summaryrefslogtreecommitdiffstats
path: root/Doc/lib/libaudioop.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Doc/lib/libaudioop.tex')
-rw-r--r--Doc/lib/libaudioop.tex50
1 files changed, 25 insertions, 25 deletions
diff --git a/Doc/lib/libaudioop.tex b/Doc/lib/libaudioop.tex
index 69a3a83..887cac9 100644
--- a/Doc/lib/libaudioop.tex
+++ b/Doc/lib/libaudioop.tex
@@ -19,46 +19,46 @@ This exception is raised on all errors, such as unknown number of bytes
per sample, etc.
\end{excdesc}
-\begin{funcdesc}{add}{fragment1\, fragment2\, width}
+\begin{funcdesc}{add}{fragment1, fragment2, width}
Return a fragment which is the addition of the two samples passed as
parameters. \var{width} is the sample width in bytes, either
\code{1}, \code{2} or \code{4}. Both fragments should have the same
length.
\end{funcdesc}
-\begin{funcdesc}{adpcm2lin}{adpcmfragment\, width\, state}
+\begin{funcdesc}{adpcm2lin}{adpcmfragment, width, state}
Decode an Intel/DVI ADPCM coded fragment to a linear fragment. See
the description of \code{lin2adpcm} for details on ADPCM coding.
Return a tuple \code{(\var{sample}, \var{newstate})} where the sample
has the width specified in \var{width}.
\end{funcdesc}
-\begin{funcdesc}{adpcm32lin}{adpcmfragment\, width\, state}
+\begin{funcdesc}{adpcm32lin}{adpcmfragment, width, state}
Decode an alternative 3-bit ADPCM code. See \code{lin2adpcm3} for
details.
\end{funcdesc}
-\begin{funcdesc}{avg}{fragment\, width}
+\begin{funcdesc}{avg}{fragment, width}
Return the average over all samples in the fragment.
\end{funcdesc}
-\begin{funcdesc}{avgpp}{fragment\, width}
+\begin{funcdesc}{avgpp}{fragment, width}
Return the average peak-peak value over all samples in the fragment.
No filtering is done, so the usefulness of this routine is
questionable.
\end{funcdesc}
-\begin{funcdesc}{bias}{fragment\, width\, bias}
+\begin{funcdesc}{bias}{fragment, width, bias}
Return a fragment that is the original fragment with a bias added to
each sample.
\end{funcdesc}
-\begin{funcdesc}{cross}{fragment\, width}
+\begin{funcdesc}{cross}{fragment, width}
Return the number of zero crossings in the fragment passed as an
argument.
\end{funcdesc}
-\begin{funcdesc}{findfactor}{fragment\, reference}
+\begin{funcdesc}{findfactor}{fragment, reference}
Return a factor \var{F} such that
\code{rms(add(fragment, mul(reference, -F)))} is minimal, i.e.,
return the factor with which you should multiply \var{reference} to
@@ -68,7 +68,7 @@ should both contain 2-byte samples.
The time taken by this routine is proportional to \code{len(fragment)}.
\end{funcdesc}
-\begin{funcdesc}{findfit}{fragment\, reference}
+\begin{funcdesc}{findfit}{fragment, reference}
This routine (which only accepts 2-byte sample fragments)
Try to match \var{reference} as well as possible to a portion of
@@ -82,7 +82,7 @@ and \var{factor} is the (floating-point) factor as per
\code{findfactor}.
\end{funcdesc}
-\begin{funcdesc}{findmax}{fragment\, length}
+\begin{funcdesc}{findmax}{fragment, length}
Search \var{fragment} for a slice of length \var{length} samples (not
bytes!)\ with maximum energy, i.e., return \var{i} for which
\code{rms(fragment[i*2:(i+length)*2])} is maximal. The fragments
@@ -91,15 +91,15 @@ should both contain 2-byte samples.
The routine takes time proportional to \code{len(fragment)}.
\end{funcdesc}
-\begin{funcdesc}{getsample}{fragment\, width\, index}
+\begin{funcdesc}{getsample}{fragment, width, index}
Return the value of sample \var{index} from the fragment.
\end{funcdesc}
-\begin{funcdesc}{lin2lin}{fragment\, width\, newwidth}
+\begin{funcdesc}{lin2lin}{fragment, width, newwidth}
Convert samples between 1-, 2- and 4-byte formats.
