summaryrefslogtreecommitdiffstats
path: root/Lib/decimal.py
diff options
context:
space:
mode:
Diffstat (limited to 'Lib/decimal.py')
-rw-r--r--Lib/decimal.py3548
1 files changed, 2846 insertions, 702 deletions
diff --git a/Lib/decimal.py b/Lib/decimal.py
index 7c67895..8543e10 100644
--- a/Lib/decimal.py
+++ b/Lib/decimal.py
@@ -128,7 +128,7 @@ __all__ = [
# Constants for use in setting up contexts
'ROUND_DOWN', 'ROUND_HALF_UP', 'ROUND_HALF_EVEN', 'ROUND_CEILING',
- 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN',
+ 'ROUND_FLOOR', 'ROUND_UP', 'ROUND_HALF_DOWN', 'ROUND_05UP',
# Functions for manipulating contexts
'setcontext', 'getcontext', 'localcontext'
@@ -144,6 +144,7 @@ ROUND_CEILING = 'ROUND_CEILING'
ROUND_FLOOR = 'ROUND_FLOOR'
ROUND_UP = 'ROUND_UP'
ROUND_HALF_DOWN = 'ROUND_HALF_DOWN'
+ROUND_05UP = 'ROUND_05UP'
# Rounding decision (not part of the public API)
NEVER_ROUND = 'NEVER_ROUND' # Round in division (non-divmod), sqrt ONLY
@@ -204,13 +205,22 @@ class InvalidOperation(DecimalException):
x ** (non-integer)
x ** (+-)INF
An operand is invalid
+
+ The result of the operation after these is a quiet positive NaN,
+ except when the cause is a signaling NaN, in which case the result is
+ also a quiet NaN, but with the original sign, and an optional
+ diagnostic information.
"""
def handle(self, context, *args):
if args:
if args[0] == 1: # sNaN, must drop 's' but keep diagnostics
- return Decimal( (args[1]._sign, args[1]._int, 'n') )
+ ans = Decimal((args[1]._sign, args[1]._int, 'n'))
+ return ans._fix_nan(context)
+ elif args[0] == 2:
+ return Decimal( (args[1], args[2], 'n') )
return NaN
+
class ConversionSyntax(InvalidOperation):
"""Trying to convert badly formed string.
@@ -218,9 +228,8 @@ class ConversionSyntax(InvalidOperation):
converted to a number and it does not conform to the numeric string
syntax. The result is [0,qNaN].
"""
-
def handle(self, context, *args):
- return (0, (0,), 'n') # Passed to something which uses a tuple.
+ return NaN
class DivisionByZero(DecimalException, ZeroDivisionError):
"""Division by 0.
@@ -340,7 +349,7 @@ class Overflow(Inexact, Rounded):
def handle(self, context, sign, *args):
if context.rounding in (ROUND_HALF_UP, ROUND_HALF_EVEN,
- ROUND_HALF_DOWN, ROUND_UP):
+ ROUND_HALF_DOWN, ROUND_UP):
return Infsign[sign]
if sign == 0:
if context.rounding == ROUND_CEILING:
@@ -562,7 +571,7 @@ class Decimal(object):
raise ValueError('Invalid sign')
for digit in value[1]:
if not isinstance(digit, (int,long)) or digit < 0:
- raise ValueError("The second value in the tuple must be"
+ raise ValueError("The second value in the tuple must be "
"composed of non negative integer elements.")
self._sign = value[0]
self._int = tuple(value[1])
@@ -596,10 +605,6 @@ class Decimal(object):
if _isnan(value):
sig, sign, diag = _isnan(value)
self._is_special = True
- if len(diag) > context.prec: # Diagnostic info too long
- self._sign, self._int, self._exp = \
- context._raise_error(ConversionSyntax)
- return self
if sig == 1:
self._exp = 'n' # qNaN
else: # sig == 2
@@ -611,9 +616,8 @@ class Decimal(object):
self._sign, self._int, self._exp = _string2exact(value)
except ValueError:
self._is_special = True
- self._sign, self._int, self._exp = \
- context._raise_error(ConversionSyntax,
- "Invalid literal for Decimal: %r" % value)
+ return context._raise_error(ConversionSyntax,
+ "Invalid literal for Decimal: %r" % value)
return self
raise TypeError("Cannot convert %r to Decimal" % value)
@@ -622,7 +626,7 @@ class Decimal(object):
"""Returns whether the number is not actually one.
0 if a number
- 1 if NaN
+ 1 if NaN (it could be a normal quiet NaN or a phantom one)
2 if sNaN
"""
if self._is_special:
@@ -646,7 +650,7 @@ class Decimal(object):
return 1
return 0
- def _check_nans(self, other = None, context=None):
+ def _check_nans(self, other=None, context=None):
"""Returns whether the number is not actually one.
if self, other are sNaN, signal
@@ -673,9 +677,9 @@ class Decimal(object):
return context._raise_error(InvalidOperation, 'sNaN',
1, other)
if self_is_nan:
- return self
+ return self._fix_nan(context)
- return other
+ return other._fix_nan(context)
return 0
def __nonzero__(self):
@@ -685,24 +689,31 @@ class Decimal(object):
1 if self != 0
"""
if self._is_special:
- return 1
+ return True
return sum(self._int) != 0
- def __cmp__(self, other, context=None):
+ def __cmp__(self, other):
other = _convert_other(other)
if other is NotImplemented:
- return other
+ # Never return NotImplemented
+ return 1
if self._is_special or other._is_special:
- ans = self._check_nans(other, context)
- if ans:
+ # check for nans, without raising on a signaling nan
+ if self._isnan() or other._isnan():
return 1 # Comparison involving NaN's always reports self > other
# INF = INF
return cmp(self._isinfinity(), other._isinfinity())
- if not self and not other:
- return 0 # If both 0, sign comparison isn't certain.
+ # check for zeros; note that cmp(0, -0) should return 0
+ if not self:
+ if not other:
+ return 0
+ else:
+ return -((-1)**other._sign)
+ if not other:
+ return (-1)**self._sign
# If different signs, neg one is less
if other._sign < self._sign:
@@ -712,35 +723,15 @@ class Decimal(object):
self_adjusted = self.adjusted()
other_adjusted = other.adjusted()
- if self_adjusted == other_adjusted and \
- self._int + (0,)*(self._exp - other._exp) == \
- other._int + (0,)*(other._exp - self._exp):
- return 0 # equal, except in precision. ([0]*(-x) = [])
- elif self_adjusted > other_adjusted and self._int[0] != 0:
+ if self_adjusted == other_adjusted:
+ self_padded = self._int + (0,)*(self._exp - other._exp)
+ other_padded = other._int + (0,)*(other._exp - self._exp)
+ return cmp(self_padded, other_padded) * (-1)**self._sign
+ elif self_adjusted > other_adjusted:
return (-1)**self._sign
- elif self_adjusted < other_adjusted and other._int[0] != 0:
+ else: # self_adjusted < other_adjusted
return -((-1)**self._sign)
- # Need to round, so make sure we have a valid context
- if context is None:
- context = getcontext()
-
- context = context._shallow_copy()
- rounding = context._set_rounding(ROUND_UP) # round away from 0
-
- flags = context._ignore_all_flags()
- res = self.__sub__(other, context=context)
-
- context._regard_flags(*flags)
-
- context.rounding = rounding
-
- if not res:
- return 0
- elif res._sign:
- return -1
- return 1
-
def __eq__(self, other):
if not isinstance(other, (Decimal, int, long)):
return NotImplemented
@@ -760,9 +751,7 @@ class Decimal(object):
NaN => one is NaN
Like __cmp__, but returns Decimal instances.
"""
- other = _convert_other(other)
- if other is NotImplemented:
- return other
+ other = _convert_other(other, raiseit=True)
# Compare(NaN, NaN) = NaN
if (self._is_special or other and other._is_special):
@@ -770,7 +759,7 @@ class Decimal(object):
if ans:
return ans
- return Decimal(self.__cmp__(other, context))
+ return Decimal(self.__cmp__(other))
def __hash__(self):
"""x.__hash__() <==> hash(x)"""
@@ -799,7 +788,7 @@ class Decimal(object):
# Invariant: eval(repr(d)) == d
return 'Decimal("%s")' % str(self)
- def __str__(self, eng = 0, context=None):
+ def __str__(self, eng=False, context=None):
"""Return string representation of the number in scientific notation.
Captures all of the information in the underlying representation.
@@ -889,7 +878,7 @@ class Decimal(object):
Same rules for when in exponential and when as a value as in __str__.
"""
- return self.__str__(eng=1, context=context)
+ return self.__str__(eng=True, context=context)
def __neg__(self, context=None):
"""Returns a copy with the sign switched.
