diff options
Diffstat (limited to 'Doc/howto/logging.rst')
-rw-r--r-- | Doc/howto/logging.rst | 1016 |
1 files changed, 1016 insertions, 0 deletions
diff --git a/Doc/howto/logging.rst b/Doc/howto/logging.rst new file mode 100644 index 0000000..5090ff6 --- /dev/null +++ b/Doc/howto/logging.rst @@ -0,0 +1,1016 @@ +============= +Logging HOWTO +============= + +:Author: Vinay Sajip <vinay_sajip at red-dove dot com> + +.. Contents:: + +.. _logging-basic-tutorial: + +.. currentmodule:: logging + +Basic Logging Tutorial +---------------------- + +Logging is a means of tracking events that happen when some software runs. The +software's developer adds logging calls to their code to indicate that certain +events have occurred. An event is described by a descriptive message which can +optionally contain variable data (i.e. data that is potentially different for +each occurrence of the event). Events also have an importance which the +developer ascribes to the event; the importance can also be called the *level* +or *severity*. + +When to use logging +^^^^^^^^^^^^^^^^^^^ + +Logging provides a set of convenience functions for simple logging usage. These +are :func:`debug`, :func:`info`, :func:`warning`, :func:`error` and +:func:`critical`. To determine when to use logging, see the table below, which +states, for each of a set of common tasks, the best tool to use for it. + ++-------------------------------------+--------------------------------------+ +| Task you want to perform | The best tool for the task | ++=====================================+======================================+ +| Display console output for ordinary | :func:`print` | +| usage of a command line script or | | +| program | | ++-------------------------------------+--------------------------------------+ +| Report events that occur during | :func:`logging.info` (or | +| normal operation of a program (e.g. | :func:`logging.debug` for very | +| for status monitoring or fault | detailed output for diagnostic | +| investigation) | purposes) | ++-------------------------------------+--------------------------------------+ +| Issue a warning regarding a | :func:`warnings.warn` in library | +| particular runtime event | code if the issue is avoidable and | +| | the client application should be | +| | modified to eliminate the warning | +| | | +| | :func:`logging.warning` if there is | +| | nothing the client application can do| +| | about the situation, but the event | +| | should still be noted | ++-------------------------------------+--------------------------------------+ +| Report an error regarding a | Raise an exception | +| particular runtime event | | ++-------------------------------------+--------------------------------------+ +| Report suppression of an error | :func:`logging.error`, | +| without raising an exception (e.g. | :func:`logging.exception` or | +| error handler in a long-running | :func:`logging.critical` as | +| server process) | appropriate for the specific error | +| | and application domain | ++-------------------------------------+--------------------------------------+ + +The logging functions are named after the level or severity of the events +they are used to track. The standard levels and their applicability are +described below (in increasing order of severity): + ++--------------+---------------------------------------------+ +| Level | When it's used | ++==============+=============================================+ +| ``DEBUG`` | Detailed information, typically of interest | +| | only when diagnosing problems. | ++--------------+---------------------------------------------+ +| ``INFO`` | Confirmation that things are working as | +| | expected. | ++--------------+---------------------------------------------+ +| ``WARNING`` | An indication that something unexpected | +| | happened, or indicative of some problem in | +| | the near future (e.g. 'disk space low'). | +| | The software is still working as expected. | ++--------------+---------------------------------------------+ +| ``ERROR`` | Due to a more serious problem, the software | +| | has not been able to perform some function. | ++--------------+---------------------------------------------+ +| ``CRITICAL`` | A serious error, indicating that the program| +| | itself may be unable to continue running. | ++--------------+---------------------------------------------+ + +The default level is ``WARNING``, which means that only events of this level +and above will be tracked, unless the logging package is configured to do +otherwise. + +Events that are tracked can be handled in different ways. The simplest way of +handling tracked events is to print them to the console. Another common way +is to write them to a disk file. + + +.. _howto-minimal-example: + +A simple example +^^^^^^^^^^^^^^^^ + +A very simple example is:: + + import logging + logging.warning('Watch out!') # will print a message to the console + logging.info('I told you so') # will not print anything + +If you type these lines into a script and run it, you'll see:: + + WARNING:root:Watch out! + +printed out on the console. The ``INFO`` message doesn't appear because the +default level is ``WARNING``. The printed message includes the indication of +the level and the description of the event provided in the logging call, i.e. +'Watch out!'