadded{2.3}
-\end{cfuncdesc}
-
-\subsection{Long Integer Objects \label{longObjects}}
-
-\obindex{long integer}
-\begin{ctypedesc}{PyLongObject}
- This subtype of \ctype{PyObject} represents a Python long integer
- object.
-\end{ctypedesc}
-
-\begin{cvardesc}{PyTypeObject}{PyLong_Type}
- This instance of \ctype{PyTypeObject} represents the Python long
- integer type. This is the same object as \code{long} and
- \code{types.LongType}.
- \withsubitem{(in modules types)}{\ttindex{LongType}}
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyLong_Check}{PyObject *p}
- Return true if its argument is a \ctype{PyLongObject} or a subtype
- of \ctype{PyLongObject}.
- \versionchanged[Allowed subtypes to be accepted]{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyLong_CheckExact}{PyObject *p}
- Return true if its argument is a \ctype{PyLongObject}, but not a
- subtype of \ctype{PyLongObject}.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyLong_FromLong}{long v}
- Return a new \ctype{PyLongObject} object from \var{v}, or \NULL{}
- on failure.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyLong_FromUnsignedLong}{unsigned long v}
- Return a new \ctype{PyLongObject} object from a C \ctype{unsigned
- long}, or \NULL{} on failure.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyLong_FromLongLong}{PY_LONG_LONG v}
- Return a new \ctype{PyLongObject} object from a C \ctype{long long},
- or \NULL{} on failure.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyLong_FromUnsignedLongLong}{unsigned PY_LONG_LONG v}
- Return a new \ctype{PyLongObject} object from a C \ctype{unsigned
- long long}, or \NULL{} on failure.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyLong_FromDouble}{double v}
- Return a new \ctype{PyLongObject} object from the integer part of
- \var{v}, or \NULL{} on failure.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyLong_FromString}{char *str, char **pend,
- int base}
- Return a new \ctype{PyLongObject} based on the string value in
- \var{str}, which is interpreted according to the radix in
- \var{base}. If \var{pend} is non-\NULL{}, \code{*\var{pend}} will
- point to the first character in \var{str} which follows the
- representation of the number. If \var{base} is \code{0}, the radix
- will be determined based on the leading characters of \var{str}: if
- \var{str} starts with \code{'0x'} or \code{'0X'}, radix 16 will be
- used; if \var{str} starts with \code{'0'}, radix 8 will be used;
- otherwise radix 10 will be used. If \var{base} is not \code{0}, it
- must be between \code{2} and \code{36}, inclusive. Leading spaces
- are ignored. If there are no digits, \exception{ValueError} will be
- raised.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyLong_FromUnicode}{Py_UNICODE *u,
- Py_ssize_t length, int base}
- Convert a sequence of Unicode digits to a Python long integer
- value. The first parameter, \var{u}, points to the first character
- of the Unicode string, \var{length} gives the number of characters,
- and \var{base} is the radix for the conversion. The radix must be
- in the range [2, 36]; if it is out of range, \exception{ValueError}
- will be raised.
- \versionadded{1.6}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyLong_FromVoidPtr}{void *p}
- Create a Python integer or long integer from the pointer \var{p}.
- The pointer value can be retrieved from the resulting value using
- \cfunction{PyLong_AsVoidPtr()}.
- \versionadded{1.5.2}
- \versionchanged[If the integer is larger than LONG_MAX,
- a positive long integer is returned]{2.5}
- \end{cfuncdesc}
-
-\begin{cfuncdesc}{long}{PyLong_AsLong}{PyObject *pylong}
- Return a C \ctype{long} representation of the contents of
- \var{pylong}. If \var{pylong} is greater than
- \constant{LONG_MAX}\ttindex{LONG_MAX}, an \exception{OverflowError}
- is raised.
- \withsubitem{(built-in exception)}{\ttindex{OverflowError}}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{unsigned long}{PyLong_AsUnsignedLong}{PyObject *pylong}
- Return a C \ctype{unsigned long} representation of the contents of
- \var{pylong}. If \var{pylong} is greater than
- \constant{ULONG_MAX}\ttindex{ULONG_MAX}, an
- \exception{OverflowError} is raised.
- \withsubitem{(built-in exception)}{\ttindex{OverflowError}}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PY_LONG_LONG}{PyLong_AsLongLong}{PyObject *pylong}
- Return a C \ctype{long long} from a Python long integer. If
- \var{pylong} cannot be represented as a \ctype{long long}, an
- \exception{OverflowError} will be raised.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{unsigned PY_LONG_LONG}{PyLong_AsUnsignedLongLong}{PyObject
- *pylong}
- Return a C \ctype{unsigned long long} from a Python long integer.
- If \var{pylong} cannot be represented as an \ctype{unsigned long
- long}, an \exception{OverflowError} will be raised if the value is
- positive, or a \exception{TypeError} will be raised if the value is
- negative.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{unsigned long}{PyLong_AsUnsignedLongMask}{PyObject *io}
- Return a C \ctype{unsigned long} from a Python long integer, without
- checking for overflow.
- \versionadded{2.3}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{unsigned PY_LONG_LONG}{PyLong_AsUnsignedLongLongMask}{PyObject *io}
- Return a C \ctype{unsigned long long} from a Python long integer, without
- checking for overflow.
- \versionadded{2.3}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{double}{PyLong_AsDouble}{PyObject *pylong}
- Return a C \ctype{double} representation of the contents of
- \var{pylong}. If \var{pylong} cannot be approximately represented
- as a \ctype{double}, an \exception{OverflowError} exception is
- raised and \code{-1.0} will be returned.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{void*}{PyLong_AsVoidPtr}{PyObject *pylong}
- Convert a Python integer or long integer \var{pylong} to a C
- \ctype{void} pointer. If \var{pylong} cannot be converted, an
- \exception{OverflowError} will be raised. This is only assured to
- produce a usable \ctype{void} pointer for values created with
- \cfunction{PyLong_FromVoidPtr()}.
- \versionadded{1.5.2}
- \versionchanged[For values outside 0..LONG_MAX, both signed and
- unsigned integers are acccepted]{2.5}
-\end{cfuncdesc}
-
-
-\subsection{Floating Point Objects \label{floatObjects}}
-
-\obindex{floating point}
-\begin{ctypedesc}{PyFloatObject}
- This subtype of \ctype{PyObject} represents a Python floating point
- object.
-\end{ctypedesc}
-
-\begin{cvardesc}{PyTypeObject}{PyFloat_Type}
- This instance of \ctype{PyTypeObject} represents the Python floating
- point type. This is the same object as \code{float} and
- \code{types.FloatType}.
- \withsubitem{(in modules types)}{\ttindex{FloatType}}
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyFloat_Check}{PyObject *p}
- Return true if its argument is a \ctype{PyFloatObject} or a subtype
- of \ctype{PyFloatObject}.
- \versionchanged[Allowed subtypes to be accepted]{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyFloat_CheckExact}{PyObject *p}
- Return true if its argument is a \ctype{PyFloatObject}, but not a
- subtype of \ctype{PyFloatObject}.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyFloat_FromString}{PyObject *str}
- Create a \ctype{PyFloatObject} object based on the string value in
- \var{str}, or \NULL{} on failure.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyFloat_FromDouble}{double v}
- Create a \ctype{PyFloatObject} object from \var{v}, or \NULL{} on
- failure.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{double}{PyFloat_AsDouble}{PyObject *pyfloat}
- Return a C \ctype{double} representation of the contents of
- \var{pyfloat}. If \var{pyfloat} is not a Python floating point
- object but has a \method{__float__} method, this method will first
- be called to convert \var{pyfloat} into a float.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{double}{PyFloat_AS_DOUBLE}{PyObject *pyfloat}
- Return a C \ctype{double} representation of the contents of
- \var{pyfloat}, but without error checking.
-\end{cfuncdesc}
-
-
-\subsection{Complex Number Objects \label{complexObjects}}
-
-\obindex{complex number}
-Python's complex number objects are implemented as two distinct types
-when viewed from the C API: one is the Python object exposed to
-Python programs, and the other is a C structure which represents the
-actual complex number value. The API provides functions for working
-with both.
-
-\subsubsection{Complex Numbers as C Structures}
-
-Note that the functions which accept these structures as parameters
-and return them as results do so \emph{by value} rather than
-dereferencing them through pointers. This is consistent throughout
-the API.
-
-\begin{ctypedesc}{Py_complex}
- The C structure which corresponds to the value portion of a Python
- complex number object. Most of the functions for dealing with
- complex number objects use structures of this type as input or
- output values, as appropriate. It is defined as:
-
-\begin{verbatim}
-typedef struct {
- double real;
- double imag;
-} Py_complex;
-\end{verbatim}
-\end{ctypedesc}
-
-\begin{cfuncdesc}{Py_complex}{_Py_c_sum}{Py_complex left, Py_complex right}
- Return the sum of two complex numbers, using the C
- \ctype{Py_complex} representation.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_complex}{_Py_c_diff}{Py_complex left, Py_complex right}
- Return the difference between two complex numbers, using the C
- \ctype{Py_complex} representation.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_complex}{_Py_c_neg}{Py_complex complex}
- Return the negation of the complex number \var{complex}, using the C
- \ctype{Py_complex} representation.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_complex}{_Py_c_prod}{Py_complex left, Py_complex right}
- Return the product of two complex numbers, using the C
- \ctype{Py_complex} representation.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_complex}{_Py_c_quot}{Py_complex dividend,
- Py_complex divisor}
- Return the quotient of two complex numbers, using the C
- \ctype{Py_complex} representation.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_complex}{_Py_c_pow}{Py_complex num, Py_complex exp}
- Return the exponentiation of \var{num} by \var{exp}, using the C
- \ctype{Py_complex} representation.
-\end{cfuncdesc}
-
-
-\subsubsection{Complex Numbers as Python Objects}
-
-\begin{ctypedesc}{PyComplexObject}
- This subtype of \ctype{PyObject} represents a Python complex number
- object.
-\end{ctypedesc}
-
-\begin{cvardesc}{PyTypeObject}{PyComplex_Type}
- This instance of \ctype{PyTypeObject} represents the Python complex
- number type. It is the same object as \code{complex} and
- \code{types.ComplexType}.
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyComplex_Check}{PyObject *p}
- Return true if its argument is a \ctype{PyComplexObject} or a
- subtype of \ctype{PyComplexObject}.
- \versionchanged[Allowed subtypes to be accepted]{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyComplex_CheckExact}{PyObject *p}
- Return true if its argument is a \ctype{PyComplexObject}, but not a
- subtype of \ctype{PyComplexObject}.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyComplex_FromCComplex}{Py_complex v}
- Create a new Python complex number object from a C
- \ctype{Py_complex} value.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyComplex_FromDoubles}{double real, double imag}
- Return a new \ctype{PyComplexObject} object from \var{real} and
- \var{imag}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{double}{PyComplex_RealAsDouble}{PyObject *op}
- Return the real part of \var{op} as a C \ctype{double}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{double}{PyComplex_ImagAsDouble}{PyObject *op}
- Return the imaginary part of \var{op} as a C \ctype{double}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_complex}{PyComplex_AsCComplex}{PyObject *op}
- Return the \ctype{Py_complex} value of the complex number \var{op}.
- \versionchanged[If \var{op} is not a Python complex number object
- but has a \method{__complex__} method, this method
- will first be called to convert \var{op} to a Python
- complex number object]{2.6}
-\end{cfuncdesc}
-
-
-
-\section{Sequence Objects \label{sequenceObjects}}
-
-\obindex{sequence}
-Generic operations on sequence objects were discussed in the previous
-chapter; this section deals with the specific kinds of sequence
-objects that are intrinsic to the Python language.
-
-
-\subsection{String Objects \label{stringObjects}}
-
-These functions raise \exception{TypeError} when expecting a string
-parameter and are called with a non-string parameter.
-
-\obindex{string}
-\begin{ctypedesc}{PyStringObject}
- This subtype of \ctype{PyObject} represents a Python string object.
-\end{ctypedesc}
-
-\begin{cvardesc}{PyTypeObject}{PyString_Type}
- This instance of \ctype{PyTypeObject} represents the Python string
- type; it is the same object as \code{str} and \code{types.StringType}
- in the Python layer.
- \withsubitem{(in module types)}{\ttindex{StringType}}.
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyString_Check}{PyObject *o}
- Return true if the object \var{o} is a string object or an instance
- of a subtype of the string type.
- \versionchanged[Allowed subtypes to be accepted]{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyString_CheckExact}{PyObject *o}
- Return true if the object \var{o} is a string object, but not an
- instance of a subtype of the string type.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyString_FromString}{const char *v}
- Return a new string object with a copy of the string \var{v} as value
- on success, and \NULL{} on failure. The parameter \var{v} must not be
- \NULL{}; it will not be checked.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyString_FromStringAndSize}{const char *v,
- Py_ssize_t len}
- Return a new string object with a copy of the string \var{v} as value
- and length \var{len} on success, and \NULL{} on failure. If \var{v} is
- \NULL{}, the contents of the string are uninitialized.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyString_FromFormat}{const char *format, ...}
- Take a C \cfunction{printf()}-style \var{format} string and a
- variable number of arguments, calculate the size of the resulting
- Python string and return a string with the values formatted into
- it. The variable arguments must be C types and must correspond
- exactly to the format characters in the \var{format} string. The
- following format characters are allowed:
-
- % This should be exactly the same as the table in PyErr_Format.
- % One should just refer to the other.
-
- % The descriptions for %zd and %zu are wrong, but the truth is complicated
- % because not all compilers support the %z width modifier -- we fake it
- % when necessary via interpolating PY_FORMAT_SIZE_T.
-
- % %u, %lu, %zu should have "new in Python 2.5" blurbs.