\end{funcdesc}
-\begin{funcdesc}{lin2adpcm}{fragment\, width\, state}
+\begin{funcdesc}{lin2adpcm}{fragment, width, state}
Convert samples to 4 bit Intel/DVI ADPCM encoding. ADPCM coding is an
adaptive coding scheme, whereby each 4 bit number is the difference
between one sample and the next, divided by a (varying) step. The
@@ -113,41 +113,41 @@ initial call \code{None} can be passed as the state. \var{adpcmfrag}
is the ADPCM coded fragment packed 2 4-bit values per byte.
\end{funcdesc}
-\begin{funcdesc}{lin2adpcm3}{fragment\, width\, state}
+\begin{funcdesc}{lin2adpcm3}{fragment, width, state}
This is an alternative ADPCM coder that uses only 3 bits per sample.
It is not compatible with the Intel/DVI ADPCM coder and its output is
not packed (due to laziness on the side of the author). Its use is
discouraged.
\end{funcdesc}
-\begin{funcdesc}{lin2ulaw}{fragment\, width}
+\begin{funcdesc}{lin2ulaw}{fragment, width}
Convert samples in the audio fragment to U-LAW encoding and return
this as a Python string. U-LAW is an audio encoding format whereby
you get a dynamic range of about 14 bits using only 8 bit samples. It
is used by the Sun audio hardware, among others.
\end{funcdesc}
-\begin{funcdesc}{minmax}{fragment\, width}
+\begin{funcdesc}{minmax}{fragment, width}
Return a tuple consisting of the minimum and maximum values of all
samples in the sound fragment.
\end{funcdesc}
-\begin{funcdesc}{max}{fragment\, width}
+\begin{funcdesc}{max}{fragment, width}
Return the maximum of the \emph{absolute value} of all samples in a
fragment.
\end{funcdesc}
-\begin{funcdesc}{maxpp}{fragment\, width}
+\begin{funcdesc}{maxpp}{fragment, width}
Return the maximum peak-peak value in the sound fragment.
\end{funcdesc}
-\begin{funcdesc}{mul}{fragment\, width\, factor}
+\begin{funcdesc}{mul}{fragment, width, factor}
Return a fragment that has all samples in the original framgent
multiplied by the floating-point value \var{factor}. Overflow is
silently ignored.
\end{funcdesc}
-\begin{funcdesc}{ratecv}{fragment\, width\, nchannels\, inrate\, outrate\, state\optional{\, weightA\, weightB}}
+\begin{funcdesc}{ratecv}{fragment, width, nchannels, inrate, outrate, state\optional{, weightA, weightB}}
Convert the frame rate of the input fragment.
\code{State} is a tuple containing the state of the converter. The
@@ -158,11 +158,11 @@ The \code{weightA} and \code{weightB} arguments are parameters for a
simple digital filter and default to 1 and 0 respectively.
\end{funcdesc}
-\begin{funcdesc}{reverse}{fragment\, width}
+\begin{funcdesc}{reverse}{fragment, width}
Reverse the samples in a fragment and returns the modified fragment.
\end{funcdesc}
-\begin{funcdesc}{rms}{fragment\, width}
+\begin{funcdesc}{rms}{fragment, width}
Return the root-mean-square of the fragment, i.e.
\iftexi
the square root of the quotient of the sum of all squared sample value,
@@ -177,20 +177,20 @@ divided by the sumber of samples.
This is a measure of the power in an audio signal.
\end{funcdesc}
-\begin{funcdesc}{tomono}{fragment\, width\, lfactor\, rfactor}
+\begin{funcdesc}{tomono}{fragment, width, lfactor, rfactor}
Convert a stereo fragment to a mono fragment. The left channel is
multiplied by \var{lfactor} and the right channel by \var{rfactor}
before adding the two channels to give a mono signal.
\end{funcdesc}
-\begin{funcdesc}{tostereo}{fragment\, width\, lfactor\, rfactor}
+\begin{funcdesc}{tostereo}{fragment, width, lfactor, rfactor}
Generate a stereo fragment from a mono fragment. Each pair of samples
in the stereo fragment are computed from the mono sample, whereby left
channel samples are multiplied by \var{lfactor} and right channel
samples by \var{rfactor}.
\end{funcdesc}
-\begin{funcdesc}{ulaw2lin}{fragment\, width}
+\begin{funcdesc}{ulaw2lin}{fragment, width}
Convert sound fragments in ULAW encoding to linearly encoded sound
fragments. ULAW encoding always uses 8 bits samples, so \var{width}
refers only to the sample width of the output fragment here.