. Don't worry about the 'root' part for now: it will be explained +later. The actual output can be formatted quite flexibly if you need that; +formatting options will also be explained later. + + +Logging to a file +^^^^^^^^^^^^^^^^^ + +A very common situation is that of recording logging events in a file, so let's +look at that next:: + + import logging + logging.basicConfig(filename='example.log',level=logging.DEBUG) + logging.debug('This message should go to the log file') + logging.info('So should this') + logging.warning('And this, too') + +And now if we open the file and look at what we have, we should find the log +messages:: + + DEBUG:root:This message should go to the log file + INFO:root:So should this + WARNING:root:And this, too + +This example also shows how you can set the logging level which acts as the +threshold for tracking. In this case, because we set the threshold to +``DEBUG``, all of the messages were printed. + +If you want to set the logging level from a command-line option such as:: + + --log=INFO + +and you have the value of the parameter passed for ``--log`` in some variable +*loglevel*, you can use:: + + getattr(logging, loglevel.upper()) + +to get the value which you'll pass to :func:`basicConfig` via the *level* +argument. You may want to error check any user input value, perhaps as in the +following example:: + + # assuming loglevel is bound to the string value obtained from the + # command line argument. Convert to upper case to allow the user to + # specify --log=DEBUG or --log=debug + numeric_level = getattr(logging, loglevel.upper(), None) + if not isinstance(numeric_level, int): + raise ValueError('Invalid log level: %s' % loglevel) + logging.basicConfig(level=numeric_level, ...) + +The call to :func:`basicConfig` should come *before* any calls to :func:`debug`, +:func:`info` etc. As it's intended as a one-off simple configuration facility, +only the first call will actually do anything: subsequent calls are effectively +no-ops. + +If you run the above script several times, the messages from successive runs +are appended to the file *example.log*. If you want each run to start afresh, +not remembering the messages from earlier runs, you can specify the *filemode* +argument, by changing the call in the above example to:: + + logging.basicConfig(filename='example.log', filemode='w', level=logging.DEBUG) + +The output will be the same as before, but the log file is no longer appended +to, so the messages from earlier runs are lost. + + +Logging from multiple modules +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +If your program consists of multiple modules, here's an example of how you +could organize logging in it:: + + # myapp.py + import logging + import mylib + + def main(): + logging.basicConfig(filename='myapp.log', level=logging.INFO) + logging.info('Started') + mylib.do_something() + logging.info('Finished') + + if __name__ == '__main__': + main() + +:: + + # mylib.py + import logging + + def do_something(): + logging.info('Doing something') + +If you run *myapp.py*, you should see this in *myapp.log*:: + + INFO:root:Started + INFO:root:Doing something + INFO:root:Finished + +which is hopefully what you were expecting to see. You can generalize this to +multiple modules, using the pattern in *mylib.py*. Note that for this simple +usage pattern, you won't know, by looking in the log file, *where* in your +application your messages came from, apart from looking at the event +description. If you want to track the location of your messages, you'll need +to refer to the documentation beyond the tutorial level - see +:ref:`advanced-logging-tutorial`. + + +Logging variable data +^^^^^^^^^^^^^^^^^^^^^ + +To log variable data, use a format string for the event description message and +append the variable data as arguments. For example:: + + import logging + logging.warning('%s before you %s', 'Look', 'leap!') + +will display:: + + WARNING:root:Look before you leap! + +As you can see, merging of variable data into the event description message +uses the old, %-style of string formatting. This is for backwards +compatibility: the logging package pre-dates newer formatting options such as +:meth:`str.format` and :class:`string.Template`. These newer formatting +options *are* supported, but exploring them is outside the scope of this +tutorial. + + +Changing the format of displayed messages +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +To change the format which is used to display messages, you need to +specify the format you want to use:: + + import logging + logging.basicConfig(format='%(levelname)s:%(message)s', level=logging.DEBUG) + logging.debug('This message should appear on the console') + logging.info('So should this') + logging.warning('And this, too') + +which would print:: + + DEBUG:This message should appear on the console + INFO:So should this + WARNING:And this, too + +Notice that the 'root' which appeared in earlier examples has disappeared. For +a full set of things that can appear in format strings, you can refer to the +documentation for :ref:`logrecord-attributes`, but for simple usage, you just +need the *levelname* (severity), *message* (event description, including +variable data) and perhaps to display when the event occurred. This is +described in the next section. + + +Displaying the date/time in messages +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +To display the date and time of an event, you would place '%(asctime)s' in +your format string:: + + import logging + logging.basicConfig(format='%(asctime)s %(message)s') + logging.warning('is when this event was