-
- \begin{tableiii}{l|l|l}{member}{Format Characters}{Type}{Comment}
- \lineiii{\%\%}{\emph{n/a}}{The literal \% character.}
- \lineiii{\%c}{int}{A single character, represented as an C int.}
- \lineiii{\%d}{int}{Exactly equivalent to \code{printf("\%d")}.}
- \lineiii{\%u}{unsigned int}{Exactly equivalent to \code{printf("\%u")}.}
- \lineiii{\%ld}{long}{Exactly equivalent to \code{printf("\%ld")}.}
- \lineiii{\%lu}{unsigned long}{Exactly equivalent to \code{printf("\%lu")}.}
- \lineiii{\%zd}{Py_ssize_t}{Exactly equivalent to \code{printf("\%zd")}.}
- \lineiii{\%zu}{size_t}{Exactly equivalent to \code{printf("\%zu")}.}
- \lineiii{\%i}{int}{Exactly equivalent to \code{printf("\%i")}.}
- \lineiii{\%x}{int}{Exactly equivalent to \code{printf("\%x")}.}
- \lineiii{\%s}{char*}{A null-terminated C character array.}
- \lineiii{\%p}{void*}{The hex representation of a C pointer.
- Mostly equivalent to \code{printf("\%p")} except that it is
- guaranteed to start with the literal \code{0x} regardless of
- what the platform's \code{printf} yields.}
- \end{tableiii}
-
- An unrecognized format character causes all the rest of the format
- string to be copied as-is to the result string, and any extra
- arguments discarded.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyString_FromFormatV}{const char *format,
- va_list vargs}
- Identical to \function{PyString_FromFormat()} except that it takes
- exactly two arguments.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_ssize_t}{PyString_Size}{PyObject *string}
- Return the length of the string in string object \var{string}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_ssize_t}{PyString_GET_SIZE}{PyObject *string}
- Macro form of \cfunction{PyString_Size()} but without error
- checking.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{char*}{PyString_AsString}{PyObject *string}
- Return a NUL-terminated representation of the contents of
- \var{string}. The pointer refers to the internal buffer of
- \var{string}, not a copy. The data must not be modified in any way,
- unless the string was just created using
- \code{PyString_FromStringAndSize(NULL, \var{size})}.
- It must not be deallocated. If \var{string} is a Unicode object,
- this function computes the default encoding of \var{string} and
- operates on that. If \var{string} is not a string object at all,
- \cfunction{PyString_AsString()} returns \NULL{} and raises
- \exception{TypeError}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{char*}{PyString_AS_STRING}{PyObject *string}
- Macro form of \cfunction{PyString_AsString()} but without error
- checking. Only string objects are supported; no Unicode objects
- should be passed.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyString_AsStringAndSize}{PyObject *obj,
- char **buffer,
- Py_ssize_t *length}
- Return a NUL-terminated representation of the contents of the
- object \var{obj} through the output variables \var{buffer} and
- \var{length}.
-
- The function accepts both string and Unicode objects as input. For
- Unicode objects it returns the default encoded version of the
- object. If \var{length} is \NULL{}, the resulting buffer may not
- contain NUL characters; if it does, the function returns \code{-1}
- and a \exception{TypeError} is raised.
-
- The buffer refers to an internal string buffer of \var{obj}, not a
- copy. The data must not be modified in any way, unless the string
- was just created using \code{PyString_FromStringAndSize(NULL,
- \var{size})}. It must not be deallocated. If \var{string} is a
- Unicode object, this function computes the default encoding of
- \var{string} and operates on that. If \var{string} is not a string
- object at all, \cfunction{PyString_AsStringAndSize()} returns
- \code{-1} and raises \exception{TypeError}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{void}{PyString_Concat}{PyObject **string,
- PyObject *newpart}
- Create a new string object in \var{*string} containing the contents
- of \var{newpart} appended to \var{string}; the caller will own the
- new reference. The reference to the old value of \var{string} will
- be stolen. If the new string cannot be created, the old reference
- to \var{string} will still be discarded and the value of
- \var{*string} will be set to \NULL{}; the appropriate exception will
- be set.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{void}{PyString_ConcatAndDel}{PyObject **string,
- PyObject *newpart}
- Create a new string object in \var{*string} containing the contents
- of \var{newpart} appended to \var{string}. This version decrements
- the reference count of \var{newpart}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{_PyString_Resize}{PyObject **string, Py_ssize_t newsize}
- A way to resize a string object even though it is ``immutable''.
- Only use this to build up a brand new string object; don't use this
- if the string may already be known in other parts of the code. It
- is an error to call this function if the refcount on the input string
- object is not one.
- Pass the address of an existing string object as an lvalue (it may
- be written into), and the new size desired. On success, \var{*string}
- holds the resized string object and \code{0} is returned; the address in
- \var{*string} may differ from its input value. If the
- reallocation fails, the original string object at \var{*string} is
- deallocated, \var{*string} is set to \NULL{}, a memory exception is set,
- and \code{-1} is returned.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyString_Format}{PyObject *format,
- PyObject *args}
- Return a new string object from \var{format} and \var{args}.
- Analogous to \code{\var{format} \%\ \var{args}}. The \var{args}
- argument must be a tuple.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{void}{PyString_InternInPlace}{PyObject **string}
- Intern the argument \var{*string} in place. The argument must be
- the address of a pointer variable pointing to a Python string
- object. If there is an existing interned string that is the same as
- \var{*string}, it sets \var{*string} to it (decrementing the
- reference count of the old string object and incrementing the
- reference count of the interned string object), otherwise it leaves
- \var{*string} alone and interns it (incrementing its reference
- count). (Clarification: even though there is a lot of talk about
- reference counts, think of this function as reference-count-neutral;
- you own the object after the call if and only if you owned it before
- the call.)
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyString_InternFromString}{const char *v}
- A combination of \cfunction{PyString_FromString()} and
- \cfunction{PyString_InternInPlace()}, returning either a new string
- object that has been interned, or a new (``owned'') reference to an
- earlier interned string object with the same value.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyString_Decode}{const char *s,
- Py_ssize_t size,
- const char *encoding,
- const char *errors}
- Create an object by decoding \var{size} bytes of the encoded
- buffer \var{s} using the codec registered for
- \var{encoding}. \var{encoding} and \var{errors} have the same
- meaning as the parameters of the same name in the
- \function{unicode()} built-in function. The codec to be used is
- looked up using the Python codec registry. Return \NULL{} if
- an exception was raised by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyString_AsDecodedObject}{PyObject *str,
- const char *encoding,
- const char *errors}
- Decode a string object by passing it to the codec registered for
- \var{encoding} and return the result as Python
- object. \var{encoding} and \var{errors} have the same meaning as the
- parameters of the same name in the string \method{encode()} method.
- The codec to be used is looked up using the Python codec registry.
- Return \NULL{} if an exception was raised by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyString_Encode}{const char *s,
- Py_ssize_t size,
- const char *encoding,
- const char *errors}
- Encode the \ctype{char} buffer of the given size by passing it to
- the codec registered for \var{encoding} and return a Python object.
- \var{encoding} and \var{errors} have the same meaning as the
- parameters of the same name in the string \method{encode()} method.
- The codec to be used is looked up using the Python codec
- registry. Return \NULL{} if an exception was raised by the
- codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyString_AsEncodedObject}{PyObject *str,
- const char *encoding,
- const char *errors}
- Encode a string object using the codec registered for
- \var{encoding} and return the result as Python object.
- \var{encoding} and \var{errors} have the same meaning as the
- parameters of the same name in the string \method{encode()} method.
- The codec to be used is looked up using the Python codec registry.
- Return \NULL{} if an exception was raised by the codec.
-\end{cfuncdesc}
-
-
-\subsection{Unicode Objects \label{unicodeObjects}}
-\sectionauthor{Marc-Andre Lemburg}{mal@lemburg.com}
-
-%--- Unicode Type -------------------------------------------------------
-
-These are the basic Unicode object types used for the Unicode
-implementation in Python:
-
-\begin{ctypedesc}{Py_UNICODE}
- This type represents the storage type which is used by Python
- internally as basis for holding Unicode ordinals. Python's default
- builds use a 16-bit type for \ctype{Py_UNICODE} and store Unicode
- values internally as UCS2. It is also possible to build a UCS4
- version of Python (most recent Linux distributions come with UCS4
- builds of Python). These builds then use a 32-bit type for
- \ctype{Py_UNICODE} and store Unicode data internally as UCS4. On
- platforms where \ctype{wchar_t} is available and compatible with the
- chosen Python Unicode build variant, \ctype{Py_UNICODE} is a typedef
- alias for \ctype{wchar_t} to enhance native platform compatibility.
- On all other platforms, \ctype{Py_UNICODE} is a typedef alias for
- either \ctype{unsigned short} (UCS2) or \ctype{unsigned long}
- (UCS4).
-\end{ctypedesc}
-
-Note that UCS2 and UCS4 Python builds are not binary compatible.
-Please keep this in mind when writing extensions or interfaces.
-
-\begin{ctypedesc}{PyUnicodeObject}
- This subtype of \ctype{PyObject} represents a Python Unicode object.
-\end{ctypedesc}
-
-\begin{cvardesc}{PyTypeObject}{PyUnicode_Type}
- This instance of \ctype{PyTypeObject} represents the Python Unicode
- type. It is exposed to Python code as \code{unicode} and
- \code{types.UnicodeType}.
-\end{cvardesc}
-
-The following APIs are really C macros and can be used to do fast
-checks and to access internal read-only data of Unicode objects:
-
-\begin{cfuncdesc}{int}{PyUnicode_Check}{PyObject *o}
- Return true if the object \var{o} is a Unicode object or an
- instance of a Unicode subtype.
- \versionchanged[Allowed subtypes to be accepted]{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyUnicode_CheckExact}{PyObject *o}
- Return true if the object \var{o} is a Unicode object, but not an
- instance of a subtype.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_GET_SIZE}{PyObject *o}
- Return the size of the object. \var{o} has to be a
- \ctype{PyUnicodeObject} (not checked).
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_GET_DATA_SIZE}{PyObject *o}
- Return the size of the object's internal buffer in bytes. \var{o}
- has to be a \ctype{PyUnicodeObject} (not checked).
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_UNICODE*}{PyUnicode_AS_UNICODE}{PyObject *o}
- Return a pointer to the internal \ctype{Py_UNICODE} buffer of the
- object. \var{o} has to be a \ctype{PyUnicodeObject} (not checked).
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{const char*}{PyUnicode_AS_DATA}{PyObject *o}
- Return a pointer to the internal buffer of the object.
- \var{o} has to be a \ctype{PyUnicodeObject} (not checked).
-\end{cfuncdesc}
-
-% --- Unicode character properties ---------------------------------------
-
-Unicode provides many different character properties. The most often
-needed ones are available through these macros which are mapped to C
-functions depending on the Python configuration.
-
-\begin{cfuncdesc}{int}{Py_UNICODE_ISSPACE}{Py_UNICODE ch}
- Return 1 or 0 depending on whether \var{ch} is a whitespace
- character.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{Py_UNICODE_ISLOWER}{Py_UNICODE ch}
- Return 1 or 0 depending on whether \var{ch} is a lowercase character.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{Py_UNICODE_ISUPPER}{Py_UNICODE ch}
- Return 1 or 0 depending on whether \var{ch} is an uppercase
- character.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{Py_UNICODE_ISTITLE}{Py_UNICODE ch}
- Return 1 or 0 depending on whether \var{ch} is a titlecase character.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{Py_UNICODE_ISLINEBREAK}{Py_UNICODE ch}
- Return 1 or 0 depending on whether \var{ch} is a linebreak character.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{Py_UNICODE_ISDECIMAL}{Py_UNICODE ch}
- Return 1 or 0 depending on whether \var{ch} is a decimal character.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{Py_UNICODE_ISDIGIT}{Py_UNICODE ch}
- Return 1 or 0 depending on whether \var{ch} is a digit character.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{Py_UNICODE_ISNUMERIC}{Py_UNICODE ch}
- Return 1 or 0 depending on whether \var{ch} is a numeric character.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{Py_UNICODE_ISALPHA}{Py_UNICODE ch}
- Return 1 or 0 depending on whether \var{ch} is an alphabetic
- character.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{Py_UNICODE_ISALNUM}{Py_UNICODE ch}
- Return 1 or 0 depending on whether \var{ch} is an alphanumeric
- character.
-\end{cfuncdesc}
-
-These APIs can be used for fast direct character conversions:
-
-\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOLOWER}{Py_UNICODE ch}
- Return the character \var{ch} converted to lower case.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOUPPER}{Py_UNICODE ch}
- Return the character \var{ch} converted to upper case.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_UNICODE}{Py_UNICODE_TOTITLE}{Py_UNICODE ch}
- Return the character \var{ch} converted to title case.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{Py_UNICODE_TODECIMAL}{Py_UNICODE ch}
- Return the character \var{ch} converted to a decimal positive
- integer. Return \code{-1} if this is not possible. This macro
- does not raise exceptions.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{Py_UNICODE_TODIGIT}{Py_UNICODE ch}
- Return the character \var{ch} converted to a single digit integer.
- Return \code{-1} if this is not possible. This macro does not raise
- exceptions.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{double}{Py_UNICODE_TONUMERIC}{Py_UNICODE ch}
- Return the character \var{ch} converted to a double.
- Return \code{-1.0} if this is not possible. This macro does not raise
- exceptions.
-\end{cfuncdesc}
-
-% --- Plain Py_UNICODE ---------------------------------------------------
-
-To create Unicode objects and access their basic sequence properties,
-use these APIs:
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_FromUnicode}{const Py_UNICODE *u,
- Py_ssize_t size}
- Create a Unicode Object from the Py_UNICODE buffer \var{u} of the
- given size. \var{u} may be \NULL{} which causes the contents to be
- undefined. It is the user's responsibility to fill in the needed
- data. The buffer is copied into the new object. If the buffer is
- not \NULL{}, the return value might be a shared object. Therefore,
- modification of the resulting Unicode object is only allowed when
- \var{u} is \NULL{}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_FromStringAndSize}{const char *u,
- Py_ssize_t size}
- Create a Unicode Object from the char buffer \var{u}.
