diff options
Diffstat (limited to 'Doc/library')
-rw-r--r-- | Doc/library/decimal.rst | 182 | ||||
-rw-r--r-- | Doc/library/fractions.rst | 18 | ||||
-rw-r--r-- | Doc/library/os.rst | 2 |
3 files changed, 110 insertions, 92 deletions
diff --git a/Doc/library/decimal.rst b/Doc/library/decimal.rst index 422436f..afba964 100644 --- a/Doc/library/decimal.rst +++ b/Doc/library/decimal.rst @@ -46,10 +46,10 @@ arithmetic. It offers several advantages over the :class:`float` datatype: >>> getcontext().prec = 6 >>> Decimal(1) / Decimal(7) - Decimal("0.142857") + Decimal('0.142857') >>> getcontext().prec = 28 >>> Decimal(1) / Decimal(7) - Decimal("0.1428571428571428571428571429") + Decimal('0.1428571428571428571428571429') * Both binary and decimal floating point are implemented in terms of published standards. While the built-in float type exposes only a modest portion of its @@ -128,19 +128,19 @@ representation error). Decimal numbers include special values such as :const:`Infinity`, and :const:`-0`. :: >>> Decimal(10) - Decimal("10") - >>> Decimal("3.14") - Decimal("3.14") + Decimal('10') + >>> Decimal('3.14') + Decimal('3.14') >>> Decimal((0, (3, 1, 4), -2)) - Decimal("3.14") + Decimal('3.14') >>> Decimal(str(2.0 ** 0.5)) - Decimal("1.41421356237") - >>> Decimal(2) ** Decimal("0.5") - Decimal("1.414213562373095048801688724") - >>> Decimal("NaN") - Decimal("NaN") - >>> Decimal("-Infinity") - Decimal("-Infinity") + Decimal('1.41421356237') + >>> Decimal(2) ** Decimal('0.5') + Decimal('1.414213562373095048801688724') + >>> Decimal('NaN') + Decimal('NaN') + >>> Decimal('-Infinity') + Decimal('-Infinity') The significance of a new Decimal is determined solely by the number of digits input. Context precision and rounding only come into play during arithmetic @@ -148,28 +148,28 @@ operations. :: >>> getcontext().prec = 6 >>> Decimal('3.0') - Decimal("3.0") + Decimal('3.0') >>> Decimal('3.1415926535') - Decimal("3.1415926535") + Decimal('3.1415926535') >>> Decimal('3.1415926535') + Decimal('2.7182818285') - Decimal("5.85987") + Decimal('5.85987') >>> getcontext().rounding = ROUND_UP >>> Decimal('3.1415926535') + Decimal('2.7182818285') - Decimal("5.85988") + Decimal('5.85988') Decimals interact well with much of the rest of Python. Here is a small decimal floating point flying circus:: >>> data = map(Decimal, '1.34 1.87 3.45 2.35 1.00 0.03 9.25'.split()) >>> max(data) - Decimal("9.25") + Decimal('9.25') >>> min(data) - Decimal("0.03") + Decimal('0.03') >>> sorted(data) - [Decimal("0.03"), Decimal("1.00"), Decimal("1.34"), Decimal("1.87"), - Decimal("2.35"), Decimal("3.45"), Decimal("9.25")] + [Decimal('0.03'), Decimal('1.00'), Decimal('1.34'), Decimal('1.87'), + Decimal('2.35'), Decimal('3.45'), Decimal('9.25')] >>> sum(data) - Decimal("19.29") + Decimal('19.29') >>> a,b,c = data[:3] >>> str(a) '1.34' @@ -180,31 +180,31 @@ floating point flying circus:: >>> int(a) 1 >>> a * 5 - Decimal("6.70") + Decimal('6.70') >>> a * b - Decimal("2.5058") + Decimal('2.5058') >>> c % a - Decimal("0.77") + Decimal('0.77') And some mathematical functions are also available to Decimal:: >>> Decimal(2).sqrt() - Decimal("1.414213562373095048801688724") + Decimal('1.414213562373095048801688724') >>> Decimal(1).exp() - Decimal("2.718281828459045235360287471") - >>> Decimal("10").ln() - Decimal("2.302585092994045684017991455") - >>> Decimal("10").log10() - Decimal("1") + Decimal('2.718281828459045235360287471') + >>> Decimal('10').ln() + Decimal('2.302585092994045684017991455') + >>> Decimal('10').log10() + Decimal('1') The :meth:`quantize` method rounds a number to a fixed exponent. This method