logged.') + +which should print something like this:: + + 2010-12-12 11:41:42,612 is when this event was logged. + +The default format for date/time display (shown above) is ISO8601. If you need +more control over the formatting of the date/time, provide a *datefmt* +argument to ``basicConfig``, as in this example:: + + import logging + logging.basicConfig(format='%(asctime)s %(message)s', datefmt='%m/%d/%Y %I:%M:%S %p') + logging.warning('is when this event was logged.') + +which would display something like this:: + + 12/12/2010 11:46:36 AM is when this event was logged. + +The format of the *datefmt* argument is the same as supported by +:func:`time.strftime`. + + +Next Steps +^^^^^^^^^^ + +That concludes the basic tutorial. It should be enough to get you up and +running with logging. There's a lot more that the logging package offers, but +to get the best out of it, you'll need to invest a little more of your time in +reading the following sections. If you're ready for that, grab some of your +favourite beverage and carry on. + +If your logging needs are simple, then use the above examples to incorporate +logging into your own scripts, and if you run into problems or don't +understand something, please post a question on the comp.lang.python Usenet +group (available at http://groups.google.com/group/comp.lang.python) and you +should receive help before too long. + +Still here? There's no need to read the whole of the logging documentation in +linear fashion, top to bottom (there's quite a lot of it still to come). You +can carry on reading the next few sections, which provide a slightly more +advanced/in-depth tutorial than the basic one above. After that, you can +take a look at the :ref:`logging-cookbook`. + +.. _logging-advanced-tutorial: + + +Advanced Logging Tutorial +------------------------- + +The logging library takes a modular approach and offers several categories +of components: loggers, handlers, filters, and formatters. + +* Loggers expose the interface that application code directly uses. +* Handlers send the log records (created by loggers) to the appropriate + destination. +* Filters provide a finer grained facility for determining which log records + to output. +* Formatters specify the layout of log records in the final output. + +Logging is performed by calling methods on instances of the :class:`Logger` +class (hereafter called :dfn:`loggers`). Each instance has a name, and they are +conceptually arranged in a namespace hierarchy using dots (periods) as +separators. For example, a logger named 'scan' is the parent of loggers +'scan.text', 'scan.html' and 'scan.pdf'. Logger names can be anything you want, +and indicate the area of an application in which a logged message originates. + +A good convention to use when naming loggers is to use a module-level logger, +in each module which uses logging, named as follows:: + + logger = logging.getLogger(__name__) + +This means that logger names track the package/module hierarchy, and it's +intuitively obvious where events are logged just from the logger name. + +The root of the hierarchy of loggers is called the root logger. That's the +logger used by the functions :func:`debug`, :func:`info`, :func:`warning`, +:func:`error` and :func:`critical`, which just call the same-named method of +the root logger. The functions and the methods have the same signatures. The +root logger's name is printed as 'root' in the logged output. + +It is, of course, possible to log messages to different destinations. Support +is included in the package for writing log messages to files, HTTP GET/POST +locations, email via SMTP, generic sockets, queues, or OS-specific logging +mechanisms such as syslog or the Windows NT event log. Destinations are served +by :dfn:`handler` classes. You can create your own log destination class if +you have special requirements not met by any of the built-in handler classes. + +By default, no destination is set for any logging messages. You can specify +a destination (such as console or file) by using :func:`basicConfig` as in the +tutorial examples. If you call the functions :func:`debug`, :func:`info`, +:func:`warning`, :func:`error` and :func:`critical`, they will check to see +if no destination is set; and if one is not set, they will set a destination +of the console (``sys.stderr``) and a default format for the displayed +message before delegating to the root logger to do the actual message output. + +The default format set by :func:`basicConfig` for messages is:: + + severity:logger name:message + +You can change this by passing a format string to :func:`basicConfig` with the +*format* keyword argument. For all options regarding how a format string is +constructed, see :ref:`formatter-objects`. + + +Loggers +^^^^^^^ + +:class:`Logger` objects have a threefold job. First, they expose several +methods to application code so that applications can log messages at runtime. +Second, logger objects determine which log messages to act upon based upon +severity (the default filtering facility) or filter objects. Third, logger +objects pass along relevant log messages to all interested log handlers. + +The most widely used methods on logger objects fall into two categories: +configuration and message sending. + +These are the most common configuration methods: + +* :meth:`Logger.setLevel` specifies the lowest-severity log message a logger + will handle, where debug is the lowest built-in severity level and critical + is