@@ -903,17 +892,15 @@ class Decimal(object):
if not self:
# -Decimal('0') is Decimal('0'), not Decimal('-0')
- sign = 0
- elif self._sign:
- sign = 0
+ ans = self.copy_sign(Dec_0)
else:
- sign = 1
+ ans = self.copy_negate()
if context is None:
context = getcontext()
if context._rounding_decision == ALWAYS_ROUND:
- return Decimal((sign, self._int, self._exp))._fix(context)
- return Decimal( (sign, self._int, self._exp))
+ return ans._fix(context)
+ return ans
def __pos__(self, context=None):
"""Returns a copy, unless it is a sNaN.
@@ -925,19 +912,16 @@ class Decimal(object):
if ans:
return ans
- sign = self._sign
if not self:
# + (-0) = 0
- sign = 0
+ ans = self.copy_sign(Dec_0)
+ else:
+ ans = Decimal(self)
if context is None:
context = getcontext()
-
if context._rounding_decision == ALWAYS_ROUND:
- ans = self._fix(context)
- else:
- ans = Decimal(self)
- ans._sign = sign
+ return ans._fix(context)
return ans
def __abs__(self, round=1, context=None):
@@ -1000,16 +984,19 @@ class Decimal(object):
sign = min(self._sign, other._sign)
if negativezero:
sign = 1
- return Decimal( (sign, (0,), exp))
+ ans = Decimal( (sign, (0,), exp))
+ if shouldround:
+ ans = ans._fix(context)
+ return ans
if not self:
exp = max(exp, other._exp - context.prec-1)
- ans = other._rescale(exp, watchexp=0, context=context)
+ ans = other._rescale(exp, context.rounding)
if shouldround:
ans = ans._fix(context)
return ans
if not other:
exp = max(exp, self._exp - context.prec-1)
- ans = self._rescale(exp, watchexp=0, context=context)
+ ans = self._rescale(exp, context.rounding)
if shouldround:
ans = ans._fix(context)
return ans
@@ -1022,10 +1009,10 @@ class Decimal(object):
if op1.sign != op2.sign:
# Equal and opposite
if op1.int == op2.int:
- if exp < context.Etiny():
- exp = context.Etiny()
- context._raise_error(Clamped)
- return Decimal((negativezero, (0,), exp))
+ ans = Decimal((negativezero, (0,), exp))
+ if shouldround:
+ ans = ans._fix(context)
+ return ans
if op1.int < op2.int:
op1, op2 = op2, op1
# OK, now abs(op1) > abs(op2)
@@ -1056,7 +1043,7 @@ class Decimal(object):
__radd__ = __add__
def __sub__(self, other, context=None):
- """Return self + (-other)"""
+ """Return self - other"""
other = _convert_other(other)
if other is NotImplemented:
return other
@@ -1066,41 +1053,28 @@ class Decimal(object):
if ans:
return ans
- # -Decimal(0) = Decimal(0), which we don't want since
- # (-0 - 0 = -0 + (-0) = -0, but -0 + 0 = 0.)
- # so we change the sign directly to a copy
- tmp = Decimal(other)
- tmp._sign = 1-tmp._sign
-
- return self.__add__(tmp, context=context)
+ # self - other is computed as self + other.copy_negate()
+ return self.__add__(other.copy_negate(), context=context)
def __rsub__(self, other, context=None):
- """Return other + (-self)"""
+ """Return other - self"""
other = _convert_other(other)
if other is NotImplemented:
return other
- tmp = Decimal(self)
- tmp._sign = 1 - tmp._sign
- return other.__add__(tmp, context=context)
+ return other.__sub__(self, context=context)
- def _increment(self, round=1, context=None):
+ def _increment(self):
"""Special case of add, adding 1eExponent
Since it is common, (rounding, for example) this adds
(sign)*one E self._exp to the number more efficiently than add.
+ Assumes that self is nonspecial.
+
For example:
Decimal('5.624e10')._increment() == Decimal('5.625e10')
"""
- if self._is_special:
- ans = self._check_nans(context=context)
- if ans:
- return ans
-
- # Must be infinite, and incrementing makes no difference
- return Decimal(self)
-
L = list(self._int)
L[-1] += 1
spot = len(L)-1
@@ -1111,13 +1085,7 @@ class Decimal(object):
break
L[spot-1] += 1
spot -= 1
- ans = Decimal((self._sign, L, self._exp))
-
- if context is None:
- context = getcontext()
- if round and context._rounding_decision == ALWAYS_ROUND:
- ans = ans._fix(context)
- return ans
+ return Decimal((self._sign, L, self._exp))
def __mul__(self, other, context=None):
"""Return self * other.
@@ -1207,6 +1175,8 @@ class Decimal(object):
if context is None:
context = getcontext()
+ shouldround = context._rounding_decision == ALWAYS_ROUND
+
sign = self._sign ^ other._sign
if self._is_special or other._is_special:
@@ -1218,10 +1188,11 @@ class Decimal(object):
if self._isinfinity() and other._isinfinity():
if divmod:
- return (context._raise_error(InvalidOperation,
+ reloco = (context._raise_error(InvalidOperation,
'(+-)INF // (+-)INF'),
context._raise_error(InvalidOperation,
'(+-)INF % (+-)INF'))
+ return reloco
return context._raise_error(InvalidOperation, '(+-)INF/(+-)INF')
if self._isinfinity():
@@ -1237,7 +1208,10 @@ class Decimal(object):
if other._isinfinity():
if divmod:
- return (Decimal((sign, (0,), 0)), Decimal(self))
+ otherside = Decimal(self)
+ if shouldround and (divmod == 1 or divmod == 3):
+ otherside = otherside._fix(context)
+ return (Decimal((sign, (0,), 0)), otherside)
context._raise_error(Clamped, 'Division by infinity')
return Decimal((sign, (0,), context.Etiny()))
@@ -1249,17 +1223,14 @@ class Decimal(object):
if not self:
if divmod:
- otherside = Decimal(self)
- otherside._exp = min(self._exp, other._exp)
+ otherside = Decimal((self._sign, (0,), min(self._exp, other._exp)))
+ if shouldround and (divmod == 1 or divmod == 3):
+ otherside = otherside._fix(context)
return (Decimal((sign, (0,), 0)), otherside)
exp = self._exp - other._exp
- if exp < context.Etiny():
- exp = context.Etiny()
- context._raise_error(Clamped, '0e-x / y')
- if exp > context.Emax:
- exp = context.Emax
- context._raise_error(Clamped, '0e+x / y')
- return Decimal( (sign, (0,), exp) )
+ ans = Decimal((sign, (0,), exp))
+ ans = ans._fix(context)
+ return ans
if not other:
if divmod:
@@ -1268,7 +1239,6 @@ class Decimal(object):
return context._raise_error(DivisionByZero, 'x / 0', sign)
# OK, so neither = 0, INF or NaN
- shouldround = context._rounding_decision == ALWAYS_ROUND
# If we're dividing into ints, and self < other, stop.
# self.__abs__(0) does not round.
@@ -1276,7 +1246,7 @@ class Decimal(object):
if divmod == 1 or divmod == 3:
exp = min(self._exp, other._exp)
- ans2 = self._rescale(exp, context=context, watchexp=0)
+ ans2 = self._rescale(exp, context.rounding)
if shouldround:
ans2 = ans2._fix(context)
return (Decimal( (sign, (0,), 0) ),
@@ -1302,12 +1272,9 @@ class Decimal(object):
if res.int >= prec_limit and shouldround:
return context._raise_error(DivisionImpossible)
otherside = Decimal(op1)
- frozen = context._ignore_all_flags()
-
exp = min(self._exp, other._exp)
- otherside = otherside._rescale(exp, context=context, watchexp=0)
- context._regard_flags(*frozen)
- if shouldround:
+ otherside = otherside._rescale(exp, context.rounding)
+ if shouldround and (divmod == 1 or divmod == 3):
otherside = otherside._fix(context)
return (Decimal(res), otherside)
@@ -1331,21 +1298,6 @@ class Decimal(object):
op1.int *= 10
op1.exp -= 1
- if res.exp == 0 and divmod and op2.int > op1.int:
- # Solves an error in precision. Same as a previous block.
-
- if res.int >= prec_limit and shouldround:
- return context._raise_error(DivisionImpossible)
- otherside = Decimal(op1)
- frozen = context._ignore_all_flags()
-
- exp = min(self._exp, other._exp)
- otherside = otherside._rescale(exp, context=context)
-
- context._regard_flags(*frozen)
-
- return (Decimal(res), otherside)
-
ans = Decimal(res)
if shouldround:
ans = ans._fix(context)
@@ -1401,81 +1353,76 @@ class Decimal(object):
"""
Remainder nearest to 0- abs(remainder-near) <= other/2
"""
- other = _convert_other(other)
- if other is NotImplemented:
- return other
-
- if self._is_special or other._is_special:
- ans = self._check_nans(other, context)
- if ans:
- return ans
- if self and not other:
- return context._raise_error(InvalidOperation, 'x % 0')
-
if context is None:
context = getcontext()
- # If DivisionImpossible causes an error, do not leave Rounded/Inexact
- # ignored in the calling function.
