summaryrefslogtreecommitdiffstats
path: root/Doc/lib/librandom.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Doc/lib/librandom.tex')
-rw-r--r--Doc/lib/librandom.tex20
1 files changed, 10 insertions, 10 deletions
diff --git a/Doc/lib/librandom.tex b/Doc/lib/librandom.tex
index 63abbb3..1c39c15 100644
--- a/Doc/lib/librandom.tex
+++ b/Doc/lib/librandom.tex
@@ -1,9 +1,9 @@
\section{\module{random} ---
- Generate pseudo-random numbers with various distributions.}
-\declaremodule{standard}{random}
+ Generate pseudo-random numbers}
+\declaremodule{standard}{random}
\modulesynopsis{Generate pseudo-random numbers with various common
-distributions.}
+ distributions.}
This module implements pseudo-random number generators for various
@@ -13,10 +13,10 @@ distributions. For generating distribution of angles, the circular
uniform and von Mises distributions are available.
The module exports the following functions, which are exactly
-equivalent to those in the \module{whrandom} module:
+equivalent to those in the \refmodule{whrandom} module:
\function{choice()}, \function{randint()}, \function{random()} and
-\function{uniform()}. See the documentation for the \module{whrandom}
-module for these functions.
+\function{uniform()}. See the documentation for the
+\refmodule{whrandom} module for these functions.
The following functions specific to the \module{random} module are also
defined, and all return real values. Function parameters are named
@@ -34,7 +34,7 @@ Returned values will range between 0 and 1.
Circular uniform distribution. \var{mean} is the mean angle, and
\var{arc} is the range of the distribution, centered around the mean
angle. Both values must be expressed in radians, and can range
-between 0 and pi. Returned values will range between
+between 0 and \emph{pi}. Returned values will range between
\code{\var{mean} - \var{arc}/2} and \code{\var{mean} + \var{arc}/2}.
\end{funcdesc}
@@ -69,11 +69,11 @@ standard deviation.
\end{funcdesc}
\begin{funcdesc}{vonmisesvariate}{mu, kappa}
-\var{mu} is the mean angle, expressed in radians between 0 and 2*pi,
+\var{mu} is the mean angle, expressed in radians between 0 and 2*\emph{pi},
and \var{kappa} is the concentration parameter, which must be greater
than or equal to zero. If \var{kappa} is equal to zero, this
distribution reduces to a uniform random angle over the range 0 to
-2*pi.
+2*\emph{pi}.
\end{funcdesc}
\begin{funcdesc}{paretovariate}{alpha}
@@ -86,5 +86,5 @@ Weibull distribution. \var{alpha} is the scale parameter and
\end{funcdesc}
\begin{seealso}
-\seemodule{whrandom}{the standard Python random number generator}
+ \seemodule{whrandom}{the standard Python random number generator}
\end{seealso}