the highest built-in severity. For example, if the severity level is + INFO, the logger will handle only INFO, WARNING, ERROR, and CRITICAL messages + and will ignore DEBUG messages. + +* :meth:`Logger.addHandler` and :meth:`Logger.removeHandler` add and remove + handler objects from the logger object. Handlers are covered in more detail + in :ref:`handler-basic`. + +* :meth:`Logger.addFilter` and :meth:`Logger.removeFilter` add and remove filter + objects from the logger object. Filters are covered in more detail in + :ref:`filter`. + +You don't need to always call these methods on every logger you create. See the +last two paragraphs in this section. + +With the logger object configured, the following methods create log messages: + +* :meth:`Logger.debug`, :meth:`Logger.info`, :meth:`Logger.warning`, + :meth:`Logger.error`, and :meth:`Logger.critical` all create log records with + a message and a level that corresponds to their respective method names. The + message is actually a format string, which may contain the standard string + substitution syntax of :const:`%s`, :const:`%d`, :const:`%f`, and so on. The + rest of their arguments is a list of objects that correspond with the + substitution fields in the message. With regard to :const:`**kwargs`, the + logging methods care only about a keyword of :const:`exc_info` and use it to + determine whether to log exception information. + +* :meth:`Logger.exception` creates a log message similar to + :meth:`Logger.error`. The difference is that :meth:`Logger.exception` dumps a + stack trace along with it. Call this method only from an exception handler. + +* :meth:`Logger.log` takes a log level as an explicit argument. This is a + little more verbose for logging messages than using the log level convenience + methods listed above, but this is how to log at custom log levels. + +:func:`getLogger` returns a reference to a logger instance with the specified +name if it is provided, or ``root`` if not. The names are period-separated +hierarchical structures. Multiple calls to :func:`getLogger` with the same name +will return a reference to the same logger object. Loggers that are further +down in the hierarchical list are children of loggers higher up in the list. +For example, given a logger with a name of ``foo``, loggers with names of +``foo.bar``, ``foo.bar.baz``, and ``foo.bam`` are all descendants of ``foo``. + +Loggers have a concept of *effective level*. If a level is not explicitly set +on a logger, the level of its parent is used instead as its effective level. +If the parent has no explicit level set, *its* parent is examined, and so on - +all ancestors are searched until an explicitly set level is found. The root +logger always has an explicit level set (``WARNING`` by default). When deciding +whether to process an event, the effective level of the logger is used to +determine whether the event is passed to the logger's handlers. + +Child loggers propagate messages up to the handlers associated with their +ancestor loggers. Because of this, it is unnecessary to define and configure +handlers for all the loggers an application uses. It is sufficient to +configure handlers for a top-level logger and create child loggers as needed. +(You can, however, turn off propagation by setting the *propagate* +attribute of a logger to *False*.) + + +.. _handler-basic: + +Handlers +^^^^^^^^ + +:class:`Handler` objects are responsible for dispatching the appropriate log +messages (based on the log messages' severity) to the handler's specified +destination. Logger objects can add zero or more handler objects to themselves +with an :func:`addHandler` method. As an example scenario, an application may +want to send all log messages to a log file, all log messages of error or higher +to stdout, and all messages of critical to an email address. This scenario +requires three individual handlers where each handler is responsible for sending +messages of a specific severity to a specific location. + +The standard library includes quite a few handler types (see +:ref:`useful-handlers`); the tutorials use mainly :class:`StreamHandler` and +:class:`FileHandler` in its examples. + +There are very few methods in a handler for application developers to concern +themselves with. The only handler methods that seem relevant for application +developers who are using the built-in handler objects (that is, not creating +custom handlers) are the following configuration methods: + +* The :meth:`Handler.setLevel` method, just as in logger objects, specifies the + lowest severity that will be dispatched to the appropriate destination. Why + are there two :func:`setLevel` methods? The level set in the logger + determines which severity of messages it will pass to its handlers. The level + set in each handler determines which messages that handler will send on. + +* :func:`setFormatter` selects a Formatter object for this handler to use. + +* :func:`addFilter` and :func:`removeFilter` respectively configure and + deconfigure filter objects on handlers. + +Application code should not directly instantiate and use instances of +:class:`Handler`. Instead, the :class:`Handler` class is a base class that +defines the interface that all handlers should have and establishes some +default behavior that child classes can use (or override). + + +Formatters +^^^^^^^^^^ + +Formatter objects configure the final order, structure, and contents of the log +message. Unlike the base :class:`logging.Handler` class, application code may +instantiate formatter classes, although you could likely subclass the formatter +if your application needs special behavior. The constructor takes three +optional arguments -- a message format string, a date format string and a style +indicator. + +.. method:: logging.Formatter.