summaryrefslogtreecommitdiffstats
path: root/Doc/librotor.tex
diff options
context:
space:
mode:
Diffstat (limited to 'Doc/librotor.tex')
-rw-r--r--Doc/librotor.tex104
1 files changed, 0 insertions, 104 deletions
diff --git a/Doc/librotor.tex b/Doc/librotor.tex
deleted file mode 100644
index 63dc56e..0000000
--- a/Doc/librotor.tex
+++ /dev/null
@@ -1,104 +0,0 @@
-\section{Built-in Module \module{rotor}}
-\label{module-rotor}
-\bimodindex{rotor}
-
-This module implements a rotor-based encryption algorithm, contributed by
-Lance Ellinghouse\index{Ellinghouse, Lance}. The design is derived
-from the Enigma device\indexii{Enigma}{device}, a machine
-used during World War II to encipher messages. A rotor is simply a
-permutation. For example, if the character `A' is the origin of the rotor,
-then a given rotor might map `A' to `L', `B' to `Z', `C' to `G', and so on.
-To encrypt, we choose several different rotors, and set the origins of the
-rotors to known positions; their initial position is the ciphering key. To
-encipher a character, we permute the original character by the first rotor,
-and then apply the second rotor's permutation to the result. We continue
-until we've applied all the rotors; the resulting character is our
-ciphertext. We then change the origin of the final rotor by one position,
-from `A' to `B'; if the final rotor has made a complete revolution, then we
-rotate the next-to-last rotor by one position, and apply the same procedure
-recursively. In other words, after enciphering one character, we advance
-the rotors in the same fashion as a car's odometer. Decoding works in the
-same way, except we reverse the permutations and apply them in the opposite
-order.
-\indexii{Enigma}{cipher}
-
-The available functions in this module are:
-
-\begin{funcdesc}{newrotor}{key\optional{, numrotors}}
-Return a rotor object. \var{key} is a string containing the encryption key
-for the object; it can contain arbitrary binary data. The key will be used
-to randomly generate the rotor permutations and their initial positions.
-\var{numrotors} is the number of rotor permutations in the returned object;
-if it is omitted, a default value of 6 will be used.
-\end{funcdesc}
-
-Rotor objects have the following methods:
-
-\begin{methoddesc}[rotor]{setkey}{key}
-Sets the rotor's key to \var{key}.
-\end{methoddesc}
-
-\begin{methoddesc}[rotor]{encrypt}{plaintext}
-Reset the rotor object to its initial state and encrypt \var{plaintext},
-returning a string containing the ciphertext. The ciphertext is always the
-same length as the original plaintext.
-\end{methoddesc}
-
-\begin{methoddesc}[rotor]{encryptmore}{plaintext}
-Encrypt \var{plaintext} without resetting the rotor object, and return a
-string containing the ciphertext.
-\end{methoddesc}
-
-\begin{methoddesc}[rotor]{decrypt}{ciphertext}
-Reset the rotor object to its initial state and decrypt \var{ciphertext},
-returning a string containing the ciphertext. The plaintext string will
-always be the same length as the ciphertext.
-\end{methoddesc}
-
-\begin{methoddesc}[rotor]{decryptmore}{ciphertext}
-Decrypt \var{ciphertext} without resetting the rotor object, and return a
-string containing the ciphertext.
-\end{methoddesc}
-
-An example usage:
-\begin{verbatim}
->>> import rotor
->>> rt = rotor.newrotor('key', 12)
->>> rt.encrypt('bar')
-'\2534\363'
->>> rt.encryptmore('bar')
-'\357\375$'
->>> rt.encrypt('bar')
-'\2534\363'
->>> rt.decrypt('\2534\363')
-'bar'
->>> rt.decryptmore('\357\375$')
-'bar'
->>> rt.decrypt('\357\375$')
-'l(\315'
->>> del rt
-\end{verbatim}
-
-The module's code is not an exact simulation of the original Enigma
-device; it implements the rotor encryption scheme differently from the
-original. The most important difference is that in the original
-Enigma, there were only 5 or 6 different rotors in existence, and they
-were applied twice to each character; the cipher key was the order in
-which they were placed in the machine. The Python \module{rotor}
-module uses the supplied key to initialize a random number generator;
-the rotor permutations and their initial positions are then randomly
-generated. The original device only enciphered the letters of the
-alphabet, while this module can handle any 8-bit binary data; it also
-produces binary output. This module can also operate with an
-arbitrary number of rotors.
-
-The original Enigma cipher was broken in 1944. % XXX: Is this right?
-The version implemented here is probably a good deal more difficult to crack
-(especially if you use many rotors), but it won't be impossible for
-a truly skilful and determined attacker to break the cipher. So if you want
-to keep the NSA out of your files, this rotor cipher may well be unsafe, but
-for discouraging casual snooping through your files, it will probably be
-just fine, and may be somewhat safer than using the \UNIX{} \program{crypt}
-command.
-\index{NSA}
-\index{National Security Agency}