- context = context._shallow_copy()
- flags = context._ignore_flags(Rounded, Inexact)
- # Keep DivisionImpossible flags
- (side, r) = self.__divmod__(other, context=context)
- if r._isnan():
- context._regard_flags(*flags)
- return r
+ other = _convert_other(other, raiseit=True)
- context = context._shallow_copy()
- rounding = context._set_rounding_decision(NEVER_ROUND)
-
- if other._sign:
- comparison = other.__div__(Decimal(-2), context=context)
- else:
- comparison = other.__div__(Decimal(2), context=context)
-
- context._set_rounding_decision(rounding)
- context._regard_flags(*flags)
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
- s1, s2 = r._sign, comparison._sign
- r._sign, comparison._sign = 0, 0
+ # self == +/-infinity -> InvalidOperation
+ if self._isinfinity():
+ return context._raise_error(InvalidOperation,
+ 'remainder_near(infinity, x)')
- if r < comparison:
- r._sign, comparison._sign = s1, s2
- # Get flags now
- self.__divmod__(other, context=context)
- return r._fix(context)
- r._sign, comparison._sign = s1, s2
+ # other == 0 -> either InvalidOperation or DivisionUndefined
+ if not other:
+ if self:
+ return context._raise_error(InvalidOperation,
+ 'remainder_near(x, 0)')
+ else:
+ return context._raise_error(DivisionUndefined,
+ 'remainder_near(0, 0)')
- rounding = context._set_rounding_decision(NEVER_ROUND)
+ # other = +/-infinity -> remainder = self
+ if other._isinfinity():
+ ans = Decimal(self)
+ return ans._fix(context)
- (side, r) = self.__divmod__(other, context=context)
- context._set_rounding_decision(rounding)
- if r._isnan():
- return r
+ # self = 0 -> remainder = self, with ideal exponent
+ ideal_exponent = min(self._exp, other._exp)
+ if not self:
+ ans = Decimal((self._sign, (0,), ideal_exponent))
+ return ans._fix(context)
- decrease = not side._iseven()
- rounding = context._set_rounding_decision(NEVER_ROUND)
- side = side.__abs__(context=context)
- context._set_rounding_decision(rounding)
+ # catch most cases of large or small quotient
+ expdiff = self.adjusted() - other.adjusted()
+ if expdiff >= context.prec + 1:
+ # expdiff >= prec+1 => abs(self/other) > 10**prec
+ return context._raise_error(DivisionImpossible)[0]
+ if expdiff <= -2:
+ # expdiff <= -2 => abs(self/other) < 0.1
+ ans = self._rescale(ideal_exponent, context.rounding)
+ return ans._fix(context)
- s1, s2 = r._sign, comparison._sign
- r._sign, comparison._sign = 0, 0
- if r > comparison or decrease and r == comparison:
- r._sign, comparison._sign = s1, s2
- context.prec += 1
- numbsquant = len(side.__add__(Decimal(1), context=context)._int)
- if numbsquant >= context.prec:
- context.prec -= 1
- return context._raise_error(DivisionImpossible)[1]
- context.prec -= 1
- if self._sign == other._sign:
- r = r.__sub__(other, context=context)
- else:
- r = r.__add__(other, context=context)
+ # adjust both arguments to have the same exponent, then divide
+ op1 = _WorkRep(self)
+ op2 = _WorkRep(other)
+ if op1.exp >= op2.exp:
+ op1.int *= 10**(op1.exp - op2.exp)
else:
- r._sign, comparison._sign = s1, s2
+ op2.int *= 10**(op2.exp - op1.exp)
+ q, r = divmod(op1.int, op2.int)
+ # remainder is r*10**ideal_exponent; other is +/-op2.int *
+ # 10**ideal_exponent. Apply correction to ensure that
+ # abs(remainder) <= abs(other)/2
+ if 2*r + (q&1) > op2.int:
+ r -= op2.int
+ q += 1
+
+ if q >= 10**context.prec:
+ return context._raise_error(DivisionImpossible)[0]
+
+ # result has same sign as self unless r is negative
+ sign = self._sign
+ if r < 0:
+ sign = 1-sign
+ r = -r
- return r._fix(context)
+ ans = Decimal((sign, map(int, str(r)), ideal_exponent))
+ return ans._fix(context)
def __floordiv__(self, other, context=None):
"""self // other"""
@@ -1500,14 +1447,11 @@ class Decimal(object):
return context._raise_error(InvalidContext)
elif self._isinfinity():
raise OverflowError("Cannot convert infinity to long")
+ s = (-1)**self._sign
if self._exp >= 0:
- s = ''.join(map(str, self._int)) + '0'*self._exp
+ return s*int(''.join(map(str, self._int)))*10**self._exp
else:
- s = ''.join(map(str, self._int))[:self._exp]
- if s == '':
- s = '0'
- sign = '-'*self._sign
- return int(sign + s)
+ return s*int(''.join(map(str, self._int))[:self._exp] or '0')
def __long__(self):
"""Converts to a long.
@@ -1516,6 +1460,21 @@ class Decimal(object):
"""
return long(self.__int__())
+ def _fix_nan(self, context):
+ """Decapitate the payload of a NaN to fit the context"""
+ payload = self._int
+
+ # maximum length of payload is precision if _clamp=0,
+ # precision-1 if _clamp=1.
+ max_payload_len = context.prec - context._clamp
+ if len(payload) > max_payload_len:
+ pos = len(payload)-max_payload_len
+ while pos < len(payload) and payload[pos] == 0:
+ pos += 1
+ payload = payload[pos:]
+ return Decimal((self._sign, payload, self._exp))
+ return self
+
def _fix(self, context):
"""Round if it is necessary to keep self within prec precision.
@@ -1525,303 +1484,649 @@ class Decimal(object):
self - Decimal instance
context - context used.
"""
- if self._is_special:
- return self
- if context is None:
- context = getcontext()
- prec = context.prec
- ans = self._fixexponents(context)
- if len(ans._int) > prec:
- ans = ans._round(prec, context=context)
- ans = ans._fixexponents(context)
- return ans
-
- def _fixexponents(self, context):
- """Fix the exponents and return a copy with the exponent in bounds.
- Only call if known to not be a special value.
- """
- folddown = context._clamp
- Emin = context.Emin
- ans = self
- ans_adjusted = ans.adjusted()
- if ans_adjusted < Emin:
- Etiny = context.Etiny()
- if ans._exp < Etiny:
- if not ans:
- ans = Decimal(self)
- ans._exp = Etiny
- context._raise_error(Clamped)
- return ans
- ans = ans._rescale(Etiny, context=context)
- # It isn't zero, and exp < Emin => subnormal
- context._raise_error(Subnormal)
- if context.flags[Inexact]:
- context._raise_error(Underflow)
- else:
- if ans:
- # Only raise subnormal if non-zero.
- context._raise_error(Subnormal)
- else:
- Etop = context.Etop()
- if folddown and ans._exp > Etop:
- context._raise_error(Clamped)
- ans = ans._rescale(Etop, context=context)
- else:
- Emax = context.Emax
- if ans_adjusted > Emax:
- if not ans:
- ans = Decimal(self)
- ans._exp = Emax
- context._raise_error(Clamped)
- return ans
- context._raise_error(Inexact)
- context._raise_error(Rounded)
- c = context._raise_error(Overflow, 'above Emax', ans._sign)
- return c
- return ans
-
- def _round(self, prec=None, rounding=None, context=None):
- """Returns a rounded version of self.
-
- You can specify the precision or rounding method. Otherwise, the
- context determines it.
- """
-
- if self._is_special:
- ans = self._check_nans(context=context)
- if ans:
- return ans
-
- if self._isinfinity():
- return Decimal(self)
if context is None:
context = getcontext()
- if rounding is None:
- rounding = context.rounding
- if prec is None:
- prec = context.prec
+ if self._is_special:
+ if self._isnan():
+ # decapitate payload if necessary
+ return self._fix_nan(context)
+ else:
+ # self is +/-Infinity; return unaltered
+ return self
+ # if self is zero then exponent should be between Etiny and
+ # Emax if _clamp==0, and between Etiny and Etop if _clamp==1.
