diff options
Diffstat (limited to 'Doc/library/rational.rst')
-rw-r--r-- | Doc/library/rational.rst | 65 |
1 files changed, 65 insertions, 0 deletions
diff --git a/Doc/library/rational.rst b/Doc/library/rational.rst new file mode 100644 index 0000000..dd18305 --- /dev/null +++ b/Doc/library/rational.rst @@ -0,0 +1,65 @@ + +:mod:`rational` --- Rational numbers +==================================== + +.. module:: rational + :synopsis: Rational numbers. +.. moduleauthor:: Jeffrey Yasskin <jyasskin at gmail.com> +.. sectionauthor:: Jeffrey Yasskin <jyasskin at gmail.com> +.. versionadded:: 2.6 + + +The :mod:`rational` module defines an immutable, infinite-precision +Rational number class. + + +.. class:: Rational(numerator=0, denominator=1) + Rational(other_rational) + + The first version requires that *numerator* and *denominator* are + instances of :class:`numbers.Integral` and returns a new + ``Rational`` representing ``numerator/denominator``. If + *denominator* is :const:`0`, raises a :exc:`ZeroDivisionError`. The + second version requires that *other_rational* is an instance of + :class:`numbers.Rational` and returns an instance of + :class:`Rational` with the same value. + + Implements all of the methods and operations from + :class:`numbers.Rational` and is hashable. + + +.. method:: Rational.from_float(flt) + + This classmethod constructs a :class:`Rational` representing the + exact value of *flt*, which must be a :class:`float`. Beware that + ``Rational.from_float(0.3)`` is not the same value as ``Rational(3, + 10)`` + + +.. method:: Rational.__floor__() + + Returns the greatest :class:`int` ``<= self``. Will be accessible + through :func:`math.floor` in Py3k. + + +.. method:: Rational.__ceil__() + + Returns the least :class:`int` ``>= self``. Will be accessible + through :func:`math.ceil` in Py3k. + + +.. method:: Rational.__round__() + Rational.__round__(ndigits) + + The first version returns the nearest :class:`int` to ``self``, + rounding half to even. The second version rounds ``self`` to the + nearest multiple of ``Rational(1, 10**ndigits)`` (logically, if + ``ndigits`` is negative), again rounding half toward even. Will be + accessible through :func:`round` in Py3k. + + +.. seealso:: + + Module :mod:`numbers` + The abstract base classes making up the numeric tower. + |