- The bytes will be interpreted as being UTF-8 encoded.
- \var{u} may also be \NULL{} which causes the
- contents to be undefined. It is the user's responsibility to fill
- in the needed data. The buffer is copied into the new object.
- If the buffer is not \NULL{}, the return value might be a shared object.
- Therefore, modification of the resulting Unicode object is only allowed
- when \var{u} is \NULL{}.
- \versionadded{3.0}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_FromString}{const char*u}
- Create a Unicode object from an UTF-8 encoded null-terminated
- char buffer \var{u}.
- \versionadded{3.0}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_FromFormat}{const char *format, ...}
- Take a C \cfunction{printf()}-style \var{format} string and a
- variable number of arguments, calculate the size of the resulting
- Python unicode string and return a string with the values formatted into
- it. The variable arguments must be C types and must correspond
- exactly to the format characters in the \var{format} string. The
- following format characters are allowed:
-
- % The descriptions for %zd and %zu are wrong, but the truth is complicated
- % because not all compilers support the %z width modifier -- we fake it
- % when necessary via interpolating PY_FORMAT_SIZE_T.
-
- \begin{tableiii}{l|l|l}{member}{Format Characters}{Type}{Comment}
- \lineiii{\%\%}{\emph{n/a}}{The literal \% character.}
- \lineiii{\%c}{int}{A single character, represented as an C int.}
- \lineiii{\%d}{int}{Exactly equivalent to \code{printf("\%d")}.}
- \lineiii{\%u}{unsigned int}{Exactly equivalent to \code{printf("\%u")}.}
- \lineiii{\%ld}{long}{Exactly equivalent to \code{printf("\%ld")}.}
- \lineiii{\%lu}{unsigned long}{Exactly equivalent to \code{printf("\%lu")}.}
- \lineiii{\%zd}{Py_ssize_t}{Exactly equivalent to \code{printf("\%zd")}.}
- \lineiii{\%zu}{size_t}{Exactly equivalent to \code{printf("\%zu")}.}
- \lineiii{\%i}{int}{Exactly equivalent to \code{printf("\%i")}.}
- \lineiii{\%x}{int}{Exactly equivalent to \code{printf("\%x")}.}
- \lineiii{\%s}{char*}{A null-terminated C character array.}
- \lineiii{\%p}{void*}{The hex representation of a C pointer.
- Mostly equivalent to \code{printf("\%p")} except that it is
- guaranteed to start with the literal \code{0x} regardless of
- what the platform's \code{printf} yields.}
- \lineiii{\%U}{PyObject*}{A unicode object.}
- \lineiii{\%V}{PyObject*, char *}{A unicode object (which may be \NULL{})
- and a null-terminated C character array as a second parameter (which
- will be used, if the first parameter is \NULL{}).}
- \lineiii{\%S}{PyObject*}{The result of calling \function{PyObject_Unicode()}.}
- \lineiii{\%R}{PyObject*}{The result of calling \function{PyObject_Repr()}.}
- \end{tableiii}
-
- An unrecognized format character causes all the rest of the format
- string to be copied as-is to the result string, and any extra
- arguments discarded.
- \versionadded{3.0}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_FromFormatV}{const char *format,
- va_list vargs}
- Identical to \function{PyUnicode_FromFormat()} except that it takes
- exactly two arguments.
- \versionadded{3.0}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_UNICODE*}{PyUnicode_AsUnicode}{PyObject *unicode}
- Return a read-only pointer to the Unicode object's internal
- \ctype{Py_UNICODE} buffer, \NULL{} if \var{unicode} is not a Unicode
- object.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_GetSize}{PyObject *unicode}
- Return the length of the Unicode object.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_FromEncodedObject}{PyObject *obj,
- const char *encoding,
- const char *errors}
- Coerce an encoded object \var{obj} to an Unicode object and return a
- reference with incremented refcount.
-
- String and other char buffer compatible objects are decoded
- according to the given encoding and using the error handling
- defined by errors. Both can be \NULL{} to have the interface
- use the default values (see the next section for details).
-
- All other objects, including Unicode objects, cause a
- \exception{TypeError} to be set.
-
- The API returns \NULL{} if there was an error. The caller is
- responsible for decref'ing the returned objects.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_FromObject}{PyObject *obj}
- Shortcut for \code{PyUnicode_FromEncodedObject(obj, NULL, "strict")}
- which is used throughout the interpreter whenever coercion to
- Unicode is needed.
-\end{cfuncdesc}
-
-% --- wchar_t support for platforms which support it ---------------------
-
-If the platform supports \ctype{wchar_t} and provides a header file
-wchar.h, Python can interface directly to this type using the
-following functions. Support is optimized if Python's own
-\ctype{Py_UNICODE} type is identical to the system's \ctype{wchar_t}.
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_FromWideChar}{const wchar_t *w,
- Py_ssize_t size}
- Create a Unicode object from the \ctype{wchar_t} buffer \var{w} of
- the given size. Return \NULL{} on failure.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_AsWideChar}{PyUnicodeObject *unicode,
- wchar_t *w,
- Py_ssize_t size}
- Copy the Unicode object contents into the \ctype{wchar_t} buffer
- \var{w}. At most \var{size} \ctype{wchar_t} characters are copied
- (excluding a possibly trailing 0-termination character). Return
- the number of \ctype{wchar_t} characters copied or -1 in case of an
- error. Note that the resulting \ctype{wchar_t} string may or may
- not be 0-terminated. It is the responsibility of the caller to make
- sure that the \ctype{wchar_t} string is 0-terminated in case this is
- required by the application.
-\end{cfuncdesc}
-
-
-\subsubsection{Built-in Codecs \label{builtinCodecs}}
-
-Python provides a set of builtin codecs which are written in C
-for speed. All of these codecs are directly usable via the
-following functions.
-
-Many of the following APIs take two arguments encoding and
-errors. These parameters encoding and errors have the same semantics
-as the ones of the builtin unicode() Unicode object constructor.
-
-Setting encoding to \NULL{} causes the default encoding to be used
-which is \ASCII. The file system calls should use
-\cdata{Py_FileSystemDefaultEncoding} as the encoding for file
-names. This variable should be treated as read-only: On some systems,
-it will be a pointer to a static string, on others, it will change at
-run-time (such as when the application invokes setlocale).
-
-Error handling is set by errors which may also be set to \NULL{}
-meaning to use the default handling defined for the codec. Default
-error handling for all builtin codecs is ``strict''
-(\exception{ValueError} is raised).
-
-The codecs all use a similar interface. Only deviation from the
-following generic ones are documented for simplicity.
-
-% --- Generic Codecs -----------------------------------------------------
-
-These are the generic codec APIs:
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_Decode}{const char *s,
- Py_ssize_t size,
- const char *encoding,
- const char *errors}
- Create a Unicode object by decoding \var{size} bytes of the encoded
- string \var{s}. \var{encoding} and \var{errors} have the same
- meaning as the parameters of the same name in the
- \function{unicode()} builtin function. The codec to be used is
- looked up using the Python codec registry. Return \NULL{} if an
- exception was raised by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_Encode}{const Py_UNICODE *s,
- Py_ssize_t size,
- const char *encoding,
- const char *errors}
- Encode the \ctype{Py_UNICODE} buffer of the given size and return
- a Python string object. \var{encoding} and \var{errors} have the
- same meaning as the parameters of the same name in the Unicode
- \method{encode()} method. The codec to be used is looked up using
- the Python codec registry. Return \NULL{} if an exception was
- raised by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_AsEncodedString}{PyObject *unicode,
- const char *encoding,
- const char *errors}
- Encode a Unicode object and return the result as Python string
- object. \var{encoding} and \var{errors} have the same meaning as the
- parameters of the same name in the Unicode \method{encode()} method.
- The codec to be used is looked up using the Python codec registry.
- Return \NULL{} if an exception was raised by the codec.
-\end{cfuncdesc}
-
-% --- UTF-8 Codecs -------------------------------------------------------
-
-These are the UTF-8 codec APIs:
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF8}{const char *s,
- Py_ssize_t size,
- const char *errors}
- Create a Unicode object by decoding \var{size} bytes of the UTF-8
- encoded string \var{s}. Return \NULL{} if an exception was raised
- by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF8Stateful}{const char *s,
- Py_ssize_t size,
- const char *errors,
- Py_ssize_t *consumed}
- If \var{consumed} is \NULL{}, behave like \cfunction{PyUnicode_DecodeUTF8()}.
- If \var{consumed} is not \NULL{}, trailing incomplete UTF-8 byte sequences
- will not be treated as an error. Those bytes will not be decoded and the
- number of bytes that have been decoded will be stored in \var{consumed}.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUTF8}{const Py_UNICODE *s,
- Py_ssize_t size,
- const char *errors}
- Encode the \ctype{Py_UNICODE} buffer of the given size using UTF-8
- and return a Python string object. Return \NULL{} if an exception
- was raised by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUTF8String}{PyObject *unicode}
- Encode a Unicode objects using UTF-8 and return the result as
- Python string object. Error handling is ``strict''. Return
- \NULL{} if an exception was raised by the codec.
-\end{cfuncdesc}
-
-% --- UTF-16 Codecs ------------------------------------------------------ */
-
-These are the UTF-16 codec APIs:
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF16}{const char *s,
- Py_ssize_t size,
- const char *errors,
- int *byteorder}
- Decode \var{length} bytes from a UTF-16 encoded buffer string and
- return the corresponding Unicode object. \var{errors} (if
- non-\NULL{}) defines the error handling. It defaults to ``strict''.
-
- If \var{byteorder} is non-\NULL{}, the decoder starts decoding using
- the given byte order:
-
-\begin{verbatim}
- *byteorder == -1: little endian
- *byteorder == 0: native order
- *byteorder == 1: big endian
-\end{verbatim}
-
- and then switches if the first two bytes of the input data are a byte order
- mark (BOM) and the specified byte order is native order. This BOM is not
- copied into the resulting Unicode string. After completion, \var{*byteorder}
- is set to the current byte order at the.
-
- If \var{byteorder} is \NULL{}, the codec starts in native order mode.
-
- Return \NULL{} if an exception was raised by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUTF16Stateful}{const char *s,
- Py_ssize_t size,
- const char *errors,
- int *byteorder,
- Py_ssize_t *consumed}
- If \var{consumed} is \NULL{}, behave like
- \cfunction{PyUnicode_DecodeUTF16()}. If \var{consumed} is not \NULL{},
- \cfunction{PyUnicode_DecodeUTF16Stateful()} will not treat trailing incomplete
- UTF-16 byte sequences (such as an odd number of bytes or a split surrogate pair)
- as an error. Those bytes will not be decoded and the number of bytes that
- have been decoded will be stored in \var{consumed}.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUTF16}{const Py_UNICODE *s,
- Py_ssize_t size,
- const char *errors,
- int byteorder}
- Return a Python string object holding the UTF-16 encoded value of
- the Unicode data in \var{s}. If \var{byteorder} is not \code{0},
- output is written according to the following byte order:
-
-\begin{verbatim}
- byteorder == -1: little endian
- byteorder == 0: native byte order (writes a BOM mark)
- byteorder == 1: big endian
-\end{verbatim}
-
- If byteorder is \code{0}, the output string will always start with
- the Unicode BOM mark (U+FEFF). In the other two modes, no BOM mark
- is prepended.
-
- If \var{Py_UNICODE_WIDE} is defined, a single \ctype{Py_UNICODE}
- value may get represented as a surrogate pair. If it is not
- defined, each \ctype{Py_UNICODE} values is interpreted as an
- UCS-2 character.
-
- Return \NULL{} if an exception was raised by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUTF16String}{PyObject *unicode}
- Return a Python string using the UTF-16 encoding in native byte
- order. The string always starts with a BOM mark. Error handling is
- ``strict''. Return \NULL{} if an exception was raised by the
- codec.
-\end{cfuncdesc}
-
-% --- Unicode-Escape Codecs ----------------------------------------------
-
-These are the ``Unicode Escape'' codec APIs:
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeUnicodeEscape}{const char *s,
- Py_ssize_t size,
- const char *errors}
- Create a Unicode object by decoding \var{size} bytes of the
- Unicode-Escape encoded string \var{s}. Return \NULL{} if an
- exception was raised by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeUnicodeEscape}{const Py_UNICODE *s,
- Py_ssize_t size}
- Encode the \ctype{Py_UNICODE} buffer of the given size using
- Unicode-Escape and return a Python string object. Return \NULL{}
- if an exception was raised by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_AsUnicodeEscapeString}{PyObject *unicode}
- Encode a Unicode objects using Unicode-Escape and return the
- result as Python string object. Error handling is ``strict''.
- Return \NULL{} if an exception was raised by the codec.
-\end{cfuncdesc}
-
-% --- Raw-Unicode-Escape Codecs ------------------------------------------
-
-These are the ``Raw Unicode Escape'' codec APIs:
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeRawUnicodeEscape}{const char *s,
- Py_ssize_t size,
- const char *errors}
- Create a Unicode object by decoding \var{size} bytes of the
- Raw-Unicode-Escape encoded string \var{s}. Return \NULL{} if an
- exception was raised by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeRawUnicodeEscape}{const Py_UNICODE *s,
- Py_ssize_t size,
- const char *errors}
- Encode the \ctype{Py_UNICODE} buffer of the given size using
- Raw-Unicode-Escape and return a Python string object. Return
- \NULL{} if an exception was raised by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_AsRawUnicodeEscapeString}{PyObject *unicode}
- Encode a Unicode objects using Raw-Unicode-Escape and return the
- result as Python string object. Error handling is ``strict''.
- Return \NULL{} if an exception was raised by the codec.
-\end{cfuncdesc}
-
-% --- Latin-1 Codecs -----------------------------------------------------
-
-These are the Latin-1 codec APIs:
-Latin-1 corresponds to the first 256 Unicode ordinals and only these
-are accepted by the codecs during encoding.
