diff options
Diffstat (limited to 'Doc/library/fractions.rst')
-rw-r--r-- | Doc/library/fractions.rst | 68 |
1 files changed, 33 insertions, 35 deletions
diff --git a/Doc/library/fractions.rst b/Doc/library/fractions.rst index 299e154..dbbde4a 100644 --- a/Doc/library/fractions.rst +++ b/Doc/library/fractions.rst @@ -30,60 +30,58 @@ Rational number class. :class:`numbers.Rational` and is immutable and hashable. -.. method:: Fraction.from_float(flt) + .. method:: from_float(flt) - This classmethod constructs a :class:`Fraction` representing the - exact value of *flt*, which must be a :class:`float`. Beware that - ``Fraction.from_float(0.3)`` is not the same value as ``Rational(3, - 10)`` + This classmethod constructs a :class:`Fraction` representing the exact + value of *flt*, which must be a :class:`float`. Beware that + ``Fraction.from_float(0.3)`` is not the same value as ``Rational(3, 10)`` -.. method:: Fraction.from_decimal(dec) + .. method:: from_decimal(dec) - This classmethod constructs a :class:`Fraction` representing the - exact value of *dec*, which must be a - :class:`decimal.Decimal`. + This classmethod constructs a :class:`Fraction` representing the exact + value of *dec*, which must be a :class:`decimal.Decimal`. -.. method:: Fraction.limit_denominator(max_denominator=1000000) + .. method:: limit_denominator(max_denominator=1000000) - Finds and returns the closest :class:`Fraction` to ``self`` that - has denominator at most max_denominator. This method is useful for - finding rational approximations to a given floating-point number: + Finds and returns the closest :class:`Fraction` to ``self`` that has + denominator at most max_denominator. This method is useful for finding + rational approximations to a given floating-point number: - >>> from fractions import Fraction - >>> Fraction('3.1415926535897932').limit_denominator(1000) - Fraction(355L, 113L) + >>> from fractions import Fraction + >>> Fraction('3.1415926535897932').limit_denominator(1000) + Fraction(355L, 113L) - or for recovering a rational number that's represented as a float: + or for recovering a rational number that's represented as a float: - >>> from math import pi, cos - >>> Fraction.from_float(cos(pi/3)) - Fraction(4503599627370497L, 9007199254740992L) - >>> Fraction.from_float(cos(pi/3)).limit_denominator() - Fraction(1L, 2L) + >>> from math import pi, cos + >>> Fraction.from_float(cos(pi/3)) + Fraction(4503599627370497L, 9007199254740992L) + >>> Fraction.from_float(cos(pi/3)).limit_denominator() + Fraction(1L, 2L) -.. method:: Fraction.__floor__() + .. method:: __floor__() - Returns the greatest :class:`int` ``<= self``. Will be accessible - through :func:`math.floor` in Py3k. + Returns the greatest :class:`int` ``<= self``. Will be accessible through + :func:`math.floor` in Py3k. -.. method:: Fraction.__ceil__() + .. method:: __ceil__() - Returns the least :class:`int` ``>= self``. Will be accessible - through :func:`math.ceil` in Py3k. + Returns the least :class:`int` ``>= self``. Will be accessible through + :func:`math.ceil` in Py3k. -.. method:: Fraction.__round__() - Fraction.__round__(ndigits) + .. method:: __round__() + __round__(ndigits) - The first version returns the nearest :class:`int` to ``self``, - rounding half to even. The second version rounds ``self`` to the - nearest multiple of ``Fraction(1, 10**ndigits)`` (logically, if - ``ndigits`` is negative), again rounding half toward even. Will be - accessible through :func:`round` in Py3k. + The first version returns the nearest :class:`int` to ``self``, rounding + half to even. The second version rounds ``self`` to the nearest multiple + of ``Fraction(1, 10**ndigits)`` (logically, if ``ndigits`` is negative), + again rounding half toward even. Will be accessible through :func:`round` + in Py3k. .. seealso:: |