+ Etiny = context.Etiny()
+ Etop = context.Etop()
if not self:
- if prec <= 0:
- dig = (0,)
- exp = len(self._int) - prec + self._exp
+ exp_max = [context.Emax, Etop][context._clamp]
+ new_exp = min(max(self._exp, Etiny), exp_max)
+ if new_exp != self._exp:
+ context._raise_error(Clamped)
+ return Decimal((self._sign, (0,), new_exp))
else:
- dig = (0,) * prec
- exp = len(self._int) + self._exp - prec
- ans = Decimal((self._sign, dig, exp))
- context._raise_error(Rounded)
- return ans
+ return self
- if prec == 0:
- temp = Decimal(self)
- temp._int = (0,)+temp._int
- prec = 1
- elif prec < 0:
- exp = self._exp + len(self._int) - prec - 1
- temp = Decimal( (self._sign, (0, 1), exp))
- prec = 1
- else:
- temp = Decimal(self)
-
- numdigits = len(temp._int)
- if prec == numdigits:
- return temp
-
- # See if we need to extend precision
- expdiff = prec - numdigits
- if expdiff > 0:
- tmp = list(temp._int)
- tmp.extend([0] * expdiff)
- ans = Decimal( (temp._sign, tmp, temp._exp - expdiff))
- return ans
+ # exp_min is the smallest allowable exponent of the result,
+ # equal to max(self.adjusted()-context.prec+1, Etiny)
+ exp_min = len(self._int) + self._exp - context.prec
+ if exp_min > Etop:
+ # overflow: exp_min > Etop iff self.adjusted() > Emax
+ context._raise_error(Inexact)
+ context._raise_error(Rounded)
+ return context._raise_error(Overflow, 'above Emax', self._sign)
+ self_is_subnormal = exp_min < Etiny
+ if self_is_subnormal:
+ context._raise_error(Subnormal)
+ exp_min = Etiny
- # OK, but maybe all the lost digits are 0.
- lostdigits = self._int[expdiff:]
- if lostdigits == (0,) * len(lostdigits):
- ans = Decimal( (temp._sign, temp._int[:prec], temp._exp - expdiff))
- # Rounded, but not Inexact
+ # round if self has too many digits
+ if self._exp < exp_min:
context._raise_error(Rounded)
+ ans = self._rescale(exp_min, context.rounding)
+ if ans != self:
+ context._raise_error(Inexact)
+ if self_is_subnormal:
+ context._raise_error(Underflow)
+ if not ans:
+ # raise Clamped on underflow to 0
+ context._raise_error(Clamped)
+ elif len(ans._int) == context.prec+1:
+ # we get here only if rescaling rounds the
+ # cofficient up to exactly 10**context.prec
+ if ans._exp < Etop:
+ ans = Decimal((ans._sign, ans._int[:-1], ans._exp+1))
+ else:
+ # Inexact and Rounded have already been raised
+ ans = context._raise_error(Overflow, 'above Emax',
+ self._sign)
return ans
- # Okay, let's round and lose data
-
- this_function = getattr(temp, self._pick_rounding_function[rounding])
- # Now we've got the rounding function
-
- if prec != context.prec:
- context = context._shallow_copy()
- context.prec = prec
- ans = this_function(prec, expdiff, context)
- context._raise_error(Rounded)
- context._raise_error(Inexact, 'Changed in rounding')
+ # fold down if _clamp == 1 and self has too few digits
+ if context._clamp == 1 and self._exp > Etop:
+ context._raise_error(Clamped)
+ self_padded = self._int + (0,)*(self._exp - Etop)
+ return Decimal((self._sign, self_padded, Etop))
- return ans
+ # here self was representable to begin with; return unchanged
+ return self
_pick_rounding_function = {}
- def _round_down(self, prec, expdiff, context):
- """Also known as round-towards-0, truncate."""
- return Decimal( (self._sign, self._int[:prec], self._exp - expdiff) )
+ # for each of the rounding functions below:
+ # self is a finite, nonzero Decimal
+ # prec is an integer satisfying 0 <= prec < len(self._int)
+ # the rounded result will have exponent self._exp + len(self._int) - prec;
- def _round_half_up(self, prec, expdiff, context, tmp = None):
- """Rounds 5 up (away from 0)"""
+ def _round_down(self, prec):
+ """Also known as round-towards-0, truncate."""
+ newexp = self._exp + len(self._int) - prec
+ return Decimal((self._sign, self._int[:prec] or (0,), newexp))
- if tmp is None:
- tmp = Decimal( (self._sign,self._int[:prec], self._exp - expdiff))
- if self._int[prec] >= 5:
- tmp = tmp._increment(round=0, context=context)
- if len(tmp._int) > prec:
- return Decimal( (tmp._sign, tmp._int[:-1], tmp._exp + 1))
+ def _round_up(self, prec):
+ """Rounds away from 0."""
+ newexp = self._exp + len(self._int) - prec
+ tmp = Decimal((self._sign, self._int[:prec] or (0,), newexp))
+ for digit in self._int[prec:]:
+ if digit != 0:
+ return tmp._increment()
return tmp
- def _round_half_even(self, prec, expdiff, context):
- """Round 5 to even, rest to nearest."""
-
- tmp = Decimal( (self._sign, self._int[:prec], self._exp - expdiff))
- half = (self._int[prec] == 5)
- if half:
- for digit in self._int[prec+1:]:
- if digit != 0:
- half = 0
- break
- if half:
- if self._int[prec-1] & 1 == 0:
- return tmp
- return self._round_half_up(prec, expdiff, context, tmp)
+ def _round_half_up(self, prec):
+ """Rounds 5 up (away from 0)"""
+ if self._int[prec] >= 5:
+ return self._round_up(prec)
+ else:
+ return self._round_down(prec)
- def _round_half_down(self, prec, expdiff, context):
+ def _round_half_down(self, prec):
"""Round 5 down"""
-
- tmp = Decimal( (self._sign, self._int[:prec], self._exp - expdiff))
- half = (self._int[prec] == 5)
- if half:
+ if self._int[prec] == 5:
for digit in self._int[prec+1:]:
if digit != 0:
- half = 0
break
- if half:
- return tmp
- return self._round_half_up(prec, expdiff, context, tmp)
+ else:
+ return self._round_down(prec)
+ return self._round_half_up(prec)
- def _round_up(self, prec, expdiff, context):
- """Rounds away from 0."""
- tmp = Decimal( (self._sign, self._int[:prec], self._exp - expdiff) )
- for digit in self._int[prec:]:
- if digit != 0:
- tmp = tmp._increment(round=1, context=context)
- if len(tmp._int) > prec:
- return Decimal( (tmp._sign, tmp._int[:-1], tmp._exp + 1))
- else:
- return tmp
- return tmp
+ def _round_half_even(self, prec):
+ """Round 5 to even, rest to nearest."""
+ if prec and self._int[prec-1] & 1:
+ return self._round_half_up(prec)
+ else:
+ return self._round_half_down(prec)
- def _round_ceiling(self, prec, expdiff, context):
+ def _round_ceiling(self, prec):
"""Rounds up (not away from 0 if negative.)"""
if self._sign:
- return self._round_down(prec, expdiff, context)
+ return self._round_down(prec)
else:
- return self._round_up(prec, expdiff, context)
+ return self._round_up(prec)
- def _round_floor(self, prec, expdiff, context):
+ def _round_floor(self, prec):
"""Rounds down (not towards 0 if negative)"""
if not self._sign:
- return self._round_down(prec, expdiff, context)
+ return self._round_down(prec)
+ else:
+ return self._round_up(prec)
+
+ def _round_05up(self, prec):
+ """Round down unless digit prec-1 is 0 or 5."""
+ if prec == 0 or self._int[prec-1] in (0, 5):
+ return self._round_up(prec)
else:
- return self._round_up(prec, expdiff, context)
+ return self._round_down(prec)
- def __pow__(self, n, modulo = None, context=None):
- """Return self ** n (mod modulo)
+ def fma(self, other, third, context=None):
+ """Fused multiply-add.
- If modulo is None (default), don't take it mod modulo.
+ Returns self*other+third with no rounding of the intermediate
+ product self*other.
+
+ self and other are multiplied together, with no rounding of
+ the result. The third operand is then added to the result,
+ and a single final rounding is performed.