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeLatin1}{const char *s,
- Py_ssize_t size,
- const char *errors}
- Create a Unicode object by decoding \var{size} bytes of the Latin-1
- encoded string \var{s}. Return \NULL{} if an exception was raised
- by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeLatin1}{const Py_UNICODE *s,
- Py_ssize_t size,
- const char *errors}
- Encode the \ctype{Py_UNICODE} buffer of the given size using
- Latin-1 and return a Python string object. Return \NULL{} if an
- exception was raised by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_AsLatin1String}{PyObject *unicode}
- Encode a Unicode objects using Latin-1 and return the result as
- Python string object. Error handling is ``strict''. Return
- \NULL{} if an exception was raised by the codec.
-\end{cfuncdesc}
-
-% --- ASCII Codecs -------------------------------------------------------
-
-These are the \ASCII{} codec APIs. Only 7-bit \ASCII{} data is
-accepted. All other codes generate errors.
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeASCII}{const char *s,
- Py_ssize_t size,
- const char *errors}
- Create a Unicode object by decoding \var{size} bytes of the
- \ASCII{} encoded string \var{s}. Return \NULL{} if an exception
- was raised by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeASCII}{const Py_UNICODE *s,
- Py_ssize_t size,
- const char *errors}
- Encode the \ctype{Py_UNICODE} buffer of the given size using
- \ASCII{} and return a Python string object. Return \NULL{} if an
- exception was raised by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_AsASCIIString}{PyObject *unicode}
- Encode a Unicode objects using \ASCII{} and return the result as
- Python string object. Error handling is ``strict''. Return
- \NULL{} if an exception was raised by the codec.
-\end{cfuncdesc}
-
-% --- Character Map Codecs -----------------------------------------------
-
-These are the mapping codec APIs:
-
-This codec is special in that it can be used to implement many
-different codecs (and this is in fact what was done to obtain most of
-the standard codecs included in the \module{encodings} package). The
-codec uses mapping to encode and decode characters.
-
-Decoding mappings must map single string characters to single Unicode
-characters, integers (which are then interpreted as Unicode ordinals)
-or None (meaning "undefined mapping" and causing an error).
-
-Encoding mappings must map single Unicode characters to single string
-characters, integers (which are then interpreted as Latin-1 ordinals)
-or None (meaning "undefined mapping" and causing an error).
-
-The mapping objects provided must only support the __getitem__ mapping
-interface.
-
-If a character lookup fails with a LookupError, the character is
-copied as-is meaning that its ordinal value will be interpreted as
-Unicode or Latin-1 ordinal resp. Because of this, mappings only need
-to contain those mappings which map characters to different code
-points.
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeCharmap}{const char *s,
- Py_ssize_t size,
- PyObject *mapping,
- const char *errors}
- Create a Unicode object by decoding \var{size} bytes of the encoded
- string \var{s} using the given \var{mapping} object. Return
- \NULL{} if an exception was raised by the codec. If \var{mapping} is \NULL{}
- latin-1 decoding will be done. Else it can be a dictionary mapping byte or a
- unicode string, which is treated as a lookup table. Byte values greater
- that the length of the string and U+FFFE "characters" are treated as
- "undefined mapping".
- \versionchanged[Allowed unicode string as mapping argument]{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeCharmap}{const Py_UNICODE *s,
- Py_ssize_t size,
- PyObject *mapping,
- const char *errors}
- Encode the \ctype{Py_UNICODE} buffer of the given size using the
- given \var{mapping} object and return a Python string object.
- Return \NULL{} if an exception was raised by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_AsCharmapString}{PyObject *unicode,
- PyObject *mapping}
- Encode a Unicode objects using the given \var{mapping} object and
- return the result as Python string object. Error handling is
- ``strict''. Return \NULL{} if an exception was raised by the
- codec.
-\end{cfuncdesc}
-
-The following codec API is special in that maps Unicode to Unicode.
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_TranslateCharmap}{const Py_UNICODE *s,
- Py_ssize_t size,
- PyObject *table,
- const char *errors}
- Translate a \ctype{Py_UNICODE} buffer of the given length by
- applying a character mapping \var{table} to it and return the
- resulting Unicode object. Return \NULL{} when an exception was
- raised by the codec.
-
- The \var{mapping} table must map Unicode ordinal integers to Unicode
- ordinal integers or None (causing deletion of the character).
-
- Mapping tables need only provide the \method{__getitem__()}
- interface; dictionaries and sequences work well. Unmapped character
- ordinals (ones which cause a \exception{LookupError}) are left
- untouched and are copied as-is.
-\end{cfuncdesc}
-
-% --- MBCS codecs for Windows --------------------------------------------
-
-These are the MBCS codec APIs. They are currently only available on
-Windows and use the Win32 MBCS converters to implement the
-conversions. Note that MBCS (or DBCS) is a class of encodings, not
-just one. The target encoding is defined by the user settings on the
-machine running the codec.
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeMBCS}{const char *s,
- Py_ssize_t size,
- const char *errors}
- Create a Unicode object by decoding \var{size} bytes of the MBCS
- encoded string \var{s}. Return \NULL{} if an exception was
- raised by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_DecodeMBCSStateful}{const char *s,
- int size,
- const char *errors,
- int *consumed}
- If \var{consumed} is \NULL{}, behave like
- \cfunction{PyUnicode_DecodeMBCS()}. If \var{consumed} is not \NULL{},
- \cfunction{PyUnicode_DecodeMBCSStateful()} will not decode trailing lead
- byte and the number of bytes that have been decoded will be stored in
- \var{consumed}.
- \versionadded{2.5}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_EncodeMBCS}{const Py_UNICODE *s,
- Py_ssize_t size,
- const char *errors}
- Encode the \ctype{Py_UNICODE} buffer of the given size using MBCS
- and return a Python string object. Return \NULL{} if an exception
- was raised by the codec.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_AsMBCSString}{PyObject *unicode}
- Encode a Unicode objects using MBCS and return the result as
- Python string object. Error handling is ``strict''. Return
- \NULL{} if an exception was raised by the codec.
-\end{cfuncdesc}
-
-% --- Methods & Slots ----------------------------------------------------
-
-\subsubsection{Methods and Slot Functions \label{unicodeMethodsAndSlots}}
-
-The following APIs are capable of handling Unicode objects and strings
-on input (we refer to them as strings in the descriptions) and return
-Unicode objects or integers as appropriate.
-
-They all return \NULL{} or \code{-1} if an exception occurs.
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_Concat}{PyObject *left,
- PyObject *right}
- Concat two strings giving a new Unicode string.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_Split}{PyObject *s,
- PyObject *sep,
- Py_ssize_t maxsplit}
- Split a string giving a list of Unicode strings. If sep is \NULL{},
- splitting will be done at all whitespace substrings. Otherwise,
- splits occur at the given separator. At most \var{maxsplit} splits
- will be done. If negative, no limit is set. Separators are not
- included in the resulting list.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_Splitlines}{PyObject *s,
- int keepend}
- Split a Unicode string at line breaks, returning a list of Unicode
- strings. CRLF is considered to be one line break. If \var{keepend}
- is 0, the Line break characters are not included in the resulting
- strings.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_Translate}{PyObject *str,
- PyObject *table,
- const char *errors}
- Translate a string by applying a character mapping table to it and
- return the resulting Unicode object.
-
- The mapping table must map Unicode ordinal integers to Unicode
- ordinal integers or None (causing deletion of the character).
-
- Mapping tables need only provide the \method{__getitem__()}
- interface; dictionaries and sequences work well. Unmapped character
- ordinals (ones which cause a \exception{LookupError}) are left
- untouched and are copied as-is.
-
- \var{errors} has the usual meaning for codecs. It may be \NULL{}
- which indicates to use the default error handling.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_Join}{PyObject *separator,
- PyObject *seq}
- Join a sequence of strings using the given separator and return the
- resulting Unicode string.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyUnicode_Tailmatch}{PyObject *str,
- PyObject *substr,
- Py_ssize_t start,
- Py_ssize_t end,
- int direction}
- Return 1 if \var{substr} matches \var{str}[\var{start}:\var{end}] at
- the given tail end (\var{direction} == -1 means to do a prefix
- match, \var{direction} == 1 a suffix match), 0 otherwise.
- Return \code{-1} if an error occurred.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_Find}{PyObject *str,
- PyObject *substr,
- Py_ssize_t start,
- Py_ssize_t end,
- int direction}
- Return the first position of \var{substr} in
- \var{str}[\var{start}:\var{end}] using the given \var{direction}
- (\var{direction} == 1 means to do a forward search,
- \var{direction} == -1 a backward search). The return value is the
- index of the first match; a value of \code{-1} indicates that no
- match was found, and \code{-2} indicates that an error occurred and
- an exception has been set.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_ssize_t}{PyUnicode_Count}{PyObject *str,
- PyObject *substr,
- Py_ssize_t start,
- Py_ssize_t end}
- Return the number of non-overlapping occurrences of \var{substr} in
- \code{\var{str}[\var{start}:\var{end}]}. Return \code{-1} if an
- error occurred.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_Replace}{PyObject *str,
- PyObject *substr,
- PyObject *replstr,
- Py_ssize_t maxcount}
- Replace at most \var{maxcount} occurrences of \var{substr} in
- \var{str} with \var{replstr} and return the resulting Unicode object.
- \var{maxcount} == -1 means replace all occurrences.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyUnicode_Compare}{PyObject *left, PyObject *right}
- Compare two strings and return -1, 0, 1 for less than, equal, and
- greater than, respectively.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyUnicode_RichCompare}{PyObject *left,
- PyObject *right,
- int op}
-
- Rich compare two unicode strings and return one of the following:
- \begin{itemize}
- \item \code{NULL} in case an exception was raised
- \item \constant{Py_True} or \constant{Py_False} for successful comparisons
- \item \constant{Py_NotImplemented} in case the type combination is unknown
- \end{itemize}
-
- Note that \constant{Py_EQ} and \constant{Py_NE} comparisons can cause a
- \exception{UnicodeWarning} in case the conversion of the arguments to
- Unicode fails with a \exception{UnicodeDecodeError}.
-
- Possible values for \var{op} are
- \constant{Py_GT}, \constant{Py_GE}, \constant{Py_EQ},
- \constant{Py_NE}, \constant{Py_LT}, and \constant{Py_LE}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_Format}{PyObject *format,
- PyObject *args}
- Return a new string object from \var{format} and \var{args}; this
- is analogous to \code{\var{format} \%\ \var{args}}. The
- \var{args} argument must be a tuple.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyUnicode_Contains}{PyObject *container,
- PyObject *element}
- Check whether \var{element} is contained in \var{container} and
- return true or false accordingly.
-
- \var{element} has to coerce to a one element Unicode
- string. \code{-1} is returned if there was an error.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{void}{PyUnicode_InternInPlace}{PyObject **string}
- Intern the argument \var{*string} in place. The argument must be
- the address of a pointer variable pointing to a Python unicode string
- object. If there is an existing interned string that is the same as
- \var{*string}, it sets \var{*string} to it (decrementing the
- reference count of the old string object and incrementing the
- reference count of the interned string object), otherwise it leaves
- \var{*string} alone and interns it (incrementing its reference
- count). (Clarification: even though there is a lot of talk about
- reference counts, think of this function as reference-count-neutral;
- you own the object after the call if and only if you owned it before
- the call.)
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyUnicode_InternFromString}{const char *v}
- A combination of \cfunction{PyUnicode_FromString()} and
- \cfunction{PyUnicode_InternInPlace()}, returning either a new unicode
- string object that has been interned, or a new (``owned'') reference to
- an earlier interned string object with the same value.
-\end{cfuncdesc}
-
-
-\subsection{Buffer Objects \label{bufferObjects}}
-\sectionauthor{Greg Stein}{gstein@lyra.org}
-
-\obindex{buffer}
-Python objects implemented in C can export a group of functions called
-the ``buffer\index{buffer interface} interface.'' These functions can
-be used by an object to expose its data in a raw, byte-oriented
-format. Clients of the object can use the buffer interface to access
-the object data directly, without needing to copy it first.
-
-Two examples of objects that support
-the buffer interface are strings and arrays. The string object exposes
-the character contents in the buffer interface's byte-oriented
-form. An array can also expose its contents, but it should be noted
-that array elements may be multi-byte values.
-
-An example user of the buffer interface is the file object's
-\method{write()} method. Any object that can export a series of bytes
-through the buffer interface can be written to a file. There are a
-number of format codes to \cfunction{PyArg_ParseTuple()} that operate
-against an object's buffer interface, returning data from the target
-object.
-
-More information on the buffer interface is provided in the section
-``Buffer Object Structures'' (section~\ref{buffer-structs}), under
-the description for \ctype{PyBufferProcs}\ttindex{PyBufferProcs}.
-
-A ``buffer object'' is defined in the \file{bufferobject.h} header
-(included by \file{Python.h}). These objects look very similar to
-string objects at the Python programming level: they support slicing,
-indexing, concatenation, and some other standard string
-operations. However, their data can come from one of two sources: from
-a block of memory, or from another object which exports the buffer
-interface.
-
-Buffer objects are useful as a way to expose the data from another
-object's buffer interface to the Python programmer. They can also be
-used as a zero-copy slicing mechanism. Using their ability to
-reference a block of memory, it is possible to expose any data to the
-Python programmer quite easily. The memory could be a large, constant
-array in a C extension, it could be a raw block of memory for
-manipulation before passing to an operating system library, or it
-could be used to pass around structured data in its native, in-memory
-format.
-
-\begin{ctypedesc}{PyBufferObject}
- This subtype of \ctype{PyObject} represents a buffer object.
-\end{ctypedesc}
-
-\begin{cvardesc}{PyTypeObject}{PyBuffer_Type}
- The instance of \ctype{PyTypeObject} which represents the Python
- buffer type; it is the same object as \code{buffer} and
- \code{types.BufferType} in the Python layer.
- \withsubitem{(in module types)}{\ttindex{BufferType}}.