is useful for monetary applications that often round results to a fixed number of places:: >>> Decimal('7.325').quantize(Decimal('.01'), rounding=ROUND_DOWN) - Decimal("7.32") + Decimal('7.32') >>> Decimal('7.325').quantize(Decimal('1.'), rounding=ROUND_UP) - Decimal("8") + Decimal('8') As shown above, the :func:`getcontext` function accesses the current context and allows the settings to be changed. This approach meets the needs of most @@ -222,16 +222,16 @@ enabled:: >>> myothercontext = Context(prec=60, rounding=ROUND_HALF_DOWN) >>> setcontext(myothercontext) >>> Decimal(1) / Decimal(7) - Decimal("0.142857142857142857142857142857142857142857142857142857142857") + Decimal('0.142857142857142857142857142857142857142857142857142857142857') >>> ExtendedContext Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999, capitals=1, flags=[], traps=[]) >>> setcontext(ExtendedContext) >>> Decimal(1) / Decimal(7) - Decimal("0.142857143") + Decimal('0.142857143') >>> Decimal(42) / Decimal(0) - Decimal("Infinity") + Decimal('Infinity') >>> setcontext(BasicContext) >>> Decimal(42) / Decimal(0) @@ -248,7 +248,7 @@ using the :meth:`clear_flags` method. :: >>> setcontext(ExtendedContext) >>> getcontext().clear_flags() >>> Decimal(355) / Decimal(113) - Decimal("3.14159292") + Decimal('3.14159292') >>> getcontext() Context(prec=9, rounding=ROUND_HALF_EVEN, Emin=-999999999, Emax=999999999, capitals=1, flags=[Inexact, Rounded], traps=[]) @@ -261,7 +261,7 @@ Individual traps are set using the dictionary in the :attr:`traps` field of a context:: >>> Decimal(1) / Decimal(0) - Decimal("Infinity") + Decimal('Infinity') >>> getcontext().traps[DivisionByZero] = 1 >>> Decimal(1) / Decimal(0) Traceback (most recent call last): @@ -289,7 +289,7 @@ Decimal objects Construct a new :class:`Decimal` object based from *value*. *value* can be an integer, string, tuple, or another :class:`Decimal` - object. If no *value* is given, returns ``Decimal("0")``. If *value* is a + object. If no *value* is given, returns ``Decimal('0')``. If *value* is a string, it should conform to the decimal numeric string syntax after leading and trailing whitespace characters are removed:: @@ -307,11 +307,11 @@ Decimal objects If *value* is a :class:`tuple`, it should have three components, a sign (:const:`0` for positive or :const:`1` for negative), a :class:`tuple` of digits, and an integer exponent. For example, ``Decimal((0, (1, 4, 1, 4), -3))`` - returns ``Decimal("1.414")``. + returns ``Decimal('1.414')``. The *context* precision does not affect how many digits are stored. That is determined exclusively by the number of digits in *value*. For example, - ``Decimal("3.00000")`` records all five zeros even if the context precision is + ``Decimal('3.00000')`` records all five zeros even if the context precision is only three. The purpose of the *context* argument is determining what to do if *value* is a @@ -338,7 +338,7 @@ also have a number of specialized methods: .. method:: Decimal.adjusted() Return the adjusted exponent after shifting out the coefficient's rightmost - digits until only the lead digit remains: ``Decimal("321e+5").adjusted()`` + digits until only the lead digit remains: ``Decimal('321e+5').adjusted()`` returns seven. Used for determining the position of the most significant digit with respect to the decimal point. @@ -367,10 +367,10 @@ also have a number of specialized methods: instance rather than an integer, and if either operand is a NaN then the result is a NaN:: - a or b is a NaN ==> Decimal("NaN") - a < b ==> Decimal("-1") - a == b ==> Decimal("0") - a > b ==> Decimal("1") + a or b is a