"""
- n = _convert_other(n)
- if n is NotImplemented:
- return n
+
+ other = _convert_other(other, raiseit=True)
+ third = _convert_other(third, raiseit=True)
if context is None:
context = getcontext()
- if self._is_special or n._is_special or n.adjusted() > 8:
- # Because the spot << doesn't work with really big exponents
- if n._isinfinity() or n.adjusted() > 8:
- return context._raise_error(InvalidOperation, 'x ** INF')
+ # do self*other in fresh context with no traps and no rounding
+ mul_context = Context(traps=[], flags=[],
+ _rounding_decision=NEVER_ROUND)
+ product = self.__mul__(other, mul_context)
- ans = self._check_nans(n, context)
- if ans:
- return ans
+ if mul_context.flags[InvalidOperation]:
+ # reraise in current context
+ return context._raise_error(InvalidOperation,
+ 'invalid multiplication in fma',
+ 1, product)
+
+ ans = product.__add__(third, context)
+ return ans
+
+ def _power_modulo(self, other, modulo, context=None):
+ """Three argument version of __pow__"""
+
+ # if can't convert other and modulo to Decimal, raise
+ # TypeError; there's no point returning NotImplemented (no
+ # equivalent of __rpow__ for three argument pow)
+ other = _convert_other(other, raiseit=True)
+ modulo = _convert_other(modulo, raiseit=True)
+
+ if context is None:
+ context = getcontext()
+
+ # deal with NaNs: if there are any sNaNs then first one wins,
+ # (i.e. behaviour for NaNs is identical to that of fma)
+ self_is_nan = self._isnan()
+ other_is_nan = other._isnan()
+ modulo_is_nan = modulo._isnan()
+ if self_is_nan or other_is_nan or modulo_is_nan:
+ if self_is_nan == 2:
+ return context._raise_error(InvalidOperation, 'sNaN',
+ 1, self)
+ if other_is_nan == 2:
+ return context._raise_error(InvalidOperation, 'sNaN',
+ 1, other)
+ if modulo_is_nan == 2:
+ return context._raise_error(InvalidOperation, 'sNaN',
+ 1, modulo)
+ if self_is_nan:
+ return self
+ if other_is_nan:
+ return other
+ return modulo
+
+ # check inputs: we apply same restrictions as Python's pow()
+ if not (self._isinteger() and
+ other._isinteger() and
+ modulo._isinteger()):
+ return context._raise_error(InvalidOperation,
+ 'pow() 3rd argument not allowed '
+ 'unless all arguments are integers')
+ if other < 0:
+ return context._raise_error(InvalidOperation,
+ 'pow() 2nd argument cannot be '
+ 'negative when 3rd argument specified')
+ if not modulo:
+ return context._raise_error(InvalidOperation,
+ 'pow() 3rd argument cannot be 0')
+
+ # additional restriction for decimal: the modulus must be less
+ # than 10**prec in absolute value
+ if modulo.adjusted() >= context.prec:
+ return context._raise_error(InvalidOperation,
+ 'insufficient precision: pow() 3rd '
+ 'argument must not have more than '
+ 'precision digits')
+
+ # define 0**0 == NaN, for consistency with two-argument pow
+ # (even though it hurts!)
+ if not other and not self:
+ return context._raise_error(InvalidOperation,
+ 'at least one of pow() 1st argument '
+ 'and 2nd argument must be nonzero ;'
+ '0**0 is not defined')
+
+ # compute sign of result
+ if other._iseven():
+ sign = 0
+ else:
+ sign = self._sign
+
+ # convert modulo to a Python integer, and self and other to
+ # Decimal integers (i.e. force their exponents to be >= 0)
+ modulo = abs(int(modulo))
+ base = _WorkRep(self.to_integral_value())
+ exponent = _WorkRep(other.to_integral_value())
+
+ # compute result using integer pow()
+ base = (base.int % modulo * pow(10, base.exp, modulo)) % modulo
+ for i in xrange(exponent.exp):
+ base = pow(base, 10, modulo)
+ base = pow(base, exponent.int, modulo)
+
+ return Decimal((sign, map(int, str(base)), 0))
+
+ def _power_exact(self, other, p):
+ """Attempt to compute self**other exactly.
+
+ Given Decimals self and other and an integer p, attempt to
+ compute an exact result for the power self**other, with p
+ digits of precision. Return None if self**other is not
+ exactly representable in p digits.
+
+ Assumes that elimination of special cases has already been
+ performed: self and other must both be nonspecial; self must
+ be positive and not numerically equal to 1; other must be
+ nonzero. For efficiency, other._exp should not be too large,
+ so that 10**abs(other._exp) is a feasible calculation."""
+
+ # In the comments below, we write x for the value of self and
+ # y for the value of other. Write x = xc*10**xe and y =
+ # yc*10**ye.
+
+ # The main purpose of this method is to identify the *failure*
+ # of x**y to be exactly representable with as little effort as
+ # possible. So we look for cheap and easy tests that
+ # eliminate the possibility of x**y being exact. Only if all
+ # these tests are passed do we go on to actually compute x**y.
+
+ # Here's the main idea. First normalize both x and y. We
+ # express y as a rational m/n, with m and n relatively prime
+ # and n>0. Then for x**y to be exactly representable (at
+ # *any* precision), xc must be the nth power of a positive
+ # integer and xe must be divisible by n. If m is negative
+ # then additionally xc must be a power of either 2 or 5, hence
+ # a power of 2**n or 5**n.
+ #
+ # There's a limit to how small |y| can be: if y=m/n as above
+ # then:
+ #
+ # (1) if xc != 1 then for the result to be representable we
+ # need xc**(1/n) >= 2, and hence also xc**|y| >= 2. So
+ # if |y| <= 1/nbits(xc) then xc < 2**nbits(xc) <=
+ # 2**(1/|y|), hence xc**|y| < 2 and the result is not
+ # representable.
+ #
+ # (2) if xe != 0, |xe|*(1/n) >= 1, so |xe|*|y| >= 1. Hence if
+ # |y| < 1/|xe| then the result is not representable.
+ #
+ # Note that since x is not equal to 1, at least one of (1) and
+ # (2) must apply. Now |y| < 1/nbits(xc) iff |yc|*nbits(xc) <
+ # 10**-ye iff len(str(|yc|*nbits(xc)) <= -ye.
+ #
+ # There's also a limit to how large y can be, at least if it's
+ # positive: the normalized result will have coefficient xc**y,
+ # so if it's representable then xc**y < 10**p, and y <
+ # p/log10(xc). Hence if y*log10(xc) >= p then the result is
+ # not exactly representable.
+
+ # if len(str(abs(yc*xe)) <= -ye then abs(yc*xe) < 10**-ye,
+ # so |y| < 1/xe and the result is not representable.
+ # Similarly, len(str(abs(yc)*xc_bits)) <= -ye implies |y|
+ # < 1/nbits(xc).
+
+ x = _WorkRep(self)
+ xc, xe = x.int, x.exp
+ while xc % 10 == 0:
+ xc //= 10
+ xe += 1
+
+ y = _WorkRep(other)
+ yc, ye = y.int, y.exp
+ while yc % 10 == 0:
+ yc //= 10
+ ye += 1
+
+ # case where xc == 1: result is 10**(xe*y), with xe*y
+ # required to be an integer
+ if xc == 1:
+ if ye >= 0:
+ exponent = xe*yc*10**ye
+ else:
+ exponent, remainder = divmod(xe*yc, 10**-ye)
+ if remainder:
+ return None
+ if y.sign == 1:
+ exponent = -exponent
+ # if other is a nonnegative integer, use ideal exponent
+ if other._isinteger() and other._sign == 0:
+ ideal_exponent = self._exp*int(other)
+ zeros = min(exponent-ideal_exponent, p-1)
+ else:
+ zeros = 0
+ return Decimal((0, (1,) + (0,)*zeros, exponent-zeros))
+
+ # case where y is negative: xc must be either a power
+ # of 2 or a power of 5.
