summaryrefslogtreecommitdiffstats
path: root/Doc/library/decimal.rst
diff options
context:
space:
mode:
Diffstat (limited to 'Doc/library/decimal.rst')
-rw-r--r--Doc/library/decimal.rst20
1 files changed, 20 insertions, 0 deletions
diff --git a/Doc/library/decimal.rst b/Doc/library/decimal.rst
index f2a677e..bcae55e 100644
--- a/Doc/library/decimal.rst
+++ b/Doc/library/decimal.rst
@@ -2115,3 +2115,23 @@ Alternatively, inputs can be rounded upon creation using the
>>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678')
Decimal('1.2345')
+
+Q. Is the CPython implementation fast for large numbers?
+
+A. Yes. In the CPython and PyPy3 implementations, the C/CFFI versions of
+the decimal module integrate the high speed `libmpdec
+<https://www.bytereef.org/mpdecimal/doc/libmpdec/index.html>`_ library for
+arbitrary precision correctly-rounded decimal floating point arithmetic.
+``libmpdec`` uses `Karatsuba multiplication
+<https://en.wikipedia.org/wiki/Karatsuba_algorithm>`_
+for medium-sized numbers and the `Number Theoretic Transform
+<https://en.wikipedia.org/wiki/Discrete_Fourier_transform_(general)#Number-theoretic_transform>`_
+for very large numbers. However, to realize this performance gain, the
+context needs to be set for unrounded calculations.
+
+ >>> c = getcontext()
+ >>> c.prec = MAX_PREC
+ >>> c.Emax = MAX_EMAX
+ >>> c.Emin = MIN_EMIN
+
+.. versionadded:: 3.3 \ No newline at end of file