NaN ==> Decimal('NaN') + a < b ==> Decimal('-1') + a == b ==> Decimal('0') + a > b ==> Decimal('1') .. method:: Decimal.compare_signal(other[, context]) @@ -389,14 +389,14 @@ also have a number of specialized methods: value but different representations compare unequal in this ordering:: - >>> Decimal("12.0").compare_total(Decimal("12")) - Decimal("-1") + >>> Decimal('12.0').compare_total(Decimal('12')) + Decimal('-1') Quiet and signaling NaNs are also included in the total ordering. - The result of this function is ``Decimal("0")`` if both operands - have the same representation, ``Decimal("-1")`` if the first + The result of this function is ``Decimal('0')`` if both operands + have the same representation, ``Decimal('-1')`` if the first operand is lower in the total order than the second, and - ``Decimal("1")`` if the first operand is higher in the total order + ``Decimal('1')`` if the first operand is higher in the total order than the second operand. See the specification for details of the total order. @@ -428,8 +428,8 @@ also have a number of specialized methods: Return a copy of the first operand with the sign set to be the same as the sign of the second operand. For example:: - >>> Decimal("2.3").copy_sign(Decimal("-1.5")) - Decimal("-2.3") + >>> Decimal('2.3').copy_sign(Decimal('-1.5')) + Decimal('-2.3') This operation is unaffected by the context and is quiet: no flags are changed and no rounding is performed. @@ -442,9 +442,9 @@ also have a number of specialized methods: :const:`ROUND_HALF_EVEN` rounding mode. >>> Decimal(1).exp() - Decimal("2.718281828459045235360287471") + Decimal('2.718281828459045235360287471') >>> Decimal(321).exp() - Decimal("2.561702493119680037517373933E+139") + Decimal('2.561702493119680037517373933E+139') .. method:: Decimal.fma(other, third[, context]) @@ -453,7 +453,7 @@ also have a number of specialized methods: the intermediate product self*other. >>> Decimal(2).fma(3, 5) - Decimal("11") + Decimal('11') .. method:: Decimal.is_canonical() @@ -537,9 +537,9 @@ also have a number of specialized methods: For a nonzero number, return the adjusted exponent of its operand as a :class:`Decimal` instance. If the operand is a zero then - ``Decimal("-Infinity")`` is returned and the + ``Decimal('-Infinity')`` is returned and the :const:`DivisionByZero` flag is raised. If the operand is an - infinity then ``Decimal("Infinity")`` is returned. + infinity then ``Decimal('Infinity')`` is returned. .. method:: Decimal.logical_and(other[, context]) @@ -620,10 +620,10 @@ also have a number of specialized methods: .. method:: Decimal.normalize([context]) Normalize the number by stripping the rightmost trailing zeros and converting - any result equal to :const:`Decimal("0")` to :const:`Decimal("0e0")`. Used for + any result equal to :const:`Decimal('0')` to :const:`Decimal('0e0')`. Used for producing canonical values for members of an equivalence class. For example, - ``Decimal("32.100")`` and ``Decimal("0.321000e+2")`` both normalize to the - equivalent value ``Decimal("32.1")``. + ``Decimal('32.100')`` and ``Decimal('0.321000e+2')`` both normalize to the + equivalent value ``Decimal('32.1')``. .. method:: Decimal.number_class([context]) @@ -648,8 +648,8 @@ also have a number of specialized methods: Return a value equal to the first operand after rounding and having the exponent of the second operand. - >>> Decimal("1.41421356").quantize(Decimal("1.000")) - Decimal("1.414") + >>> Decimal('1.41421356').quantize(Decimal('1.000')) + Decimal('1.414') Unlike other operations, if the length of the coefficient after the quantize operation would be