+ if y.sign == 1:
+ last_digit = xc % 10
+ if last_digit in (2,4,6,8):
+ # quick test for power of 2
+ if xc & -xc != xc:
+ return None
+ # now xc is a power of 2; e is its exponent
+ e = _nbits(xc)-1
+ # find e*y and xe*y; both must be integers
+ if ye >= 0:
+ y_as_int = yc*10**ye
+ e = e*y_as_int
+ xe = xe*y_as_int
+ else:
+ ten_pow = 10**-ye
+ e, remainder = divmod(e*yc, ten_pow)
+ if remainder:
+ return None
+ xe, remainder = divmod(xe*yc, ten_pow)
+ if remainder:
+ return None
+
+ if e*65 >= p*93: # 93/65 > log(10)/log(5)
+ return None
+ xc = 5**e
+
+ elif last_digit == 5:
+ # e >= log_5(xc) if xc is a power of 5; we have
+ # equality all the way up to xc=5**2658
+ e = _nbits(xc)*28//65
+ xc, remainder = divmod(5**e, xc)
+ if remainder:
+ return None
+ while xc % 5 == 0:
+ xc //= 5
+ e -= 1
+ if ye >= 0:
+ y_as_integer = yc*10**ye
+ e = e*y_as_integer
+ xe = xe*y_as_integer
+ else:
+ ten_pow = 10**-ye
+ e, remainder = divmod(e*yc, ten_pow)
+ if remainder:
+ return None
+ xe, remainder = divmod(xe*yc, ten_pow)
+ if remainder:
+ return None
+ if e*3 >= p*10: # 10/3 > log(10)/log(2)
+ return None
+ xc = 2**e
+ else:
+ return None
+
+ if xc >= 10**p:
+ return None
+ xe = -e-xe
+ return Decimal((0, map(int, str(xc)), xe))
+
+ # now y is positive; find m and n such that y = m/n
+ if ye >= 0:
+ m, n = yc*10**ye, 1
+ else:
+ if xe != 0 and len(str(abs(yc*xe))) <= -ye:
+ return None
+ xc_bits = _nbits(xc)
+ if xc != 1 and len(str(abs(yc)*xc_bits)) <= -ye:
+ return None
+ m, n = yc, 10**(-ye)
+ while m % 2 == n % 2 == 0:
+ m //= 2
+ n //= 2
+ while m % 5 == n % 5 == 0:
+ m //= 5
+ n //= 5
+
+ # compute nth root of xc*10**xe
+ if n > 1:
+ # if 1 < xc < 2**n then xc isn't an nth power
+ if xc != 1 and xc_bits <= n:
+ return None
+
+ xe, rem = divmod(xe, n)
+ if rem != 0:
+ return None
+
+ # compute nth root of xc using Newton's method
+ a = 1L << -(-_nbits(xc)//n) # initial estimate
+ while True:
+ q, r = divmod(xc, a**(n-1))
+ if a <= q:
+ break
+ else:
+ a = (a*(n-1) + q)//n
+ if not (a == q and r == 0):
+ return None
+ xc = a
+
+ # now xc*10**xe is the nth root of the original xc*10**xe
+ # compute mth power of xc*10**xe
+
+ # if m > p*100//_log10_lb(xc) then m > p/log10(xc), hence xc**m >
+ # 10**p and the result is not representable.
+ if xc > 1 and m > p*100//_log10_lb(xc):
+ return None
+ xc = xc**m
+ xe *= m
+ if xc > 10**p:
+ return None
+
+ # by this point the result *is* exactly representable
+ # adjust the exponent to get as close as possible to the ideal
+ # exponent, if necessary
+ str_xc = str(xc)
+ if other._isinteger() and other._sign == 0:
+ ideal_exponent = self._exp*int(other)
+ zeros = min(xe-ideal_exponent, p-len(str_xc))
+ else:
+ zeros = 0
+ return Decimal((0, map(int, str_xc)+[0,]*zeros, xe-zeros))
+
+ def __pow__(self, other, modulo=None, context=None):
+ """Return self ** other [ % modulo].
- if not n._isinteger():
- return context._raise_error(InvalidOperation, 'x ** (non-integer)')
+ With two arguments, compute self**other.
- if not self and not n:
- return context._raise_error(InvalidOperation, '0 ** 0')
+ With three arguments, compute (self**other) % modulo. For the
+ three argument form, the following restrictions on the
+ arguments hold:
- if not n:
- return Decimal(1)
+ - all three arguments must be integral
+ - other must be nonnegative
+ - either self or other (or both) must be nonzero
+ - modulo must be nonzero and must have at most p digits,
+ where p is the context precision.
- if self == Decimal(1):
- return Decimal(1)
+ If any of these restrictions is violated the InvalidOperation
+ flag is raised.
- sign = self._sign and not n._iseven()
- n = int(n)
+ The result of pow(self, other, modulo) is identical to the
+ result that would be obtained by computing (self**other) %
+ modulo with unbounded precision, but is computed more
+ efficiently. It is always exact.
+ """
+
+ if modulo is not None:
+ return self._power_modulo(other, modulo, context)
+
+ other = _convert_other(other)
+ if other is NotImplemented:
+ return other
+
+ if context is None:
+ context = getcontext()
+
+ # either argument is a NaN => result is NaN
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ # 0**0 = NaN (!), x**0 = 1 for nonzero x (including +/-Infinity)
+ if not other:
+ if not self:
+ return context._raise_error(InvalidOperation, '0 ** 0')
+ else:
+ return Dec_p1
+
+ # result has sign 1 iff self._sign is 1 and other is an odd integer
+ result_sign = 0
+ if self._sign == 1:
+ if other._isinteger():
+ if not other._iseven():
+ result_sign = 1
+ else:
+ # -ve**noninteger = NaN
+ # (-0)**noninteger = 0**noninteger
+ if self:
+ return context._raise_error(InvalidOperation,
+ 'x ** y with x negative and y not an integer')
+ # negate self, without doing any unwanted rounding
+ self = Decimal((0, self._int, self._exp))
+
+ # 0**(+ve or Inf)= 0; 0**(-ve or -Inf) = Infinity
+ if not self:
+ if other._sign == 0:
+ return Decimal((result_sign, (0,), 0))
+ else:
+ return Infsign[result_sign]
+ # Inf**(+ve or Inf) = Inf; Inf**(-ve or -Inf) = 0
if self._isinfinity():
- if modulo:
- return context._raise_error(InvalidOperation, 'INF % x')
- if n > 0:
- return Infsign[sign]
- return Decimal( (sign, (0,), 0) )
+ if other._sign == 0:
+ return Infsign[result_sign]
+ else:
+ return Decimal((result_sign, (0,), 0))
+
+ # 1**other = 1, but the choice of exponent and the flags
+ # depend on the exponent of self, and on whether other is a
+ # positive integer, a negative integer, or neither
+ if self == Dec_p1:
+ if other._isinteger():
+ # exp = max(self._exp*max(int(other), 0),
+ # 1-context.prec) but evaluating int(other) directly
+ # is dangerous until we know other is small (other
+ # could be 1e999999999)
+ if other._sign == 1:
+ multiplier = 0
+ elif other > context.prec:
+ multiplier = context.prec
+ else:
+ multiplier = int(other)
- # With ludicrously large exponent, just raise an overflow
- # and return inf.
- if not modulo and n > 0 and \
- (self._exp + len(self._int) - 1) * n > context.Emax and self:
+ exp = self._exp * multiplier
+ if exp < 1-context.prec:
+ exp = 1-context.prec
+ context._raise_error(Rounded)
+ else:
+ context._raise_error(Inexact)
+ context._raise_error(Rounded)
+ exp = 1-context.prec
- tmp = Decimal('inf')
- tmp._sign = sign
- context._raise_error(Rounded)
- context._raise_error(Inexact)
- context._raise_error(Overflow, 'Big power', sign)
- return tmp
+ return Decimal((result_sign, (1,)+(0,)*-exp, exp))
- elength = len(str(abs(n)))
- firstprec = context.prec
+ # compute adjusted exponent of self
+ self_adj = self.adjusted()
- if not modulo and firstprec + elength + 1 > DefaultContext.Emax:
- return context._raise_error(Overflow, 'Too much precision.', sign)
+ # self ** infinity is infinity if self > 1, 0 if self < 1
+ # self ** -infinity is infinity if self < 1, 0 if self > 1
+ if other._isinfinity():
+ if (other._sign == 0) == (self_adj < 0):
+ return Decimal((result_sign, (0,), 0))
+ else:
+ return Infsign[result_sign]
+
+ # from here on, the result always goes through the call
+ # to _fix at the end of this function.
+ ans = None
+
+ # crude test to catch cases of extreme overflow/underflow. If
+ # log10(self)*other >= 10**bound and bound >= len(str(Emax))
+ # then 10**bound >= 10**len(str(Emax)) >= Emax+1 and hence
+ # self**other >= 10**(Emax+1), so overflow occurs. The test
+ # for underflow is similar.
