summaryrefslogtreecommitdiffstats
path: root/Doc/library/decimal.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Doc/library/decimal.rst')
-rw-r--r--Doc/library/decimal.rst110
1 files changed, 70 insertions, 40 deletions
diff --git a/Doc/library/decimal.rst b/Doc/library/decimal.rst
index 758dcce..9d5b32f 100644
--- a/Doc/library/decimal.rst
+++ b/Doc/library/decimal.rst
@@ -123,15 +123,14 @@ precision, rounding, or enabled traps::
>>> from decimal import *
>>> getcontext()
Context(prec=28, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
- capitals=1, flags=[], traps=[Overflow, DivisionByZero,
+ capitals=1, clamp=0, flags=[], traps=[Overflow, DivisionByZero,
InvalidOperation])
>>> getcontext().prec = 7 # Set a new precision
-Decimal instances can be constructed from integers, strings, or tuples. To
-create a Decimal from a :class:`float`, first convert it to a string. This
-serves as an explicit reminder of the details of the conversion (including
-representation error). Decimal numbers include special values such as
+Decimal instances can be constructed from integers, strings, floats, or tuples.
+Construction from an integer or a float performs an exact conversion of the
+value of that integer or float. Decimal numbers include special values such as
:const:`NaN` which stands for "Not a number", positive and negative
:const:`Infinity`, and :const:`-0`.
@@ -140,10 +139,12 @@ representation error). Decimal numbers include special values such as
Decimal('10')
>>> Decimal('3.14')
Decimal('3.14')
+ >>> Decimal(3.14)
+ Decimal('3.140000000000000124344978758017532527446746826171875')
>>> Decimal((0, (3, 1, 4), -2))
Decimal('3.14')
>>> Decimal(str(2.0 ** 0.5))
- Decimal('1.41421356237')
+ Decimal('1.4142135623730951')
>>> Decimal(2) ** Decimal('0.5')
Decimal('1.414213562373095048801688724')
>>> Decimal('NaN')
@@ -244,7 +245,7 @@ enabled:
>>> ExtendedContext
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
- capitals=1, flags=[], traps=[])
+ capitals=1, clamp=0, flags=[], traps=[])
>>> setcontext(ExtendedContext)
>>> Decimal(1) / Decimal(7)
Decimal('0.142857143')
@@ -269,7 +270,7 @@ using the :meth:`clear_flags` method. ::
Decimal('3.14159292')
>>> getcontext()
Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999,
- capitals=1, flags=[Inexact, Rounded], traps=[])
+ capitals=1, clamp=0, flags=[Inexact, Rounded], traps=[])
The *flags* entry shows that the rational approximation to :const:`Pi` was
rounded (digits beyond the context precision were thrown away) and that the
@@ -309,7 +310,7 @@ Decimal objects
Construct a new :class:`Decimal` object based from *value*.
- *value* can be an integer, string, tuple, or another :class:`Decimal`
+ *value* can be an integer, string, tuple, :class:`float`, or another :class:`Decimal`
object. If no *value* is given, returns ``Decimal('0')``. If *value* is a
string, it should conform to the decimal numeric string syntax after leading
and trailing whitespace characters are removed::
@@ -335,6 +336,12 @@ Decimal objects
digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))``
returns ``Decimal('1.414')``.
+ If *value* is a :class:`float`, the binary floating point value is losslessly
+ converted to its exact decimal equivalent. This conversion can often require
+ 53 or more digits of precision. For example, ``Decimal(float('1.1'))``
+ converts to
+ ``Decimal('1.100000000000000088817841970012523233890533447265625')``.
+
The *context* precision does not affect how many digits are stored. That is
determined exclusively by the number of digits in *value*. For example,
``Decimal('3.00000')`` records all five zeros even if the context precision is
@@ -347,6 +354,10 @@ Decimal objects
Once constructed, :class:`Decimal` objects are immutable.
+ .. versionchanged:: 3.2
+ The argument to the constructor is now permitted to be a :class:`float`
+ instance.
+
Decimal floating point objects share many properties with the other built-in
numeric types such as :class:`float` and :class:`int`. All of the usual math
operations and special methods apply. Likewise, decimal objects can be
@@ -354,6 +365,18 @@ Decimal objects
compared, sorted, and coerced to another type (such as :class:`float` or
:class:`int`).
+ Decimal objects cannot generally be combined with floats or
+ instances of :class:`fractions.Fraction` in arithmetic operations:
+ an attempt to add a :class:`Decimal` to a :class:`float`, for
+ example, will raise a :exc:`TypeError`. However, it is possible to
+ use Python's comparison operators to compare a :class:`Decimal`
+ instance ``x`` with another number ``y``. This avoids confusing results
+ when doing equality comparisons between numbers of different types.
+
+ .. versionchanged:: 3.2
+ Mixed-type comparisons between :class:`Decimal` instances and other
+ numeric types are now fully supported.
+
In addition to the standard numeric properties, decimal floating point
objects also have a number of specialized methods:
@@ -468,6 +491,9 @@ Decimal objects
`0x1.999999999999ap-4`. That equivalent value in decimal is
`0.1000000000000000055511151231257827021181583404541015625`.
+ .. note:: From Python 3.2 onwards, a :class:`Decimal` instance
+ can also be constructed directly from a :class:`float`.