-\end{cvardesc}
-
-\begin{cvardesc}{int}{Py_END_OF_BUFFER}
- This constant may be passed as the \var{size} parameter to
- \cfunction{PyBuffer_FromObject()} or
- \cfunction{PyBuffer_FromReadWriteObject()}. It indicates that the
- new \ctype{PyBufferObject} should refer to \var{base} object from
- the specified \var{offset} to the end of its exported buffer. Using
- this enables the caller to avoid querying the \var{base} object for
- its length.
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyBuffer_Check}{PyObject *p}
- Return true if the argument has type \cdata{PyBuffer_Type}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyBuffer_FromObject}{PyObject *base,
- Py_ssize_t offset, Py_ssize_t size}
- Return a new read-only buffer object. This raises
- \exception{TypeError} if \var{base} doesn't support the read-only
- buffer protocol or doesn't provide exactly one buffer segment, or it
- raises \exception{ValueError} if \var{offset} is less than zero. The
- buffer will hold a reference to the \var{base} object, and the
- buffer's contents will refer to the \var{base} object's buffer
- interface, starting as position \var{offset} and extending for
- \var{size} bytes. If \var{size} is \constant{Py_END_OF_BUFFER}, then
- the new buffer's contents extend to the length of the \var{base}
- object's exported buffer data.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyBuffer_FromReadWriteObject}{PyObject *base,
- Py_ssize_t offset,
- Py_ssize_t size}
- Return a new writable buffer object. Parameters and exceptions are
- similar to those for \cfunction{PyBuffer_FromObject()}. If the
- \var{base} object does not export the writeable buffer protocol,
- then \exception{TypeError} is raised.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyBuffer_FromMemory}{void *ptr, Py_ssize_t size}
- Return a new read-only buffer object that reads from a specified
- location in memory, with a specified size. The caller is
- responsible for ensuring that the memory buffer, passed in as
- \var{ptr}, is not deallocated while the returned buffer object
- exists. Raises \exception{ValueError} if \var{size} is less than
- zero. Note that \constant{Py_END_OF_BUFFER} may \emph{not} be
- passed for the \var{size} parameter; \exception{ValueError} will be
- raised in that case.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyBuffer_FromReadWriteMemory}{void *ptr, Py_ssize_t size}
- Similar to \cfunction{PyBuffer_FromMemory()}, but the returned
- buffer is writable.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyBuffer_New}{Py_ssize_t size}
- Return a new writable buffer object that maintains its own memory
- buffer of \var{size} bytes. \exception{ValueError} is returned if
- \var{size} is not zero or positive. Note that the memory buffer (as
- returned by \cfunction{PyObject_AsWriteBuffer()}) is not specifically
- aligned.
-\end{cfuncdesc}
-
-
-\subsection{Tuple Objects \label{tupleObjects}}
-
-\obindex{tuple}
-\begin{ctypedesc}{PyTupleObject}
- This subtype of \ctype{PyObject} represents a Python tuple object.
-\end{ctypedesc}
-
-\begin{cvardesc}{PyTypeObject}{PyTuple_Type}
- This instance of \ctype{PyTypeObject} represents the Python tuple
- type; it is the same object as \code{tuple} and \code{types.TupleType}
- in the Python layer.\withsubitem{(in module types)}{\ttindex{TupleType}}.
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyTuple_Check}{PyObject *p}
- Return true if \var{p} is a tuple object or an instance of a subtype
- of the tuple type.
- \versionchanged[Allowed subtypes to be accepted]{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyTuple_CheckExact}{PyObject *p}
- Return true if \var{p} is a tuple object, but not an instance of a
- subtype of the tuple type.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyTuple_New}{Py_ssize_t len}
- Return a new tuple object of size \var{len}, or \NULL{} on failure.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyTuple_Pack}{Py_ssize_t n, \moreargs}
- Return a new tuple object of size \var{n}, or \NULL{} on failure.
- The tuple values are initialized to the subsequent \var{n} C arguments
- pointing to Python objects. \samp{PyTuple_Pack(2, \var{a}, \var{b})}
- is equivalent to \samp{Py_BuildValue("(OO)", \var{a}, \var{b})}.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyTuple_Size}{PyObject *p}
- Take a pointer to a tuple object, and return the size of that
- tuple.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyTuple_GET_SIZE}{PyObject *p}
- Return the size of the tuple \var{p}, which must be non-\NULL{} and
- point to a tuple; no error checking is performed.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyTuple_GetItem}{PyObject *p, Py_ssize_t pos}
- Return the object at position \var{pos} in the tuple pointed to by
- \var{p}. If \var{pos} is out of bounds, return \NULL{} and sets an
- \exception{IndexError} exception.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyTuple_GET_ITEM}{PyObject *p, Py_ssize_t pos}
- Like \cfunction{PyTuple_GetItem()}, but does no checking of its
- arguments.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyTuple_GetSlice}{PyObject *p,
- Py_ssize_t low, Py_ssize_t high}
- Take a slice of the tuple pointed to by \var{p} from \var{low} to
- \var{high} and return it as a new tuple.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyTuple_SetItem}{PyObject *p,
- Py_ssize_t pos, PyObject *o}
- Insert a reference to object \var{o} at position \var{pos} of the
- tuple pointed to by \var{p}. Return \code{0} on success.
- \note{This function ``steals'' a reference to \var{o}.}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{void}{PyTuple_SET_ITEM}{PyObject *p,
- Py_ssize_t pos, PyObject *o}
- Like \cfunction{PyTuple_SetItem()}, but does no error checking, and
- should \emph{only} be used to fill in brand new tuples. \note{This
- function ``steals'' a reference to \var{o}.}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{_PyTuple_Resize}{PyObject **p, Py_ssize_t newsize}
- Can be used to resize a tuple. \var{newsize} will be the new length
- of the tuple. Because tuples are \emph{supposed} to be immutable,
- this should only be used if there is only one reference to the
- object. Do \emph{not} use this if the tuple may already be known to
- some other part of the code. The tuple will always grow or shrink
- at the end. Think of this as destroying the old tuple and creating
- a new one, only more efficiently. Returns \code{0} on success.
- Client code should never assume that the resulting value of
- \code{*\var{p}} will be the same as before calling this function.
- If the object referenced by \code{*\var{p}} is replaced, the
- original \code{*\var{p}} is destroyed. On failure, returns
- \code{-1} and sets \code{*\var{p}} to \NULL{}, and raises
- \exception{MemoryError} or
- \exception{SystemError}.
- \versionchanged[Removed unused third parameter, \var{last_is_sticky}]{2.2}
-\end{cfuncdesc}
-
-
-\subsection{List Objects \label{listObjects}}
-
-\obindex{list}
-\begin{ctypedesc}{PyListObject}
- This subtype of \ctype{PyObject} represents a Python list object.
-\end{ctypedesc}
-
-\begin{cvardesc}{PyTypeObject}{PyList_Type}
- This instance of \ctype{PyTypeObject} represents the Python list
- type. This is the same object as \code{list} and \code{types.ListType}
- in the Python layer.\withsubitem{(in module types)}{\ttindex{ListType}}
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyList_Check}{PyObject *p}
- Return true if \var{p} is a list object or an instance of a
- subtype of the list type.
- \versionchanged[Allowed subtypes to be accepted]{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyList_CheckExact}{PyObject *p}
- Return true if \var{p} is a list object, but not an instance of a
- subtype of the list type.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyList_New}{Py_ssize_t len}
- Return a new list of length \var{len} on success, or \NULL{} on
- failure.
- \note{If \var{length} is greater than zero, the returned list object's
- items are set to \code{NULL}. Thus you cannot use abstract
- API functions such as \cfunction{PySequence_SetItem()}
- or expose the object to Python code before setting all items to a
- real object with \cfunction{PyList_SetItem()}.}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_ssize_t}{PyList_Size}{PyObject *list}
- Return the length of the list object in \var{list}; this is
- equivalent to \samp{len(\var{list})} on a list object.
- \bifuncindex{len}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_ssize_t}{PyList_GET_SIZE}{PyObject *list}
- Macro form of \cfunction{PyList_Size()} without error checking.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyList_GetItem}{PyObject *list, Py_ssize_t index}
- Return the object at position \var{pos} in the list pointed to by
- \var{p}. The position must be positive, indexing from the end of the
- list is not supported. If \var{pos} is out of bounds, return \NULL{}
- and set an \exception{IndexError} exception.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyList_GET_ITEM}{PyObject *list, Py_ssize_t i}
- Macro form of \cfunction{PyList_GetItem()} without error checking.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyList_SetItem}{PyObject *list, Py_ssize_t index,
- PyObject *item}
- Set the item at index \var{index} in list to \var{item}. Return
- \code{0} on success or \code{-1} on failure. \note{This function
- ``steals'' a reference to \var{item} and discards a reference to an
- item already in the list at the affected position.}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{void}{PyList_SET_ITEM}{PyObject *list, Py_ssize_t i,
- PyObject *o}
- Macro form of \cfunction{PyList_SetItem()} without error checking.
- This is normally only used to fill in new lists where there is no
- previous content.
- \note{This function ``steals'' a reference to \var{item}, and,
- unlike \cfunction{PyList_SetItem()}, does \emph{not} discard a
- reference to any item that it being replaced; any reference in
- \var{list} at position \var{i} will be leaked.}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyList_Insert}{PyObject *list, Py_ssize_t index,
- PyObject *item}
- Insert the item \var{item} into list \var{list} in front of index
- \var{index}. Return \code{0} if successful; return \code{-1} and
- set an exception if unsuccessful. Analogous to
- \code{\var{list}.insert(\var{index}, \var{item})}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyList_Append}{PyObject *list, PyObject *item}
- Append the object \var{item} at the end of list \var{list}.
- Return \code{0} if successful; return \code{-1} and set an
- exception if unsuccessful. Analogous to
- \code{\var{list}.append(\var{item})}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyList_GetSlice}{PyObject *list,
- Py_ssize_t low, Py_ssize_t high}
- Return a list of the objects in \var{list} containing the objects
- \emph{between} \var{low} and \var{high}. Return \NULL{} and set
- an exception if unsuccessful.
- Analogous to \code{\var{list}[\var{low}:\var{high}]}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyList_SetSlice}{PyObject *list,
- Py_ssize_t low, Py_ssize_t high,
- PyObject *itemlist}
- Set the slice of \var{list} between \var{low} and \var{high} to the
- contents of \var{itemlist}. Analogous to
- \code{\var{list}[\var{low}:\var{high}] = \var{itemlist}}.
- The \var{itemlist} may be \NULL{}, indicating the assignment
- of an empty list (slice deletion).
- Return \code{0} on success, \code{-1} on failure.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyList_Sort}{PyObject *list}
- Sort the items of \var{list} in place. Return \code{0} on
- success, \code{-1} on failure. This is equivalent to
- \samp{\var{list}.sort()}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyList_Reverse}{PyObject *list}
- Reverse the items of \var{list} in place. Return \code{0} on
- success, \code{-1} on failure. This is the equivalent of
- \samp{\var{list}.reverse()}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyList_AsTuple}{PyObject *list}
- Return a new tuple object containing the contents of \var{list};
- equivalent to \samp{tuple(\var{list})}.\bifuncindex{tuple}
-\end{cfuncdesc}
-
-
-\section{Mapping Objects \label{mapObjects}}
-
-\obindex{mapping}
-
-
-\subsection{Dictionary Objects \label{dictObjects}}
-
-\obindex{dictionary}
-\begin{ctypedesc}{PyDictObject}
- This subtype of \ctype{PyObject} represents a Python dictionary
- object.
-\end{ctypedesc}
-
-\begin{cvardesc}{PyTypeObject}{PyDict_Type}
- This instance of \ctype{PyTypeObject} represents the Python
- dictionary type. This is exposed to Python programs as
- \code{dict} and \code{types.DictType}.
- \withsubitem{(in module types)}{\ttindex{DictType}\ttindex{DictionaryType}}
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyDict_Check}{PyObject *p}
- Return true if \var{p} is a dict object or an instance of a
- subtype of the dict type.
- \versionchanged[Allowed subtypes to be accepted]{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDict_CheckExact}{PyObject *p}
- Return true if \var{p} is a dict object, but not an instance of a
- subtype of the dict type.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyDict_New}{}
- Return a new empty dictionary, or \NULL{} on failure.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyDictProxy_New}{PyObject *dict}
- Return a proxy object for a mapping which enforces read-only
- behavior. This is normally used to create a proxy to prevent
- modification of the dictionary for non-dynamic class types.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{void}{PyDict_Clear}{PyObject *p}
- Empty an existing dictionary of all key-value pairs.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDict_Contains}{PyObject *p, PyObject *key}
- Determine if dictionary \var{p} contains \var{key}. If an item
- in \var{p} is matches \var{key}, return \code{1}, otherwise return
- \code{0}. On error, return \code{-1}. This is equivalent to the
- Python expression \samp{\var{key} in \var{p}}.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyDict_Copy}{PyObject *p}
- Return a new dictionary that contains the same key-value pairs as
- \var{p}.
- \versionadded{1.6}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDict_SetItem}{PyObject *p, PyObject *key,
- PyObject *val}
- Insert \var{value} into the dictionary \var{p} with a key of
- \var{key}. \var{key} must be hashable; if it isn't,
- \exception{TypeError} will be raised.
- Return \code{0} on success or \code{-1} on failure.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDict_SetItemString}{PyObject *p,
- const char *key,
- PyObject *val}
- Insert \var{value} into the dictionary \var{p} using \var{key} as a
- key. \var{key} should be a \ctype{char*}. The key object is created
- using \code{PyString_FromString(\var{key})}. Return \code{0} on
- success or \code{-1} on failure.
- \ttindex{PyString_FromString()}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDict_DelItem}{PyObject *p, PyObject *key}
- Remove the entry in dictionary \var{p} with key \var{key}.