__init__(fmt=None, datefmt=None, style='%') + +If there is no message format string, the default is to use the +raw message. If there is no date format string, the default date format is:: + + %Y-%m-%d %H:%M:%S + +with the milliseconds tacked on at the end. The ``style`` is one of `%`, '{' +or '$'. If one of these is not specified, then '%' will be used. + +If the ``style`` is '%', the message format string uses +``%(<dictionary key>)s`` styled string substitution; the possible keys are +documented in :ref:`logrecord-attributes`. If the style is '{', the message +format string is assumed to be compatible with :meth:`str.format` (using +keyword arguments), while if the style is '$' then the message format string +should conform to what is expected by :meth:`string.Template.substitute`. + +.. versionchanged:: 3.2 + Added the ``style`` parameter. + +The following message format string will log the time in a human-readable +format, the severity of the message, and the contents of the message, in that +order:: + + '%(asctime)s - %(levelname)s - %(message)s' + +Formatters use a user-configurable function to convert the creation time of a +record to a tuple. By default, :func:`time.localtime` is used; to change this +for a particular formatter instance, set the ``converter`` attribute of the +instance to a function with the same signature as :func:`time.localtime` or +:func:`time.gmtime`. To change it for all formatters, for example if you want +all logging times to be shown in GMT, set the ``converter`` attribute in the +Formatter class (to ``time.gmtime`` for GMT display). + + +Configuring Logging +^^^^^^^^^^^^^^^^^^^ + +Programmers can configure logging in three ways: + +1. Creating loggers, handlers, and formatters explicitly using Python + code that calls the configuration methods listed above. +2. Creating a logging config file and reading it using the :func:`fileConfig` + function. +3. Creating a dictionary of configuration information and passing it + to the :func:`dictConfig` function. + +For the reference documentation on the last two options, see :ref:`config-ref`. +The following example configures a very simple logger, a console handler, and +a simple formatter using Python code:: + + import logging + + # create logger + logger = logging.getLogger('simple_example') + logger.setLevel(logging.DEBUG) + + # create console handler and set level to debug + ch = logging.StreamHandler() + ch.setLevel(logging.DEBUG) + + # create formatter + formatter = logging.Formatter('%(asctime)s - %(name)s - %(levelname)s - %(message)s') + + # add formatter to ch + ch.setFormatter(formatter) + + # add ch to logger + logger.addHandler(ch) + + # 'application' code + logger.debug('debug message') + logger.info('info message') + logger.warn('warn message') + logger.error('error message') + logger.critical('critical message') + +Running this module from the command line produces the following output:: + + $ python simple_logging_module.py + 2005-03-19 15:10:26,618 - simple_example - DEBUG - debug message + 2005-03-19 15:10:26,620 - simple_example - INFO - info message + 2005-03-19 15:10:26,695 - simple_example - WARNING - warn message + 2005-03-19 15:10:26,697 - simple_example - ERROR - error message + 2005-03-19 15:10:26,773 - simple_example - CRITICAL - critical message + +The following Python module creates a logger, handler, and formatter nearly +identical to those in the example listed above, with the only difference being +the names of the objects:: + + import logging + import logging.config + + logging.config.fileConfig('logging.conf') + + # create logger + logger = logging.getLogger('simpleExample') + + # 'application' code + logger.debug('debug message') + logger.info('info message') + logger.warn('warn message') + logger.error('error message') + logger.critical('critical message') + +Here is the logging.conf file:: + + [loggers] + keys=root,simpleExample + + [handlers] + keys=consoleHandler + + [formatters] + keys=simpleFormatter + + [logger_root] + level=DEBUG + handlers=consoleHandler + + [logger_simpleExample] + level=DEBUG + handlers=consoleHandler + qualname=simpleExample + propagate=0 + + [handler_consoleHandler] + class=StreamHandler + level=DEBUG + formatter=simpleFormatter + args=(sys.stdout,) + + [formatter_simpleFormatter] + format=%(asctime)s - %(name)s - %(levelname)s - %(message)s + datefmt= + +The output is nearly identical to that of the non-config-file-based example:: + + $ python simple_logging_config.py + 2005-03-19 15:38:55,977 - simpleExample - DEBUG - debug message + 2005-03-19 15:38:55,979 - simpleExample - INFO - info message + 2005-03-19 15:38:56,054 - simpleExample - WARNING - warn message + 2005-03-19 15:38:56,055 - simpleExample - ERROR - error message + 2005-03-19 15:38:56,130 - simpleExample - CRITICAL - critical message + +You can see that the config file approach has a few advantages over the Python +code approach, mainly separation of configuration and code and the ability of +noncoders to easily modify the logging properties. + +Note that the class names referenced in config files need to be either relative +to the logging module, or absolute values which can be