+
.. doctest::
>>> Decimal.from_float(0.1)
@@ -861,7 +887,7 @@ In addition to the three supplied contexts, new contexts can be created with the
:class:`Context` constructor.
-.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=1)
+.. class:: Context(prec=None, rounding=None, traps=None, flags=None, Emin=None, Emax=None, capitals=None, clamp=None)
Creates a new context. If a field is not specified or is :const:`None`, the
default values are copied from the :const:`DefaultContext`. If the *flags*
@@ -892,13 +918,33 @@ In addition to the three supplied contexts, new contexts can be created with the
:const:`1`, exponents are printed with a capital :const:`E`; otherwise, a
lowercase :const:`e` is used: :const:`Decimal('6.02e+23')`.
+ The *clamp* field is either :const:`0` (the default) or :const:`1`.
+ If set to :const:`1`, the exponent ``e`` of a :class:`Decimal`
+ instance representable in this context is strictly limited to the
+ range ``Emin - prec + 1 <= e <= Emax - prec + 1``. If *clamp* is
+ :const:`0` then a weaker condition holds: the adjusted exponent of
+ the :class:`Decimal` instance is at most ``Emax``. When *clamp* is
+ :const:`1`, a large normal number will, where possible, have its
+ exponent reduced and a corresponding number of zeros added to its
+ coefficient, in order to fit the exponent constraints; this
+ preserves the value of the number but loses information about
+ significant trailing zeros. For example::
+
+ >>> Context(prec=6, Emax=999, clamp=1).create_decimal('1.23e999')
+ Decimal('1.23000E+999')
+
+ A *clamp* value of :const:`1` allows compatibility with the
+ fixed-width decimal interchange formats specified in IEEE 754.
The :class:`Context` class defines several general purpose methods as well as
a large number of methods for doing arithmetic directly in a given context.
In addition, for each of the :class:`Decimal` methods described above (with
the exception of the :meth:`adjusted` and :meth:`as_tuple` methods) there is
- a corresponding :class:`Context` method. For example, ``C.exp(x)`` is
- equivalent to ``x.exp(context=C)``.
+ a corresponding :class:`Context` method. For example, for a :class:`Context`
+ instance ``C`` and :class:`Decimal` instance ``x``, ``C.exp(x)`` is
+ equivalent to ``x.exp(context=C)``. Each :class:`Context` method accepts a
+ Python integer (an instance of :class:`int`) anywhere that a
+ Decimal instance is accepted.
.. method:: clear_flags()
@@ -963,7 +1009,6 @@ In addition to the three supplied contexts, new contexts can be created with the
value for subnormal results. When underflow occurs, the exponent is set
to :const:`Etiny`.
-
.. method:: Etop()
Returns a value equal to ``Emax - prec + 1``.
@@ -1612,7 +1657,8 @@ to work with the :class:`Decimal` class::
build(trailneg)
for i in range(places):
build(next() if digits else '0')
- build(dp)
+ if places:
+ build(dp)
if not digits:
build('0')
i = 0
@@ -1672,6 +1718,9 @@ to work with the :class:`Decimal` class::
def cos(x):
"""Return the cosine of x as measured in radians.
+ The Taylor series approximation works best for a small value of x.
+ For larger values, first compute x = x % (2 * pi).
+
>>> print(cos(Decimal('0.5')))
0.8775825618903727161162815826
>>> print(cos(0.5))
@@ -1695,6 +1744,9 @@ to work with the :class:`Decimal` class::
def sin(x):
"""Return the sine of x as measured in radians.
+ The Taylor series approximation works best for a small value of x.
+ For larger values, first compute x = x % (2 * pi).
+
>>> print(sin(Decimal('0.5')))
0.4794255386042030002732879352
>>> print(sin(0.5))
@@ -1821,37 +1873,15 @@ value unchanged:
Q. Is there a way to convert a regular float to a :class:`Decimal`?
-A. Yes, all binary floating point numbers can be exactly expressed as a
-Decimal. An exact conversion may take more precision than intuition would
-suggest, so we trap :const:`Inexact` to signal a need for more precision:
-
-.. testcode::
-
- def float_to_decimal(f):
- "Convert a floating point number to a Decimal with no loss of information"
- n, d = f.as_integer_ratio()
- with localcontext() as ctx:
- ctx.traps[Inexact] = True
- while True:
- try:
- return Decimal(n) / Decimal(d)
- except Inexact:
- ctx.prec += 1
+A. Yes, any binary floating point number can be exactly expressed as a
+Decimal though an exact conversion may take more precision than intuition would
+suggest:
.. doctest::
- >>> float_to_decimal(math.pi)
+ >>> Decimal(math.pi)
Decimal('3.141592653589793115997963468544185161590576171875')
-Q. Why isn't the :func:`float_to_decimal` routine included in the module?
-
-A. There is some question about whether it is advisable to mix binary and
-decimal floating point. Also, its use requires some care to avoid the
-representation issues associated with binary floating point:
-
- >>> float_to_decimal(1.1)
- Decimal('1.100000000000000088817841970012523233890533447265625')
-
Q. Within a complex calculation, how can I make sure that I haven't gotten a
spurious result because of insufficient precision or rounding anomalies.