- \var{key} must be hashable; if it isn't, \exception{TypeError} is
- raised. Return \code{0} on success or \code{-1} on failure.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDict_DelItemString}{PyObject *p, char *key}
- Remove the entry in dictionary \var{p} which has a key specified by
- the string \var{key}. Return \code{0} on success or \code{-1} on
- failure.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyDict_GetItem}{PyObject *p, PyObject *key}
- Return the object from dictionary \var{p} which has a key
- \var{key}. Return \NULL{} if the key \var{key} is not present, but
- \emph{without} setting an exception.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyDict_GetItemString}{PyObject *p, const char *key}
- This is the same as \cfunction{PyDict_GetItem()}, but \var{key} is
- specified as a \ctype{char*}, rather than a \ctype{PyObject*}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyDict_Items}{PyObject *p}
- Return a \ctype{PyListObject} containing all the items from the
- dictionary, as in the dictionary method \method{items()} (see the
- \citetitle[../lib/lib.html]{Python Library Reference}).
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyDict_Keys}{PyObject *p}
- Return a \ctype{PyListObject} containing all the keys from the
- dictionary, as in the dictionary method \method{keys()} (see the
- \citetitle[../lib/lib.html]{Python Library Reference}).
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyDict_Values}{PyObject *p}
- Return a \ctype{PyListObject} containing all the values from the
- dictionary \var{p}, as in the dictionary method \method{values()}
- (see the \citetitle[../lib/lib.html]{Python Library Reference}).
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{Py_ssize_t}{PyDict_Size}{PyObject *p}
- Return the number of items in the dictionary. This is equivalent
- to \samp{len(\var{p})} on a dictionary.\bifuncindex{len}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDict_Next}{PyObject *p, Py_ssize_t *ppos,
- PyObject **pkey, PyObject **pvalue}
- Iterate over all key-value pairs in the dictionary \var{p}. The
- \ctype{int} referred to by \var{ppos} must be initialized to
- \code{0} prior to the first call to this function to start the
- iteration; the function returns true for each pair in the
- dictionary, and false once all pairs have been reported. The
- parameters \var{pkey} and \var{pvalue} should either point to
- \ctype{PyObject*} variables that will be filled in with each key and
- value, respectively, or may be \NULL{}. Any references returned through
- them are borrowed. \var{ppos} should not be altered during iteration.
- Its value represents offsets within the internal dictionary structure,
- and since the structure is sparse, the offsets are not consecutive.
-
- For example:
-
-\begin{verbatim}
-PyObject *key, *value;
-Py_ssize_t pos = 0;
-
-while (PyDict_Next(self->dict, &pos, &key, &value)) {
- /* do something interesting with the values... */
- ...
-}
-\end{verbatim}
-
- The dictionary \var{p} should not be mutated during iteration. It
- is safe (since Python 2.1) to modify the values of the keys as you
- iterate over the dictionary, but only so long as the set of keys
- does not change. For example:
-
-\begin{verbatim}
-PyObject *key, *value;
-Py_ssize_t pos = 0;
-
-while (PyDict_Next(self->dict, &pos, &key, &value)) {
- int i = PyInt_AS_LONG(value) + 1;
- PyObject *o = PyInt_FromLong(i);
- if (o == NULL)
- return -1;
- if (PyDict_SetItem(self->dict, key, o) < 0) {
- Py_DECREF(o);
- return -1;
- }
- Py_DECREF(o);
-}
-\end{verbatim}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDict_Merge}{PyObject *a, PyObject *b, int override}
- Iterate over mapping object \var{b} adding key-value pairs to dictionary
- \var{a}.
- \var{b} may be a dictionary, or any object supporting
- \function{PyMapping_Keys()} and \function{PyObject_GetItem()}.
- If \var{override} is true, existing pairs in \var{a} will
- be replaced if a matching key is found in \var{b}, otherwise pairs
- will only be added if there is not a matching key in \var{a}.
- Return \code{0} on success or \code{-1} if an exception was
- raised.
-\versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDict_Update}{PyObject *a, PyObject *b}
- This is the same as \code{PyDict_Merge(\var{a}, \var{b}, 1)} in C,
- or \code{\var{a}.update(\var{b})} in Python. Return \code{0} on
- success or \code{-1} if an exception was raised.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDict_MergeFromSeq2}{PyObject *a, PyObject *seq2,
- int override}
- Update or merge into dictionary \var{a}, from the key-value pairs in
- \var{seq2}. \var{seq2} must be an iterable object producing
- iterable objects of length 2, viewed as key-value pairs. In case of
- duplicate keys, the last wins if \var{override} is true, else the
- first wins.
- Return \code{0} on success or \code{-1} if an exception
- was raised.
- Equivalent Python (except for the return value):
-
-\begin{verbatim}
-def PyDict_MergeFromSeq2(a, seq2, override):
- for key, value in seq2:
- if override or key not in a:
- a[key] = value
-\end{verbatim}
-
- \versionadded{2.2}
-\end{cfuncdesc}
-
-
-\section{Other Objects \label{otherObjects}}
-
-\subsection{Class Objects \label{classObjects}}
-
-\obindex{class}
-Note that the class objects described here represent old-style classes,
-which will go away in Python 3. When creating new types for extension
-modules, you will want to work with type objects (section
-\ref{typeObjects}).
-
-\begin{ctypedesc}{PyClassObject}
- The C structure of the objects used to describe built-in classes.
-\end{ctypedesc}
-
-\begin{cvardesc}{PyObject*}{PyClass_Type}
- This is the type object for class objects; it is the same object as
- \code{types.ClassType} in the Python layer.
- \withsubitem{(in module types)}{\ttindex{ClassType}}
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyClass_Check}{PyObject *o}
- Return true if the object \var{o} is a class object, including
- instances of types derived from the standard class object. Return
- false in all other cases.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyClass_IsSubclass}{PyObject *klass, PyObject *base}
- Return true if \var{klass} is a subclass of \var{base}. Return false in
- all other cases.
-\end{cfuncdesc}
-
-\subsection{File Objects \label{fileObjects}}
-
-\obindex{file}
-Python's built-in file objects are implemented entirely on the
-\ctype{FILE*} support from the C standard library. This is an
-implementation detail and may change in future releases of Python.
-
-\begin{ctypedesc}{PyFileObject}
- This subtype of \ctype{PyObject} represents a Python file object.
-\end{ctypedesc}
-
-\begin{cvardesc}{PyTypeObject}{PyFile_Type}
- This instance of \ctype{PyTypeObject} represents the Python file
- type. This is exposed to Python programs as \code{file} and
- \code{types.FileType}.
- \withsubitem{(in module types)}{\ttindex{FileType}}
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyFile_Check}{PyObject *p}
- Return true if its argument is a \ctype{PyFileObject} or a subtype
- of \ctype{PyFileObject}.
- \versionchanged[Allowed subtypes to be accepted]{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyFile_CheckExact}{PyObject *p}
- Return true if its argument is a \ctype{PyFileObject}, but not a
- subtype of \ctype{PyFileObject}.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyFile_FromString}{char *filename, char *mode}
- On success, return a new file object that is opened on the file
- given by \var{filename}, with a file mode given by \var{mode}, where
- \var{mode} has the same semantics as the standard C routine
- \cfunction{fopen()}\ttindex{fopen()}. On failure, return \NULL{}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyFile_FromFile}{FILE *fp,
- char *name, char *mode,
- int (*close)(FILE*)}
- Create a new \ctype{PyFileObject} from the already-open standard C
- file pointer, \var{fp}. The function \var{close} will be called
- when the file should be closed. Return \NULL{} on failure.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{FILE*}{PyFile_AsFile}{PyObject *p}
- Return the file object associated with \var{p} as a \ctype{FILE*}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyFile_GetLine}{PyObject *p, int n}
- Equivalent to \code{\var{p}.readline(\optional{\var{n}})}, this
- function reads one line from the object \var{p}. \var{p} may be a
- file object or any object with a \method{readline()} method. If
- \var{n} is \code{0}, exactly one line is read, regardless of the
- length of the line. If \var{n} is greater than \code{0}, no more
- than \var{n} bytes will be read from the file; a partial line can be
- returned. In both cases, an empty string is returned if the end of
- the file is reached immediately. If \var{n} is less than \code{0},
- however, one line is read regardless of length, but
- \exception{EOFError} is raised if the end of the file is reached
- immediately.
- \withsubitem{(built-in exception)}{\ttindex{EOFError}}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyFile_Name}{PyObject *p}
- Return the name of the file specified by \var{p} as a string
- object.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{void}{PyFile_SetBufSize}{PyFileObject *p, int n}
- Available on systems with \cfunction{setvbuf()}\ttindex{setvbuf()}
- only. This should only be called immediately after file object
- creation.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyFile_Encoding}{PyFileObject *p, char *enc}
- Set the file's encoding for Unicode output to \var{enc}. Return
- 1 on success and 0 on failure.
- \versionadded{2.3}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyFile_SoftSpace}{PyObject *p, int newflag}
- This function exists for internal use by the interpreter. Set the
- \member{softspace} attribute of \var{p} to \var{newflag} and
- \withsubitem{(file attribute)}{\ttindex{softspace}}return the
- previous value. \var{p} does not have to be a file object for this
- function to work properly; any object is supported (thought its only
- interesting if the \member{softspace} attribute can be set). This
- function clears any errors, and will return \code{0} as the previous
- value if the attribute either does not exist or if there were errors
- in retrieving it. There is no way to detect errors from this
- function, but doing so should not be needed.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyFile_WriteObject}{PyObject *obj, PyObject *p,
- int flags}
- Write object \var{obj} to file object \var{p}. The only supported
- flag for \var{flags} is
- \constant{Py_PRINT_RAW}\ttindex{Py_PRINT_RAW}; if given, the
- \function{str()} of the object is written instead of the
- \function{repr()}. Return \code{0} on success or \code{-1} on
- failure; the appropriate exception will be set.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyFile_WriteString}{const char *s, PyObject *p}
- Write string \var{s} to file object \var{p}. Return \code{0} on
- success or \code{-1} on failure; the appropriate exception will be
- set.
-\end{cfuncdesc}
-
-
-\subsection{Instance Objects \label{instanceObjects}}
-
-\obindex{instance}
-There are very few functions specific to instance objects.
-
-\begin{cvardesc}{PyTypeObject}{PyInstance_Type}
- Type object for class instances.
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyInstance_Check}{PyObject *obj}
- Return true if \var{obj} is an instance.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyInstance_New}{PyObject *class,
- PyObject *arg,
- PyObject *kw}
- Create a new instance of a specific class. The parameters \var{arg}
- and \var{kw} are used as the positional and keyword parameters to
- the object's constructor.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyInstance_NewRaw}{PyObject *class,
- PyObject *dict}
- Create a new instance of a specific class without calling its
- constructor. \var{class} is the class of new object. The
- \var{dict} parameter will be used as the object's \member{__dict__};
- if \NULL{}, a new dictionary will be created for the instance.
-\end{cfuncdesc}
-
-
-\subsection{Function Objects \label{function-objects}}
-
-\obindex{function}
-There are a few functions specific to Python functions.
-
-\begin{ctypedesc}{PyFunctionObject}
- The C structure used for functions.
-\end{ctypedesc}
-
-\begin{cvardesc}{PyTypeObject}{PyFunction_Type}
- This is an instance of \ctype{PyTypeObject} and represents the
- Python function type. It is exposed to Python programmers as
- \code{types.FunctionType}.
- \withsubitem{(in module types)}{\ttindex{MethodType}}
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyFunction_Check}{PyObject *o}
- Return true if \var{o} is a function object (has type
- \cdata{PyFunction_Type}). The parameter must not be \NULL{}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyFunction_New}{PyObject *code,
- PyObject *globals}
- Return a new function object associated with the code object
- \var{code}. \var{globals} must be a dictionary with the global
- variables accessible to the function.
-
- The function's docstring, name and \var{__module__} are retrieved
- from the code object, the argument defaults and closure are set to
- \NULL{}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyFunction_GetCode}{PyObject *op}
- Return the code object associated with the function object \var{op}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyFunction_GetGlobals}{PyObject *op}
- Return the globals dictionary associated with the function object
- \var{op}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyFunction_GetModule}{PyObject *op}
- Return the \var{__module__} attribute of the function object \var{op}.
- This is normally a string containing the module name, but can be set
- to any other object by Python code.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyFunction_GetDefaults}{PyObject *op}
- Return the argument default values of the function object \var{op}.
- This can be a tuple of arguments or \NULL{}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyFunction_SetDefaults}{PyObject *op,
- PyObject *defaults}
- Set the argument default values for the function object \var{op}.
- \var{defaults} must be \var{Py_None} or a tuple.
-
- Raises \exception{SystemError} and returns \code{-1} on failure.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyFunction_GetClosure}{PyObject *op}
- Return the closure associated with the function object \var{op}.
- This can be \NULL{} or a tuple of cell objects.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyFunction_SetClosure}{PyObject *op,
- PyObject *closure}
- Set the closure associated with the function object \var{op}.
- \var{closure} must be \var{Py_None} or a tuple of cell objects.
-
- Raises \exception{SystemError} and returns \code{-1} on failure.
-\end{cfuncdesc}
-
-
-\subsection{Method Objects \label{method-objects}}
-
-\obindex{method}
-There are some useful functions that are useful for working with
-method objects.
-
-\begin{cvardesc}{PyTypeObject}{PyMethod_Type}
- This instance of \ctype{PyTypeObject} represents the Python method
- type. This is exposed to Python programs as \code{types.MethodType}.
- \withsubitem{(in module types)}{\ttindex{MethodType}}
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyMethod_Check}{PyObject *o}
- Return true if \var{o} is a method object (has type
- \cdata{PyMethod_Type}). The parameter must not be \NULL{}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyMethod_New}{PyObject *func,
- PyObject *self, PyObject *class}
- Return a new method object, with \var{func} being any callable
- object; this is the function that will be called when the method is
- called. If this method should be bound to an instance, \var{self}
- should be the instance and \var{class} should be the class of
- \var{self}, otherwise \var{self} should be \NULL{} and \var{class}
- should be the class which provides the unbound method..