resolved using normal +import mechanisms. Thus, you could use either +:class:`handlers.WatchedFileHandler` (relative to the logging module) or +``mypackage.mymodule.MyHandler`` (for a class defined in package ``mypackage`` +and module ``mymodule``, where ``mypackage`` is available on the Python import +path). + +In Python 3.2, a new means of configuring logging has been introduced, using +dictionaries to hold configuration information. This provides a superset of the +functionality of the config-file-based approach outlined above, and is the +recommended configuration method for new applications and deployments. Because +a Python dictionary is used to hold configuration information, and since you +can populate that dictionary using different means, you have more options for +configuration. For example, you can use a configuration file in JSON format, +or, if you have access to YAML processing functionality, a file in YAML +format, to populate the configuration dictionary. Or, of course, you can +construct the dictionary in Python code, receive it in pickled form over a +socket, or use whatever approach makes sense for your application. + +Here's an example of the same configuration as above, in YAML format for +the new dictionary-based approach:: + + version: 1 + formatters: + simple: + format: format=%(asctime)s - %(name)s - %(levelname)s - %(message)s + handlers: + console: + class: logging.StreamHandler + level: DEBUG + formatter: simple + stream: ext://sys.stdout + loggers: + simpleExample: + level: DEBUG + handlers: [console] + propagate: no + root: + level: DEBUG + handlers: [console] + +For more information about logging using a dictionary, see +:ref:`logging-config-api`. + +What happens if no configuration is provided +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +If no logging configuration is provided, it is possible to have a situation +where a logging event needs to be output, but no handlers can be found to +output the event. The behaviour of the logging package in these +circumstances is dependent on the Python version. + +For versions of Python prior to 3.2, the behaviour is as follows: + +* If *logging.raiseExceptions* is *False* (production mode), the event is + silently dropped. + +* If *logging.raiseExceptions* is *True* (development mode), a message + 'No handlers could be found for logger X.Y.Z' is printed once. + +In Python 3.2 and later, the behaviour is as follows: + +* The event is output using a 'handler of last resort', stored in + ``logging.lastResort``. This internal handler is not associated with any + logger, and acts like a :class:`StreamHandler` which writes the event + description message to the current value of ``sys.stderr`` (therefore + respecting any redirections which may be in effect). No formatting is + done on the message - just the bare event description message is printed. + The handler's level is set to ``WARNING``, so all events at this and + greater severities will be output. + +To obtain the pre-3.2 behaviour, ``logging.lastResort`` can be set to *None*. + +.. _library-config: + +Configuring Logging for a Library +^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^^ + +When developing a library which uses logging, you should take care to +document how the library uses logging - for example, the names of loggers +used. Some consideration also needs to be given to its logging configuration. +If the using application does not use logging, and library code makes logging +calls, then (as described in the previous section) events of severity +``WARNING`` and greater will be printed to ``sys.stderr``. This is regarded as +the best default behaviour. + +If for some reason you *don't* want these messages printed in the absence of +any logging configuration, you can attach a do-nothing handler to the top-level +logger for your library. This avoids the message being printed, since a handler +will be always be found for the library's events: it just doesn't produce any +output. If the library user configures logging for application use, presumably +that configuration will add some handlers, and if levels are suitably +configured then logging calls made in library code will send output to those +handlers, as normal. + +A do-nothing handler is included in the logging package: :class:`NullHandler` +(since Python 3.1). An instance of this handler could be added to the top-level +logger of the logging namespace used by the library (*if* you want to prevent +your library's logged events being output to ``sys.stderr`` in the absence of +logging configuration). If all logging by a library *foo* is done using loggers +with names matching 'foo.x', 'foo.x.y', etc. then the code:: + + import logging + logging.getLogger('foo').addHandler(logging.NullHandler()) + +should have the desired effect. If an organisation produces a number of +libraries, then the logger name specified can be 'orgname.foo' rather than +just 'foo'. + +**PLEASE NOTE:** It is strongly advised that you *do not add any handlers other +than* :class:`NullHandler` *to your library's loggers*. This is because the +configuration of handlers is the prerogative of the application developer who +uses your library. The application developer knows their target audience and +what handlers are most appropriate for their application: if you add handlers +'under the hood', you might well interfere with their ability to carry out +unit tests and deliver logs which suit their requirements. + + +Logging