+ bound = self._log10_exp_bound() + other.adjusted()
+ if (self_adj >= 0) == (other._sign == 0):
+ # self > 1 and other +ve, or self < 1 and other -ve
+ # possibility of overflow
+ if bound >= len(str(context.Emax)):
+ ans = Decimal((result_sign, (1,), context.Emax+1))
+ else:
+ # self > 1 and other -ve, or self < 1 and other +ve
+ # possibility of underflow to 0
+ Etiny = context.Etiny()
+ if bound >= len(str(-Etiny)):
+ ans = Decimal((result_sign, (1,), Etiny-1))
+
+ # try for an exact result with precision +1
+ if ans is None:
+ ans = self._power_exact(other, context.prec + 1)
+ if ans is not None and result_sign == 1:
+ ans = Decimal((1, ans._int, ans._exp))
+
+ # usual case: inexact result, x**y computed directly as exp(y*log(x))
+ if ans is None:
+ p = context.prec
+ x = _WorkRep(self)
+ xc, xe = x.int, x.exp
+ y = _WorkRep(other)
+ yc, ye = y.int, y.exp
+ if y.sign == 1:
+ yc = -yc
+
+ # compute correctly rounded result: start with precision +3,
+ # then increase precision until result is unambiguously roundable
+ extra = 3
+ while True:
+ coeff, exp = _dpower(xc, xe, yc, ye, p+extra)
+ if coeff % (5*10**(len(str(coeff))-p-1)):
+ break
+ extra += 3
- mul = Decimal(self)
- val = Decimal(1)
- context = context._shallow_copy()
- context.prec = firstprec + elength + 1
- if n < 0:
- # n is a long now, not Decimal instance
- n = -n
- mul = Decimal(1).__div__(mul, context=context)
-
- spot = 1
- while spot <= n:
- spot <<= 1
-
- spot >>= 1
- # spot is the highest power of 2 less than n
- while spot:
- val = val.__mul__(val, context=context)
- if val._isinfinity():
- val = Infsign[sign]
- break
- if spot & n:
- val = val.__mul__(mul, context=context)
- if modulo is not None:
- val = val.__mod__(modulo, context=context)
- spot >>= 1
- context.prec = firstprec
+ ans = Decimal((result_sign, map(int, str(coeff)), exp))
- if context._rounding_decision == ALWAYS_ROUND:
- return val._fix(context)
- return val
+ # the specification says that for non-integer other we need to
+ # raise Inexact, even when the result is actually exact. In
+ # the same way, we need to raise Underflow here if the result
+ # is subnormal. (The call to _fix will take care of raising
+ # Rounded and Subnormal, as usual.)
+ if not other._isinteger():
+ context._raise_error(Inexact)
+ # pad with zeros up to length context.prec+1 if necessary
+ if len(ans._int) <= context.prec:
+ expdiff = context.prec+1 - len(ans._int)
+ ans = Decimal((ans._sign, ans._int+(0,)*expdiff, ans._exp-expdiff))
+ if ans.adjusted() < context.Emin:
+ context._raise_error(Underflow)
+
+ # unlike exp, ln and log10, the power function respects the
+ # rounding mode; no need to use ROUND_HALF_EVEN here
+ ans = ans._fix(context)
+ return ans
def __rpow__(self, other, context=None):
"""Swaps self/other and returns __pow__."""
@@ -1833,6 +2138,9 @@ class Decimal(object):
def normalize(self, context=None):
"""Normalize- strip trailing 0s, change anything equal to 0 to 0e0"""
+ if context is None:
+ context = getcontext()
+
if self._is_special:
ans = self._check_nans(context=context)
if ans:
@@ -1844,19 +2152,25 @@ class Decimal(object):
if not dup:
return Decimal( (dup._sign, (0,), 0) )
+ exp_max = [context.Emax, context.Etop()][context._clamp]
end = len(dup._int)
exp = dup._exp
- while dup._int[end-1] == 0:
+ while dup._int[end-1] == 0 and exp < exp_max:
exp += 1
end -= 1
return Decimal( (dup._sign, dup._int[:end], exp) )
- def quantize(self, exp, rounding=None, context=None, watchexp=1):
+ def quantize(self, exp, rounding=None, context=None):
"""Quantize self so its exponent is the same as that of exp.
Similar to self._rescale(exp._exp) but with error checking.
"""
+ if context is None:
+ context = getcontext()
+ if rounding is None:
+ rounding = context.rounding
+
if self._is_special or exp._is_special:
ans = self._check_nans(exp, context)
if ans:
@@ -1865,11 +2179,45 @@ class Decimal(object):
if exp._isinfinity() or self._isinfinity():
if exp._isinfinity() and self._isinfinity():
return self # if both are inf, it is OK
- if context is None:
- context = getcontext()
return context._raise_error(InvalidOperation,
'quantize with one INF')
- return self._rescale(exp._exp, rounding, context, watchexp)
+
+ # exp._exp should be between Etiny and Emax
+ if not (context.Etiny() <= exp._exp <= context.Emax):
+ return context._raise_error(InvalidOperation,
+ 'target exponent out of bounds in quantize')
+
+ if not self:
+ ans = Decimal((self._sign, (0,), exp._exp))
+ return ans._fix(context)
+
+ self_adjusted = self.adjusted()
+ if self_adjusted > context.Emax:
+ return context._raise_error(InvalidOperation,
+ 'exponent of quantize result too large for current context')
+ if self_adjusted - exp._exp + 1 > context.prec:
+ return context._raise_error(InvalidOperation,
+ 'quantize result has too many digits for current context')
+
+ ans = self._rescale(exp._exp, rounding)
+ if ans.adjusted() > context.Emax:
+ return context._raise_error(InvalidOperation,
+ 'exponent of quantize result too large for current context')
+ if len(ans._int) > context.prec:
+ return context._raise_error(InvalidOperation,
+ 'quantize result has too many digits for current context')
+
+ # raise appropriate flags
+ if ans._exp > self._exp:
+ context._raise_error(Rounded)
+ if ans != self:
+ context._raise_error(Inexact)
+ if ans and ans.adjusted() < context.Emin:
+ context._raise_error(Subnormal)
+
+ # call to fix takes care of any necessary folddown
+ ans = ans._fix(context)
+ return ans
def same_quantum(self, other):
"""Test whether self and other have the same exponent.
@@ -1883,82 +2231,85 @@ class Decimal(object):
return self._isinfinity() and other._isinfinity() and True
return self._exp == other._exp
- def _rescale(self, exp, rounding=None, context=None, watchexp=1):
- """Rescales so that the exponent is exp.
+ def _rescale(self, exp, rounding):
+ """Rescale self so that the exponent is exp, either by padding with zeros
+ or by truncating digits, using the given rounding mode.
+
+ Specials are returned without change. This operation is
+ quiet: it raises no flags, and uses no information from the
+ context.
exp = exp to scale to (an integer)
- rounding = rounding version
- watchexp: if set (default) an error is returned if exp is greater
- than Emax or less than Etiny.
+ rounding = rounding mode
"""
- if context is None:
- context = getcontext()
-
if self._is_special:
- if self._isinfinity():
- return context._raise_error(InvalidOperation, 'rescale with an INF')
-
- ans = self._check_nans(context=context)
- if ans:
- return ans
-
- if watchexp and (context.Emax < exp or context.Etiny() > exp):
- return context._raise_error(InvalidOperation, 'rescale(a, INF)')
-
+ return self
if not self:
- ans = Decimal(self)
- ans._int = (0,)
- ans._exp = exp
- return ans
-
- diff = self._exp - exp
- digits = len(self._int) + diff
-
- if watchexp and digits > context.prec:
- return context._raise_error(InvalidOperation, 'Rescale > prec')
+ return Decimal((self._sign, (0,), exp))
- tmp = Decimal(self)
- tmp._int = (0,) + tmp._int
- digits += 1
+ if self._exp >= exp:
+ # pad answer with zeros if necessary
+ return Decimal((self._sign, self._int + (0,)*(self._exp - exp), exp))
+ # too many digits; round and lose data. If self.adjusted() <
+ # exp-1, replace self by 10**(exp-1) before rounding
+ digits = len(self._int) + self._exp - exp
if digits < 0:
- tmp._exp = -digits + tmp._exp
- tmp._int = (0,1)
- digits = 1
- tmp = tmp._round(digits, rounding, context=context)
+ self = Decimal((self._sign, (1,), exp-1))
+ digits = 0
+ this_function = getattr(self, self._pick_rounding_function[rounding])
+ return this_function(digits)
- if tmp._int[0] == 0 and len(tmp._int) > 1:
- tmp._int = tmp._int[1:]
- tmp._exp = exp
+ def to_integral_exact(self, rounding=None, context=None):
+ """Rounds to a nearby integer.
- tmp_adjusted = tmp.adjusted()
- if tmp and tmp_adjusted < context.Emin:
- context._raise_error(Subnormal)
- elif tmp and tmp_adjusted > context.Emax:
- return context._raise_error(InvalidOperation, 'rescale(a, INF)')
- return tmp
+ If no rounding mode is specified, take the rounding mode from
+ the context. This method raises the Rounded and Inexact flags
+ when appropriate.
- def to_integral(self, rounding=None, context=None):
- """Rounds to the nearest integer, without raising inexact, rounded."""
+ See also: to_integral_value, which does exactly the same as
+ this method except that it doesn't raise Inexact or Rounded.
+ """
if self._is_special:
ans = self._check_nans(context=context)
if ans:
return ans
+ return self
if self._exp >= 0:
return self
+ if not self:
+ return Decimal((self._sign, (0,), 0))
if context is None:
context = getcontext()
- flags = context._ignore_flags(Rounded, Inexact)
- ans = self._rescale(0, rounding, context=context)
- context._regard_flags(flags)
+ if rounding is None:
+ rounding = context.rounding
+ context._raise_error(Rounded)
+ ans = self._rescale(0, rounding)
+ if ans != self:
+ context._raise_error(Inexact)
return ans
- def sqrt(self, context=None):
- """Return the square root of self.
