diff options
Diffstat (limited to 'Doc/librandom.tex')
-rw-r--r-- | Doc/librandom.tex | 86 |
1 files changed, 0 insertions, 86 deletions
diff --git a/Doc/librandom.tex b/Doc/librandom.tex deleted file mode 100644 index b76822e..0000000 --- a/Doc/librandom.tex +++ /dev/null @@ -1,86 +0,0 @@ -\section{Standard Module \module{random}} -\label{module-random} -\stmodindex{random} - -This module implements pseudo-random number generators for various -distributions: on the real line, there are functions to compute normal -or Gaussian, lognormal, negative exponential, gamma, and beta -distributions. For generating distribution of angles, the circular -uniform and von Mises distributions are available. - -The module exports the following functions, which are exactly -equivalent to those in the \module{whrandom} module: -\function{choice()}, \function{randint()}, \function{random()} and -\function{uniform()}. See the documentation for the \module{whrandom} -module for these functions. - -The following functions specific to the \module{random} module are also -defined, and all return real values. Function parameters are named -after the corresponding variables in the distribution's equation, as -used in common mathematical practice; most of these equations can be -found in any statistics text. - -\begin{funcdesc}{betavariate}{alpha, beta} -Beta distribution. Conditions on the parameters are -\code{\var{alpha} >- 1} and \code{\var{beta} > -1}. -Returned values will range between 0 and 1. -\end{funcdesc} - -\begin{funcdesc}{cunifvariate}{mean, arc} -Circular uniform distribution. \var{mean} is the mean angle, and -\var{arc} is the range of the distribution, centered around the mean -angle. Both values must be expressed in radians, and can range -between 0 and pi. Returned values will range between -\code{\var{mean} - \var{arc}/2} and \code{\var{mean} + \var{arc}/2}. -\end{funcdesc} - -\begin{funcdesc}{expovariate}{lambd} -Exponential distribution. \var{lambd} is 1.0 divided by the desired -mean. (The parameter would be called ``lambda'', but that is a -reserved word in Python.) Returned values will range from 0 to -positive infinity. -\end{funcdesc} - -\begin{funcdesc}{gamma}{alpha, beta} -Gamma distribution. (\emph{Not} the gamma function!) Conditions on -the parameters are \code{\var{alpha} > -1} and \code{\var{beta} > 0}. -\end{funcdesc} - -\begin{funcdesc}{gauss}{mu, sigma} -Gaussian distribution. \var{mu} is the mean, and \var{sigma} is the -standard deviation. This is slightly faster than the -\function{normalvariate()} function defined below. -\end{funcdesc} - -\begin{funcdesc}{lognormvariate}{mu, sigma} -Log normal distribution. If you take the natural logarithm of this -distribution, you'll get a normal distribution with mean \var{mu} and -standard deviation \var{sigma}. \var{mu} can have any value, and \var{sigma} -must be greater than zero. -\end{funcdesc} - -\begin{funcdesc}{normalvariate}{mu, sigma} -Normal distribution. \var{mu} is the mean, and \var{sigma} is the -standard deviation. -\end{funcdesc} - -\begin{funcdesc}{vonmisesvariate}{mu, kappa} -\var{mu} is the mean angle, expressed in radians between 0 and 2*pi, -and \var{kappa} is the concentration parameter, which must be greater -than or equal to zero. If \var{kappa} is equal to zero, this -distribution reduces to a uniform random angle over the range 0 to -2*pi. -\end{funcdesc} - -\begin{funcdesc}{paretovariate}{alpha} -Pareto distribution. \var{alpha} is the shape parameter. -\end{funcdesc} - -\begin{funcdesc}{weibullvariate}{alpha, beta} -Weibull distribution. \var{alpha} is the scale parameter and -\var{beta} is the shape parameter. -\end{funcdesc} - -\begin{seealso} -\seemodule{whrandom}{the standard Python random number generator} -\end{seealso} |