Levels +-------------- + +The numeric values of logging levels are given in the following table. These are +primarily of interest if you want to define your own levels, and need them to +have specific values relative to the predefined levels. If you define a level +with the same numeric value, it overwrites the predefined value; the predefined +name is lost. + ++--------------+---------------+ +| Level | Numeric value | ++==============+===============+ +| ``CRITICAL`` | 50 | ++--------------+---------------+ +| ``ERROR`` | 40 | ++--------------+---------------+ +| ``WARNING`` | 30 | ++--------------+---------------+ +| ``INFO`` | 20 | ++--------------+---------------+ +| ``DEBUG`` | 10 | ++--------------+---------------+ +| ``NOTSET`` | 0 | ++--------------+---------------+ + +Levels can also be associated with loggers, being set either by the developer or +through loading a saved logging configuration. When a logging method is called +on a logger, the logger compares its own level with the level associated with +the method call. If the logger's level is higher than the method call's, no +logging message is actually generated. This is the basic mechanism controlling +the verbosity of logging output. + +Logging messages are encoded as instances of the :class:`LogRecord` class. When +a logger decides to actually log an event, a :class:`LogRecord` instance is +created from the logging message. + +Logging messages are subjected to a dispatch mechanism through the use of +:dfn:`handlers`, which are instances of subclasses of the :class:`Handler` +class. Handlers are responsible for ensuring that a logged message (in the form +of a :class:`LogRecord`) ends up in a particular location (or set of locations) +which is useful for the target audience for that message (such as end users, +support desk staff, system administrators, developers). Handlers are passed +:class:`LogRecord` instances intended for particular destinations. Each logger +can have zero, one or more handlers associated with it (via the +:meth:`addHandler` method of :class:`Logger`). In addition to any handlers +directly associated with a logger, *all handlers associated with all ancestors +of the logger* are called to dispatch the message (unless the *propagate* flag +for a logger is set to a false value, at which point the passing to ancestor +handlers stops). + +Just as for loggers, handlers can have levels associated with them. A handler's +level acts as a filter in the same way as a logger's level does. If a handler +decides to actually dispatch an event, the :meth:`emit` method is used to send +the message to its destination. Most user-defined subclasses of :class:`Handler` +will need to override this :meth:`emit`. + +.. _custom-levels: + +Custom Levels +^^^^^^^^^^^^^ + +Defining your own levels is possible, but should not be necessary, as the +existing levels have been chosen on the basis of practical experience. +However, if you are convinced that you need custom levels, great care should +be exercised when doing this, and it is possibly *a very bad idea to define +custom levels if you are developing a library*. That's because if multiple +library authors all define their own custom levels, there is a chance that +the logging output from such multiple libraries used together will be +difficult for the using developer to control and/or interpret, because a +given numeric value might mean different things for different libraries. + +.. _useful-handlers: + +Useful Handlers +--------------- + +In addition to the base :class:`Handler` class, many useful subclasses are +provided: + +#. :class:`StreamHandler` instances send messages to streams (file-like + objects). + +#. :class:`FileHandler` instances send messages to disk files. + +.. currentmodule:: logging.handlers + +#. :class:`BaseRotatingHandler` is the base class for handlers that + rotate log files at a certain point. It is not meant to be instantiated + directly. Instead, use :class:`RotatingFileHandler` or + :class:`TimedRotatingFileHandler`. + +#. :class:`RotatingFileHandler` instances send messages to disk + files, with support for maximum log file sizes and log file rotation. + +#. :class:`TimedRotatingFileHandler` instances send messages to + disk files, rotating the log file at certain timed intervals. + +#. :class:`SocketHandler` instances send messages to TCP/IP + sockets. + +#. :class:`DatagramHandler` instances send messages to UDP + sockets. + +#. :class:`SMTPHandler` instances send messages to a designated + email address. + +#. :class:`SysLogHandler` instances send messages to a Unix + syslog daemon, possibly on a remote machine. + +#. :class:`NTEventLogHandler` instances send messages to a + Windows NT/2000/XP event log. + +#. :class:`MemoryHandler` instances send messages to a buffer + in memory, which is flushed whenever specific criteria are met. + +#. :class:`HTTPHandler` instances send messages to an HTTP + server using either ``GET`` or ``POST`` semantics. + +#. :class:`WatchedFileHandler` instances watch the file they are + logging to. If the file changes, it is closed and reopened using the file + name. This handler is only useful on Unix-like systems; Windows does not + support the underlying mechanism used. + +#. :class:`QueueHandler` instances send messages to a queue, such as + those implemented in the :mod:`queue` or :mod:`multiprocessing` modules. + +.. currentmodule:: logging + +#. :class:`NullHandler` instances do nothing with error messages. They