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyMethod_Class}{PyObject *meth}
- Return the class object from which the method \var{meth} was
- created; if this was created from an instance, it will be the class
- of the instance.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyMethod_GET_CLASS}{PyObject *meth}
- Macro version of \cfunction{PyMethod_Class()} which avoids error
- checking.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyMethod_Function}{PyObject *meth}
- Return the function object associated with the method \var{meth}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyMethod_GET_FUNCTION}{PyObject *meth}
- Macro version of \cfunction{PyMethod_Function()} which avoids error
- checking.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyMethod_Self}{PyObject *meth}
- Return the instance associated with the method \var{meth} if it is
- bound, otherwise return \NULL{}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyMethod_GET_SELF}{PyObject *meth}
- Macro version of \cfunction{PyMethod_Self()} which avoids error
- checking.
-\end{cfuncdesc}
-
-
-\subsection{Module Objects \label{moduleObjects}}
-
-\obindex{module}
-There are only a few functions special to module objects.
-
-\begin{cvardesc}{PyTypeObject}{PyModule_Type}
- This instance of \ctype{PyTypeObject} represents the Python module
- type. This is exposed to Python programs as
- \code{types.ModuleType}.
- \withsubitem{(in module types)}{\ttindex{ModuleType}}
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyModule_Check}{PyObject *p}
- Return true if \var{p} is a module object, or a subtype of a module
- object.
- \versionchanged[Allowed subtypes to be accepted]{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyModule_CheckExact}{PyObject *p}
- Return true if \var{p} is a module object, but not a subtype of
- \cdata{PyModule_Type}.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyModule_New}{const char *name}
- Return a new module object with the \member{__name__} attribute set
- to \var{name}. Only the module's \member{__doc__} and
- \member{__name__} attributes are filled in; the caller is
- responsible for providing a \member{__file__} attribute.
- \withsubitem{(module attribute)}{
- \ttindex{__name__}\ttindex{__doc__}\ttindex{__file__}}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyModule_GetDict}{PyObject *module}
- Return the dictionary object that implements \var{module}'s
- namespace; this object is the same as the \member{__dict__}
- attribute of the module object. This function never fails.
- \withsubitem{(module attribute)}{\ttindex{__dict__}}
- It is recommended extensions use other \cfunction{PyModule_*()}
- and \cfunction{PyObject_*()} functions rather than directly
- manipulate a module's \member{__dict__}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{char*}{PyModule_GetName}{PyObject *module}
- Return \var{module}'s \member{__name__} value. If the module does
- not provide one, or if it is not a string, \exception{SystemError}
- is raised and \NULL{} is returned.
- \withsubitem{(module attribute)}{\ttindex{__name__}}
- \withsubitem{(built-in exception)}{\ttindex{SystemError}}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{char*}{PyModule_GetFilename}{PyObject *module}
- Return the name of the file from which \var{module} was loaded using
- \var{module}'s \member{__file__} attribute. If this is not defined,
- or if it is not a string, raise \exception{SystemError} and return
- \NULL{}.
- \withsubitem{(module attribute)}{\ttindex{__file__}}
- \withsubitem{(built-in exception)}{\ttindex{SystemError}}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyModule_AddObject}{PyObject *module,
- const char *name, PyObject *value}
- Add an object to \var{module} as \var{name}. This is a convenience
- function which can be used from the module's initialization
- function. This steals a reference to \var{value}. Return
- \code{-1} on error, \code{0} on success.
- \versionadded{2.0}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyModule_AddIntConstant}{PyObject *module,
- const char *name, long value}
- Add an integer constant to \var{module} as \var{name}. This
- convenience function can be used from the module's initialization
- function. Return \code{-1} on error, \code{0} on success.
- \versionadded{2.0}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyModule_AddStringConstant}{PyObject *module,
- const char *name, const char *value}
- Add a string constant to \var{module} as \var{name}. This
- convenience function can be used from the module's initialization
- function. The string \var{value} must be null-terminated. Return
- \code{-1} on error, \code{0} on success.
- \versionadded{2.0}
-\end{cfuncdesc}
-
-
-\subsection{Iterator Objects \label{iterator-objects}}
-
-Python provides two general-purpose iterator objects. The first, a
-sequence iterator, works with an arbitrary sequence supporting the
-\method{__getitem__()} method. The second works with a callable
-object and a sentinel value, calling the callable for each item in the
-sequence, and ending the iteration when the sentinel value is
-returned.
-
-\begin{cvardesc}{PyTypeObject}{PySeqIter_Type}
- Type object for iterator objects returned by
- \cfunction{PySeqIter_New()} and the one-argument form of the
- \function{iter()} built-in function for built-in sequence types.
- \versionadded{2.2}
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PySeqIter_Check}{op}
- Return true if the type of \var{op} is \cdata{PySeqIter_Type}.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PySeqIter_New}{PyObject *seq}
- Return an iterator that works with a general sequence object,
- \var{seq}. The iteration ends when the sequence raises
- \exception{IndexError} for the subscripting operation.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cvardesc}{PyTypeObject}{PyCallIter_Type}
- Type object for iterator objects returned by
- \cfunction{PyCallIter_New()} and the two-argument form of the
- \function{iter()} built-in function.
- \versionadded{2.2}
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyCallIter_Check}{op}
- Return true if the type of \var{op} is \cdata{PyCallIter_Type}.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyCallIter_New}{PyObject *callable,
- PyObject *sentinel}
- Return a new iterator. The first parameter, \var{callable}, can be
- any Python callable object that can be called with no parameters;
- each call to it should return the next item in the iteration. When
- \var{callable} returns a value equal to \var{sentinel}, the
- iteration will be terminated.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-
-\subsection{Descriptor Objects \label{descriptor-objects}}
-
-``Descriptors'' are objects that describe some attribute of an object.
-They are found in the dictionary of type objects.
-
-\begin{cvardesc}{PyTypeObject}{PyProperty_Type}
- The type object for the built-in descriptor types.
- \versionadded{2.2}
-\end{cvardesc}
-
-\begin{cfuncdesc}{PyObject*}{PyDescr_NewGetSet}{PyTypeObject *type,
- struct PyGetSetDef *getset}
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyDescr_NewMember}{PyTypeObject *type,
- struct PyMemberDef *meth}
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyDescr_NewMethod}{PyTypeObject *type,
- struct PyMethodDef *meth}
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyDescr_NewWrapper}{PyTypeObject *type,
- struct wrapperbase *wrapper,
- void *wrapped}
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyDescr_NewClassMethod}{PyTypeObject *type,
- PyMethodDef *method}
- \versionadded{2.3}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDescr_IsData}{PyObject *descr}
- Return true if the descriptor objects \var{descr} describes a data
- attribute, or false if it describes a method. \var{descr} must be a
- descriptor object; there is no error checking.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyWrapper_New}{PyObject *, PyObject *}
- \versionadded{2.2}
-\end{cfuncdesc}
-
-
-\subsection{Slice Objects \label{slice-objects}}
-
-\begin{cvardesc}{PyTypeObject}{PySlice_Type}
- The type object for slice objects. This is the same as
- \code{slice} and \code{types.SliceType}.
- \withsubitem{(in module types)}{\ttindex{SliceType}}
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PySlice_Check}{PyObject *ob}
- Return true if \var{ob} is a slice object; \var{ob} must not be
- \NULL{}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PySlice_New}{PyObject *start, PyObject *stop,
- PyObject *step}
- Return a new slice object with the given values. The \var{start},
- \var{stop}, and \var{step} parameters are used as the values of the
- slice object attributes of the same names. Any of the values may be
- \NULL{}, in which case the \code{None} will be used for the
- corresponding attribute. Return \NULL{} if the new object could
- not be allocated.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PySlice_GetIndices}{PySliceObject *slice, Py_ssize_t length,
- Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step}
-Retrieve the start, stop and step indices from the slice object
-\var{slice}, assuming a sequence of length \var{length}. Treats
-indices greater than \var{length} as errors.
-
-Returns 0 on success and -1 on error with no exception set (unless one
-of the indices was not \constant{None} and failed to be converted to
-an integer, in which case -1 is returned with an exception set).
-
-You probably do not want to use this function. If you want to use
-slice objects in versions of Python prior to 2.3, you would probably
-do well to incorporate the source of \cfunction{PySlice_GetIndicesEx},
-suitably renamed, in the source of your extension.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PySlice_GetIndicesEx}{PySliceObject *slice, Py_ssize_t length,
- Py_ssize_t *start, Py_ssize_t *stop, Py_ssize_t *step,
- Py_ssize_t *slicelength}
-Usable replacement for \cfunction{PySlice_GetIndices}. Retrieve the
-start, stop, and step indices from the slice object \var{slice}
-assuming a sequence of length \var{length}, and store the length of
-the slice in \var{slicelength}. Out of bounds indices are clipped in
-a manner consistent with the handling of normal slices.
-
-Returns 0 on success and -1 on error with exception set.
-
-\versionadded{2.3}
-\end{cfuncdesc}
-
-
-\subsection{Weak Reference Objects \label{weakref-objects}}
-
-Python supports \emph{weak references} as first-class objects. There
-are two specific object types which directly implement weak
-references. The first is a simple reference object, and the second
-acts as a proxy for the original object as much as it can.
-
-\begin{cfuncdesc}{int}{PyWeakref_Check}{ob}
- Return true if \var{ob} is either a reference or proxy object.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyWeakref_CheckRef}{ob}
- Return true if \var{ob} is a reference object.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyWeakref_CheckProxy}{ob}
- Return true if \var{ob} is a proxy object.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyWeakref_NewRef}{PyObject *ob,
- PyObject *callback}
- Return a weak reference object for the object \var{ob}. This will
- always return a new reference, but is not guaranteed to create a new
- object; an existing reference object may be returned. The second
- parameter, \var{callback}, can be a callable object that receives
- notification when \var{ob} is garbage collected; it should accept a
- single parameter, which will be the weak reference object itself.
- \var{callback} may also be \code{None} or \NULL{}. If \var{ob}
- is not a weakly-referencable object, or if \var{callback} is not
- callable, \code{None}, or \NULL{}, this will return \NULL{} and
- raise \exception{TypeError}.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyWeakref_NewProxy}{PyObject *ob,
- PyObject *callback}
- Return a weak reference proxy object for the object \var{ob}. This
- will always return a new reference, but is not guaranteed to create
- a new object; an existing proxy object may be returned. The second
- parameter, \var{callback}, can be a callable object that receives
- notification when \var{ob} is garbage collected; it should accept a
- single parameter, which will be the weak reference object itself.
- \var{callback} may also be \code{None} or \NULL{}. If \var{ob} is not
- a weakly-referencable object, or if \var{callback} is not callable,
- \code{None}, or \NULL{}, this will return \NULL{} and raise
- \exception{TypeError}.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyWeakref_GetObject}{PyObject *ref}
- Return the referenced object from a weak reference, \var{ref}. If
- the referent is no longer live, returns \code{None}.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyWeakref_GET_OBJECT}{PyObject *ref}
- Similar to \cfunction{PyWeakref_GetObject()}, but implemented as a
- macro that does no error checking.
- \versionadded{2.2}
-\end{cfuncdesc}
-
-
-\subsection{CObjects \label{cObjects}}
-
-\obindex{CObject}
-Refer to \emph{Extending and Embedding the Python Interpreter},
-section~1.12, ``Providing a C API for an Extension Module,'' for more
-information on using these objects.
-
-
-\begin{ctypedesc}{PyCObject}
- This subtype of \ctype{PyObject} represents an opaque value, useful
- for C extension modules who need to pass an opaque value (as a
- \ctype{void*} pointer) through Python code to other C code. It is
- often used to make a C function pointer defined in one module
- available to other modules, so the regular import mechanism can be
- used to access C APIs defined in dynamically loaded modules.
-\end{ctypedesc}
-
-\begin{cfuncdesc}{int}{PyCObject_Check}{PyObject *p}
- Return true if its argument is a \ctype{PyCObject}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyCObject_FromVoidPtr}{void* cobj,
- void (*destr)(void *)}
- Create a \ctype{PyCObject} from the \code{void *}\var{cobj}. The
- \var{destr} function will be called when the object is reclaimed,
- unless it is \NULL{}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyCObject_FromVoidPtrAndDesc}{void* cobj,
- void* desc, void (*destr)(void *, void *)}
- Create a \ctype{PyCObject} from the \ctype{void *}\var{cobj}. The
- \var{destr} function will be called when the object is reclaimed.
- The \var{desc} argument can be used to pass extra callback data for
- the destructor function.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{void*}{PyCObject_AsVoidPtr}{PyObject* self}
- Return the object \ctype{void *} that the \ctype{PyCObject}
- \var{self} was created with.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{void*}{PyCObject_GetDesc}{PyObject* self}
- Return the description \ctype{void *} that the \ctype{PyCObject}
- \var{self} was created with.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyCObject_SetVoidPtr}{PyObject* self, void* cobj}
- Set the void pointer inside \var{self} to \var{cobj}.
- The \ctype{PyCObject} must not have an associated destructor.
- Return true on success, false on failure.
-\end{cfuncdesc}
-
-
-\subsection{Cell Objects \label{cell-objects}}
-
-``Cell'' objects are used to implement variables referenced by
-multiple scopes. For each such variable, a cell object is created to
-store the value; the local variables of each stack frame that
-references the value contains a reference to the cells from outer
-scopes which also use that variable. When the value is accessed, the
-value contained in the cell is used instead of the cell object
-itself. This de-referencing of the cell object requires support from
-the generated byte-code; these are not automatically de-referenced
-when accessed. Cell objects are not likely to be useful elsewhere.
-
-\begin{ctypedesc}{PyCellObject}
- The C structure used for cell objects.
-\end{ctypedesc}
-
-\begin{cvardesc}{PyTypeObject}{PyCell_Type}
- The type object corresponding to cell objects.