greater than precision, then an @@ -680,7 +680,7 @@ also have a number of specialized methods: Compute the modulo as either a positive or negative value depending on which is closest to zero. For instance, ``Decimal(10).remainder_near(6)`` returns - ``Decimal("-2")`` which is closer to zero than ``Decimal("4")``. + ``Decimal('-2')`` which is closer to zero than ``Decimal('4')``. If both are equally close, the one chosen will have the same sign as *self*. @@ -732,7 +732,7 @@ also have a number of specialized methods: Engineering notation has an exponent which is a multiple of 3, so there are up to 3 digits left of the decimal place. For example, converts - ``Decimal('123E+1')`` to ``Decimal("1.23E+3")`` + ``Decimal('123E+1')`` to ``Decimal('1.23E+3')`` .. method:: Decimal.to_integral([rounding[, context]]) @@ -937,10 +937,10 @@ method. For example, ``C.exp(x)`` is equivalent to change the result:: >>> getcontext().prec = 3 - >>> Decimal("3.4445") + Decimal("1.0023") - Decimal("4.45") - >>> Decimal("3.4445") + Decimal(0) + Decimal("1.0023") - Decimal("4.44") + >>> Decimal('3.4445') + Decimal('1.0023') + Decimal('4.45') + >>> Decimal('3.4445') + Decimal(0) + Decimal('1.0023') + Decimal('4.44') This method implements the to-number operation of the IBM specification. If the argument is a string, no leading or trailing @@ -1195,15 +1195,15 @@ properties of addition:: >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111') >>> (u + v) + w - Decimal("9.5111111") + Decimal('9.5111111') >>> u + (v + w) - Decimal("10") + Decimal('10') >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003') >>> (u*v) + (u*w) - Decimal("0.01") + Decimal('0.01') >>> u * (v+w) - Decimal("0.0060000") + Decimal('0.0060000') The :mod:`decimal` module makes it possible to restore the identities by expanding the precision sufficiently to avoid loss of significance:: @@ -1211,15 +1211,15 @@ expanding the precision sufficiently to avoid loss of significance:: >>> getcontext().prec = 20 >>> u, v, w = Decimal(11111113), Decimal(-11111111), Decimal('7.51111111') >>> (u + v) + w - Decimal("9.51111111") + Decimal('9.51111111') >>> u + (v + w) - Decimal("9.51111111") + Decimal('9.51111111') >>> >>> u, v, w = Decimal(20000), Decimal(-6), Decimal('6.0000003') >>> (u*v) + (u*w) - Decimal("0.0060000") + Decimal('0.0060000') >>> u * (v+w) - Decimal("0.0060000") + Decimal('0.0060000') Special values @@ -1275,7 +1275,7 @@ normalized floating point representations, it is not immediately obvious that the following calculation returns a value equal to zero:: >>> 1 / Decimal('Infinity') - Decimal("0E-1000000026") + Decimal('0E-1000000026') .. %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%% @@ -1486,7 +1486,7 @@ minimize typing when using the interactive interpreter? >>> D = decimal.Decimal >>> D('1.23') + D('3.45') - Decimal("4.68") + Decimal('4.68') Q. In a fixed-point application with two decimal places, some inputs have many places and need to be rounded. Others are not supposed to have excess digits @@ -1498,14 +1498,14 @@ the :const:`Inexact` trap is set, it is also useful for validation:: >>> TWOPLACES = Decimal(10) ** -2 # same as Decimal('0.01') >>> # Round to two places - >>> Decimal("3.214").quantize(TWOPLACES) - Decimal("3.21") + >>> Decimal('3.214').quantize(TWOPLACES) + Decimal('3.21') >>> # Validate that a number does not exceed two places - >>> Decimal("3.21").quantize(TWOPLACES, context=Context(traps=[Inexact])) - Decimal("3.21") + >>> Decimal('3.21').quantize(TWOPLACES, context=Context(traps=[Inexact])) + Decimal('3.21') - >>> Decimal("3.214").quantize(TWOPLACES, context=Context(traps=[Inexact])) + >>> Decimal('3.214').quantize(TWOPLACES, context=Context(traps=[Inexact])) Traceback (most recent call last): ... Inexact: Changed in rounding @@ -1527,7 +1527,7 @@ representative:: >>> values = map(Decimal, '200 200.000 2E2 .02E+4'.split()) >>> [v.normalize() for v in values] - [Decimal("2E+2"), Decimal("2E+2"), Decimal("2E+2"), Decimal("2E+2")] + [Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2'), Decimal('2E+2')] Q. Some decimal values always print with exponential notation. Is there a way to get a non-exponential representation? @@ -1555,7 +1555,7 @@ suggest, so we trap :const:`Inexact` to signal a need for more precision:: ctx.prec += 1 >>> float_to_decimal(math.pi) - Decimal("3.141592653589793115997963468544185161590576171875") + Decimal('3.141592653589793115997963468544185161590576171875') Q. Why isn't the :func:`float_to_decimal` routine included in the module? @@ -1564,7 +1564,7 @@ decimal floating point. Also, its use requires some care to avoid the representation issues associated with binary floating point:: >>> float_to_decimal(1.1) - Decimal("1.100000000000000088817841970012523233890533447265625") + Decimal('1.100000000000000088817841970012523233890533447265625') Q. Within a complex calculation, how can I make sure that I haven't gotten a spurious result because of insufficient precision or rounding anomalies. @@ -1585,20 +1585,20 @@ results can look odd if you forget that the inputs haven't been rounded:: >>> getcontext().prec = 3 >>> Decimal('3.104') + D('2.104') - Decimal("5.21") + Decimal('5.21') >>> Decimal('3.104') + D('0.000') + D('2.104') - Decimal("5.20") + Decimal('5.20') The solution is either to increase precision or to force rounding of inputs using the unary plus operation:: >>> getcontext().prec = 3 >>> +Decimal('1.23456789') # unary plus triggers rounding - Decimal("1.23") + Decimal('1.23') Alternatively, inputs can be rounded upon creation using the :meth:`Context.create_decimal` method:: >>> Context(prec=5, rounding=ROUND_DOWN).create_decimal('1.2345678') - Decimal("1.2345") + Decimal('1.2345') diff --git a/Doc/library/fractions.rst b/Doc/library/fractions.rst index 1deea64..9ef1230 100644 --- a/Doc/library/fractions.rst +++ b/Doc/library/fractions.rst @@ -46,6 +46,24 @@ Rational number class. :class:`decimal.Decimal`. +.. method:: Fraction.limit_denominator(max_denominator=1000000) + + Finds and returns the closest :class:`Fraction` to ``self`` that + has denominator at most max_denominator. This method is useful for + finding rational approximations to a given floating-point number:: + + >>> Fraction('3.1415926535897932').limit_denominator(1000) + Fraction(355, 113) + + or for recovering a rational number that's represented as a float:: + + >>> from math import pi, cos + >>> Fraction.from_float(cos(pi/3)) + Fraction(4503599627370497L, 9007199254740992L) + >>> Fraction.from_float(cos(pi/3)).limit_denominator() + Fraction(1, 2) + + .. method:: Fraction.__floor__() Returns the greatest :class:`int` ``<= self``. Will be accessible diff --git a/Doc/library/os.rst b/Doc/library/os.rst index 6dc4a63..ef81304 100644 --- a/Doc/library/os.rst +++ b/Doc/library/os.rst @@ -1584,7 +1584,7 @@ written in Python, such as a mail server's external command delivery program. user time, children's system time, and elapsed real time since a fixed point in the past, in that order. See the Unix manual page :manpage:`times(2)` or the corresponding Windows Platform API documentation. Availability: Macintosh, Unix, - Windows. + Windows. On Windows, only the first two items are filled, the others are zero. .. function:: wait() |