are used + by library developers who want to use logging, but want to avoid the 'No + handlers could be found for logger XXX' message which can be displayed if + the library user has not configured logging. See :ref:`library-config` for + more information. + +.. versionadded:: 3.1 + The :class:`NullHandler` class. + +.. versionadded:: 3.2 + The :class:`~logging.handlers.QueueHandler` class. + +The :class:`NullHandler`, :class:`StreamHandler` and :class:`FileHandler` +classes are defined in the core logging package. The other handlers are +defined in a sub- module, :mod:`logging.handlers`. (There is also another +sub-module, :mod:`logging.config`, for configuration functionality.) + +Logged messages are formatted for presentation through instances of the +:class:`Formatter` class. They are initialized with a format string suitable for +use with the % operator and a dictionary. + +For formatting multiple messages in a batch, instances of +:class:`BufferingFormatter` can be used. In addition to the format string (which +is applied to each message in the batch), there is provision for header and +trailer format strings. + +When filtering based on logger level and/or handler level is not enough, +instances of :class:`Filter` can be added to both :class:`Logger` and +:class:`Handler` instances (through their :meth:`addFilter` method). Before +deciding to process a message further, both loggers and handlers consult all +their filters for permission. If any filter returns a false value, the message +is not processed further. + +The basic :class:`Filter` functionality allows filtering by specific logger +name. If this feature is used, messages sent to the named logger and its +children are allowed through the filter, and all others dropped. + + +.. _logging-exceptions: + +Exceptions raised during logging +-------------------------------- + +The logging package is designed to swallow exceptions which occur while logging +in production. This is so that errors which occur while handling logging events +- such as logging misconfiguration, network or other similar errors - do not +cause the application using logging to terminate prematurely. + +:class:`SystemExit` and :class:`KeyboardInterrupt` exceptions are never +swallowed. Other exceptions which occur during the :meth:`emit` method of a +:class:`Handler` subclass are passed to its :meth:`handleError` method. + +The default implementation of :meth:`handleError` in :class:`Handler` checks +to see if a module-level variable, :data:`raiseExceptions`, is set. If set, a +traceback is printed to :data:`sys.stderr`. If not set, the exception is swallowed. + +**Note:** The default value of :data:`raiseExceptions` is ``True``. This is because +during development, you typically want to be notified of any exceptions that +occur. It's advised that you set :data:`raiseExceptions` to ``False`` for production +usage. + +.. currentmodule:: logging + +.. _arbitrary-object-messages: + +Using arbitrary objects as messages +----------------------------------- + +In the preceding sections and examples, it has been assumed that the message +passed when logging the event is a string. However, this is not the only +possibility. You can pass an arbitrary object as a message, and its +:meth:`__str__` method will be called when the logging system needs to convert +it to a string representation. In fact, if you want to, you can avoid +computing a string representation altogether - for example, the +:class:`SocketHandler` emits an event by pickling it and sending it over the +wire. + + +Optimization +------------ + +Formatting of message arguments is deferred until it cannot be avoided. +However, computing the arguments passed to the logging method can also be +expensive, and you may want to avoid doing it if the logger will just throw +away your event. To decide what to do, you can call the :meth:`isEnabledFor` +method which takes a level argument and returns true if the event would be +created by the Logger for that level of call. You can write code like this:: + + if logger.isEnabledFor(logging.DEBUG): + logger.debug('Message with %s, %s', expensive_func1(), + expensive_func2()) + +so that if the logger's threshold is set above ``DEBUG``, the calls to +:func:`expensive_func1` and :func:`expensive_func2` are never made. + +There are other optimizations which can be made for specific applications which +need more precise control over what logging information is collected. Here's a +list of things you can do to avoid processing during logging which you don't +need: + ++-----------------------------------------------+----------------------------------------+ +| What you don't want to collect | How to avoid collecting it | ++===============================================+========================================+ +| Information about where calls were made from. | Set ``logging._srcfile`` to ``None``. | ++-----------------------------------------------+----------------------------------------+ +| Threading information. | Set ``logging.logThreads`` to ``0``. | ++-----------------------------------------------+----------------------------------------+ +| Process information. | Set ``logging.logProcesses`` to ``0``. | ++-----------------------------------------------+----------------------------------------+ + +Also note that the core logging module only includes the basic handlers. If +you don't import :mod:`logging.handlers` and :mod:`logging.config`, they won't +take up any memory. + |