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyCell_Check}{ob}
- Return true if \var{ob} is a cell object; \var{ob} must not be
- \NULL{}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyCell_New}{PyObject *ob}
- Create and return a new cell object containing the value \var{ob}.
- The parameter may be \NULL{}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyCell_Get}{PyObject *cell}
- Return the contents of the cell \var{cell}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyCell_GET}{PyObject *cell}
- Return the contents of the cell \var{cell}, but without checking
- that \var{cell} is non-\NULL{} and a cell object.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyCell_Set}{PyObject *cell, PyObject *value}
- Set the contents of the cell object \var{cell} to \var{value}. This
- releases the reference to any current content of the cell.
- \var{value} may be \NULL{}. \var{cell} must be non-\NULL{}; if it is
- not a cell object, \code{-1} will be returned. On success, \code{0}
- will be returned.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{void}{PyCell_SET}{PyObject *cell, PyObject *value}
- Sets the value of the cell object \var{cell} to \var{value}. No
- reference counts are adjusted, and no checks are made for safety;
- \var{cell} must be non-\NULL{} and must be a cell object.
-\end{cfuncdesc}
-
-
-\subsection{Generator Objects \label{gen-objects}}
-
-Generator objects are what Python uses to implement generator iterators.
-They are normally created by iterating over a function that yields values,
-rather than explicitly calling \cfunction{PyGen_New}.
-
-\begin{ctypedesc}{PyGenObject}
- The C structure used for generator objects.
-\end{ctypedesc}
-
-\begin{cvardesc}{PyTypeObject}{PyGen_Type}
- The type object corresponding to generator objects
-\end{cvardesc}
-
-\begin{cfuncdesc}{int}{PyGen_Check}{ob}
- Return true if \var{ob} is a generator object; \var{ob} must not be
- \NULL{}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyGen_CheckExact}{ob}
- Return true if \var{ob}'s type is \var{PyGen_Type}
- is a generator object; \var{ob} must not be
- \NULL{}.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyGen_New}{PyFrameObject *frame}
- Create and return a new generator object based on the \var{frame} object.
- A reference to \var{frame} is stolen by this function.
- The parameter must not be \NULL{}.
-\end{cfuncdesc}
-
-
-\subsection{DateTime Objects \label{datetime-objects}}
-
-Various date and time objects are supplied by the \module{datetime}
-module. Before using any of these functions, the header file
-\file{datetime.h} must be included in your source (note that this is
-not included by \file{Python.h}), and the macro
-\cfunction{PyDateTime_IMPORT} must be invoked. The macro puts a
-pointer to a C structure into a static variable,
-\code{PyDateTimeAPI}, that is used by the following macros.
-
-Type-check macros:
-
-\begin{cfuncdesc}{int}{PyDate_Check}{PyObject *ob}
- Return true if \var{ob} is of type \cdata{PyDateTime_DateType} or
- a subtype of \cdata{PyDateTime_DateType}. \var{ob} must not be
- \NULL{}.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDate_CheckExact}{PyObject *ob}
- Return true if \var{ob} is of type \cdata{PyDateTime_DateType}.
- \var{ob} must not be \NULL{}.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDateTime_Check}{PyObject *ob}
- Return true if \var{ob} is of type \cdata{PyDateTime_DateTimeType} or
- a subtype of \cdata{PyDateTime_DateTimeType}. \var{ob} must not be
- \NULL{}.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDateTime_CheckExact}{PyObject *ob}
- Return true if \var{ob} is of type \cdata{PyDateTime_DateTimeType}.
- \var{ob} must not be \NULL{}.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyTime_Check}{PyObject *ob}
- Return true if \var{ob} is of type \cdata{PyDateTime_TimeType} or
- a subtype of \cdata{PyDateTime_TimeType}. \var{ob} must not be
- \NULL{}.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyTime_CheckExact}{PyObject *ob}
- Return true if \var{ob} is of type \cdata{PyDateTime_TimeType}.
- \var{ob} must not be \NULL{}.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDelta_Check}{PyObject *ob}
- Return true if \var{ob} is of type \cdata{PyDateTime_DeltaType} or
- a subtype of \cdata{PyDateTime_DeltaType}. \var{ob} must not be
- \NULL{}.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDelta_CheckExact}{PyObject *ob}
- Return true if \var{ob} is of type \cdata{PyDateTime_DeltaType}.
- \var{ob} must not be \NULL{}.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyTZInfo_Check}{PyObject *ob}
- Return true if \var{ob} is of type \cdata{PyDateTime_TZInfoType} or
- a subtype of \cdata{PyDateTime_TZInfoType}. \var{ob} must not be
- \NULL{}.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyTZInfo_CheckExact}{PyObject *ob}
- Return true if \var{ob} is of type \cdata{PyDateTime_TZInfoType}.
- \var{ob} must not be \NULL{}.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-Macros to create objects:
-
-\begin{cfuncdesc}{PyObject*}{PyDate_FromDate}{int year, int month, int day}
- Return a \code{datetime.date} object with the specified year, month
- and day.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyDateTime_FromDateAndTime}{int year, int month,
- int day, int hour, int minute, int second, int usecond}
- Return a \code{datetime.datetime} object with the specified year, month,
- day, hour, minute, second and microsecond.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyTime_FromTime}{int hour, int minute,
- int second, int usecond}
- Return a \code{datetime.time} object with the specified hour, minute,
- second and microsecond.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyDelta_FromDSU}{int days, int seconds,
- int useconds}
- Return a \code{datetime.timedelta} object representing the given number
- of days, seconds and microseconds. Normalization is performed so that
- the resulting number of microseconds and seconds lie in the ranges
- documented for \code{datetime.timedelta} objects.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-Macros to extract fields from date objects. The argument must be an
-instance of \cdata{PyDateTime_Date}, including subclasses (such as
-\cdata{PyDateTime_DateTime}). The argument must not be \NULL{}, and
-the type is not checked:
-
-\begin{cfuncdesc}{int}{PyDateTime_GET_YEAR}{PyDateTime_Date *o}
- Return the year, as a positive int.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDateTime_GET_MONTH}{PyDateTime_Date *o}
- Return the month, as an int from 1 through 12.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDateTime_GET_DAY}{PyDateTime_Date *o}
- Return the day, as an int from 1 through 31.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-Macros to extract fields from datetime objects. The argument must be an
-instance of \cdata{PyDateTime_DateTime}, including subclasses.
-The argument must not be \NULL{}, and the type is not checked:
-
-\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_HOUR}{PyDateTime_DateTime *o}
- Return the hour, as an int from 0 through 23.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_MINUTE}{PyDateTime_DateTime *o}
- Return the minute, as an int from 0 through 59.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_SECOND}{PyDateTime_DateTime *o}
- Return the second, as an int from 0 through 59.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDateTime_DATE_GET_MICROSECOND}{PyDateTime_DateTime *o}
- Return the microsecond, as an int from 0 through 999999.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-Macros to extract fields from time objects. The argument must be an
-instance of \cdata{PyDateTime_Time}, including subclasses.
-The argument must not be \NULL{}, and the type is not checked:
-
-\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_HOUR}{PyDateTime_Time *o}
- Return the hour, as an int from 0 through 23.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_MINUTE}{PyDateTime_Time *o}
- Return the minute, as an int from 0 through 59.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_SECOND}{PyDateTime_Time *o}
- Return the second, as an int from 0 through 59.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyDateTime_TIME_GET_MICROSECOND}{PyDateTime_Time *o}
- Return the microsecond, as an int from 0 through 999999.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-Macros for the convenience of modules implementing the DB API:
-
-\begin{cfuncdesc}{PyObject*}{PyDateTime_FromTimestamp}{PyObject *args}
- Create and return a new \code{datetime.datetime} object given an argument
- tuple suitable for passing to \code{datetime.datetime.fromtimestamp()}.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyDate_FromTimestamp}{PyObject *args}
- Create and return a new \code{datetime.date} object given an argument
- tuple suitable for passing to \code{datetime.date.fromtimestamp()}.
- \versionadded{2.4}
-\end{cfuncdesc}
-
-
-\subsection{Set Objects \label{setObjects}}
-\sectionauthor{Raymond D. Hettinger}{python@rcn.com}
-
-\obindex{set}
-\obindex{frozenset}
-\versionadded{2.5}
-
-This section details the public API for \class{set} and \class{frozenset}
-objects. Any functionality not listed below is best accessed using the
-either the abstract object protocol (including
-\cfunction{PyObject_CallMethod()}, \cfunction{PyObject_RichCompareBool()},
-\cfunction{PyObject_Hash()}, \cfunction{PyObject_Repr()},
-\cfunction{PyObject_IsTrue()}, \cfunction{PyObject_Print()}, and
-\cfunction{PyObject_GetIter()})
-or the abstract number protocol (including
-\cfunction{PyNumber_And()}, \cfunction{PyNumber_Subtract()},
-\cfunction{PyNumber_Or()}, \cfunction{PyNumber_Xor()},
-\cfunction{PyNumber_InPlaceAnd()}, \cfunction{PyNumber_InPlaceSubtract()},
-\cfunction{PyNumber_InPlaceOr()}, and \cfunction{PyNumber_InPlaceXor()}).
-
-\begin{ctypedesc}{PySetObject}
- This subtype of \ctype{PyObject} is used to hold the internal data for
- both \class{set} and \class{frozenset} objects. It is like a
- \ctype{PyDictObject} in that it is a fixed size for small sets
- (much like tuple storage) and will point to a separate, variable sized
- block of memory for medium and large sized sets (much like list storage).
- None of the fields of this structure should be considered public and
- are subject to change. All access should be done through the
- documented API rather than by manipulating the values in the structure.
-
-\end{ctypedesc}
-
-\begin{cvardesc}{PyTypeObject}{PySet_Type}
- This is an instance of \ctype{PyTypeObject} representing the Python
- \class{set} type.
-\end{cvardesc}
-
-\begin{cvardesc}{PyTypeObject}{PyFrozenSet_Type}
- This is an instance of \ctype{PyTypeObject} representing the Python
- \class{frozenset} type.
-\end{cvardesc}
-
-
-The following type check macros work on pointers to any Python object.
-Likewise, the constructor functions work with any iterable Python object.
-
-\begin{cfuncdesc}{int}{PyAnySet_Check}{PyObject *p}
- Return true if \var{p} is a \class{set} object, a \class{frozenset}
- object, or an instance of a subtype.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyAnySet_CheckExact}{PyObject *p}
- Return true if \var{p} is a \class{set} object or a \class{frozenset}
- object but not an instance of a subtype.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PyFrozenSet_CheckExact}{PyObject *p}
- Return true if \var{p} is a \class{frozenset} object
- but not an instance of a subtype.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PySet_New}{PyObject *iterable}
- Return a new \class{set} containing objects returned by the
- \var{iterable}. The \var{iterable} may be \NULL{} to create a
- new empty set. Return the new set on success or \NULL{} on
- failure. Raise \exception{TypeError} if \var{iterable} is
- not actually iterable. The constructor is also useful for
- copying a set (\code{c=set(s)}).
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PyFrozenSet_New}{PyObject *iterable}
- Return a new \class{frozenset} containing objects returned by the
- \var{iterable}. The \var{iterable} may be \NULL{} to create a
- new empty frozenset. Return the new set on success or \NULL{} on
- failure. Raise \exception{TypeError} if \var{iterable} is
- not actually iterable.
-\end{cfuncdesc}
-
-
-The following functions and macros are available for instances of
-\class{set} or \class{frozenset} or instances of their subtypes.
-
-\begin{cfuncdesc}{int}{PySet_Size}{PyObject *anyset}
- Return the length of a \class{set} or \class{frozenset} object.
- Equivalent to \samp{len(\var{anyset})}. Raises a
- \exception{PyExc_SystemError} if \var{anyset} is not a \class{set},
- \class{frozenset}, or an instance of a subtype.
- \bifuncindex{len}
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PySet_GET_SIZE}{PyObject *anyset}
- Macro form of \cfunction{PySet_Size()} without error checking.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PySet_Contains}{PyObject *anyset, PyObject *key}
- Return 1 if found, 0 if not found, and -1 if an error is
- encountered. Unlike the Python \method{__contains__()} method, this
- function does not automatically convert unhashable sets into temporary
- frozensets. Raise a \exception{TypeError} if the \var{key} is unhashable.
- Raise \exception{PyExc_SystemError} if \var{anyset} is not a \class{set},
- \class{frozenset}, or an instance of a subtype.
-\end{cfuncdesc}
-
-The following functions are available for instances of \class{set} or
-its subtypes but not for instances of \class{frozenset} or its subtypes.
-
-\begin{cfuncdesc}{int}{PySet_Add}{PyObject *set, PyObject *key}
- Add \var{key} to a \class{set} instance. Does not apply to
- \class{frozenset} instances. Return 0 on success or -1 on failure.
- Raise a \exception{TypeError} if the \var{key} is unhashable.
- Raise a \exception{MemoryError} if there is no room to grow.
- Raise a \exception{SystemError} if \var{set} is an not an instance
- of \class{set} or its subtype.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PySet_Discard}{PyObject *set, PyObject *key}
- Return 1 if found and removed, 0 if not found (no action taken),
- and -1 if an error is encountered. Does not raise \exception{KeyError}
- for missing keys. Raise a \exception{TypeError} if the \var{key} is
- unhashable. Unlike the Python \method{discard()} method, this function
- does not automatically convert unhashable sets into temporary frozensets.
- Raise \exception{PyExc_SystemError} if \var{set} is an not an instance
- of \class{set} or its subtype.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{PyObject*}{PySet_Pop}{PyObject *set}
- Return a new reference to an arbitrary object in the \var{set},
- and removes the object from the \var{set}. Return \NULL{} on
- failure. Raise \exception{KeyError} if the set is empty.
- Raise a \exception{SystemError} if \var{set} is an not an instance
- of \class{set} or its subtype.
-\end{cfuncdesc}
-
-\begin{cfuncdesc}{int}{PySet_Clear}{PyObject *set}
- Empty an existing set of all elements.
-\end{cfuncdesc}