+ def to_integral_value(self, rounding=None, context=None):
+ """Rounds to the nearest integer, without raising inexact, rounded."""
+ if context is None:
+ context = getcontext()
+ if rounding is None:
+ rounding = context.rounding
+ if self._is_special:
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+ return self
+ if self._exp >= 0:
+ return self
+ else:
+ return self._rescale(0, rounding)
- Uses a converging algorithm (Xn+1 = 0.5*(Xn + self / Xn))
- Should quadratically approach the right answer.
- """
+ # the method name changed, but we provide also the old one, for compatibility
+ to_integral = to_integral_value
+
+ def sqrt(self, context=None):
+ """Return the square root of self."""
if self._is_special:
ans = self._check_nans(context=context)
if ans:
@@ -1968,16 +2319,9 @@ class Decimal(object):
return Decimal(self)
if not self:
- # exponent = self._exp / 2, using round_down.
- # if self._exp < 0:
- # exp = (self._exp+1) // 2
- # else:
- exp = (self._exp) // 2
- if self._sign == 1:
- # sqrt(-0) = -0
- return Decimal( (1, (0,), exp))
- else:
- return Decimal( (0, (0,), exp))
+ # exponent = self._exp // 2. sqrt(-0) = -0
+ ans = Decimal((self._sign, (0,), self._exp // 2))
+ return ans._fix(context)
if context is None:
context = getcontext()
@@ -1985,104 +2329,91 @@ class Decimal(object):
if self._sign == 1:
return context._raise_error(InvalidOperation, 'sqrt(-x), x > 0')
- tmp = Decimal(self)
-
- expadd = tmp._exp // 2
- if tmp._exp & 1:
- tmp._int += (0,)
- tmp._exp = 0
+ # At this point self represents a positive number. Let p be
+ # the desired precision and express self in the form c*100**e
+ # with c a positive real number and e an integer, c and e
+ # being chosen so that 100**(p-1) <= c < 100**p. Then the
+ # (exact) square root of self is sqrt(c)*10**e, and 10**(p-1)
+ # <= sqrt(c) < 10**p, so the closest representable Decimal at
+ # precision p is n*10**e where n = round_half_even(sqrt(c)),
+ # the closest integer to sqrt(c) with the even integer chosen
+ # in the case of a tie.
+ #
+ # To ensure correct rounding in all cases, we use the
+ # following trick: we compute the square root to an extra
+ # place (precision p+1 instead of precision p), rounding down.
+ # Then, if the result is inexact and its last digit is 0 or 5,
+ # we increase the last digit to 1 or 6 respectively; if it's
+ # exact we leave the last digit alone. Now the final round to
+ # p places (or fewer in the case of underflow) will round
+ # correctly and raise the appropriate flags.
+
+ # use an extra digit of precision
+ prec = context.prec+1
+
+ # write argument in the form c*100**e where e = self._exp//2
+ # is the 'ideal' exponent, to be used if the square root is
+ # exactly representable. l is the number of 'digits' of c in
+ # base 100, so that 100**(l-1) <= c < 100**l.
+ op = _WorkRep(self)
+ e = op.exp >> 1
+ if op.exp & 1:
+ c = op.int * 10
+ l = (len(self._int) >> 1) + 1
else:
- tmp._exp = 0
-
- context = context._shallow_copy()
- flags = context._ignore_all_flags()
- firstprec = context.prec
- context.prec = 3
- if tmp.adjusted() & 1 == 0:
- ans = Decimal( (0, (8,1,9), tmp.adjusted() - 2) )
- ans = ans.__add__(tmp.__mul__(Decimal((0, (2,5,9), -2)),
- context=context), context=context)
- ans._exp -= 1 + tmp.adjusted() // 2
+ c = op.int
+ l = len(self._int)+1 >> 1
+
+ # rescale so that c has exactly prec base 100 'digits'
+ shift = prec-l
+ if shift >= 0:
+ c *= 100**shift
+ exact = True
else:
- ans = Decimal( (0, (2,5,9), tmp._exp + len(tmp._int)- 3) )
- ans = ans.__add__(tmp.__mul__(Decimal((0, (8,1,9), -3)),
- context=context), context=context)
- ans._exp -= 1 + tmp.adjusted() // 2
-
- # ans is now a linear approximation.
- Emax, Emin = context.Emax, context.Emin
- context.Emax, context.Emin = DefaultContext.Emax, DefaultContext.Emin
-
- half = Decimal('0.5')
-
- maxp = firstprec + 2
- rounding = context._set_rounding(ROUND_HALF_EVEN)
- while 1:
- context.prec = min(2*context.prec - 2, maxp)
- ans = half.__mul__(ans.__add__(tmp.__div__(ans, context=context),
- context=context), context=context)
- if context.prec == maxp:
+ c, remainder = divmod(c, 100**-shift)
+ exact = not remainder
+ e -= shift
+
+ # find n = floor(sqrt(c)) using Newton's method
+ n = 10**prec
+ while True:
+ q = c//n
+ if n <= q:
break
-
- # Round to the answer's precision-- the only error can be 1 ulp.
- context.prec = firstprec
- prevexp = ans.adjusted()
- ans = ans._round(context=context)
-
- # Now, check if the other last digits are better.
- context.prec = firstprec + 1
- # In case we rounded up another digit and we should actually go lower.
- if prevexp != ans.adjusted():
- ans._int += (0,)
- ans._exp -= 1
-
-
- lower = ans.__sub__(Decimal((0, (5,), ans._exp-1)), context=context)
- context._set_rounding(ROUND_UP)
- if lower.__mul__(lower, context=context) > (tmp):
- ans = ans.__sub__(Decimal((0, (1,), ans._exp)), context=context)
-
+ else:
+ n = n + q >> 1
+ exact = exact and n*n == c
+
+ if exact:
+ # result is exact; rescale to use ideal exponent e
+ if shift >= 0:
+ # assert n % 10**shift == 0
+ n //= 10**shift
+ else:
+ n *= 10**-shift
+ e += shift
else:
- upper = ans.__add__(Decimal((0, (5,), ans._exp-1)),context=context)
- context._set_rounding(ROUND_DOWN)
- if upper.__mul__(upper, context=context) < tmp:
- ans = ans.__add__(Decimal((0, (1,), ans._exp)),context=context)
+ # result is not exact; fix last digit as described above
+ if n % 5 == 0:
+ n += 1
- ans._exp += expadd
+ ans = Decimal((0, map(int, str(n)), e))
- context.prec = firstprec
- context.rounding = rounding
+ # round, and fit to current context
+ context = context._shallow_copy()
+ rounding = context._set_rounding(ROUND_HALF_EVEN)
ans = ans._fix(context)
+ context.rounding = rounding
- rounding = context._set_rounding_decision(NEVER_ROUND)
- if not ans.__mul__(ans, context=context) == self:
- # Only rounded/inexact if here.
- context._regard_flags(flags)
- context._raise_error(Rounded)
- context._raise_error(Inexact)
- else:
- # Exact answer, so let's set the exponent right.
- # if self._exp < 0:
- # exp = (self._exp +1)// 2
- # else:
- exp = self._exp // 2
- context.prec += ans._exp - exp
- ans = ans._rescale(exp, context=context)
- context.prec = firstprec
- context._regard_flags(flags)
- context.Emax, context.Emin = Emax, Emin
-
- return ans._fix(context)
+ return ans
def max(self, other, context=None):
"""Returns the larger value.
- like max(self, other) except if one is not a number, returns
+ Like max(self, other) except if one is not a number, returns
NaN (and signals if one is sNaN). Also rounds.
"""
- other = _convert_other(other)
- if other is NotImplemented:
- return other
+ other = _convert_other(other, raiseit=True)
if self._is_special or other._is_special:
# If one operand is a quiet NaN and the other is number, then the
@@ -2096,7 +2427,6 @@ class Decimal(object):
return other
return self._check_nans(other, context)
- ans = self
c = self.__cmp__(other)
if c == 0:
# If both operands are finite and equal in numerical value
@@ -2106,16 +2436,13 @@ class Decimal(object):
# positive sign and min returns the operand with the negative sign
#
# If the signs are the same then the exponent is used to select
- # the result.
- if self._sign != other._sign:
- if self._sign:
- ans = other
- elif self._exp < other._exp and not self._sign:
- ans = other
- elif self._exp > other._exp and self._sign:
- ans = other
- elif c == -1:
+ # the result. This is exactly the ordering used in compare_total.
+ c = self.compare_total(other)
+
+ if c == -1:
ans = other
+ else:
+ ans = self
if context is None:
context = getcontext()
@@ -2129,9 +2456,7 @@ class Decimal(object):
Like min(self, other) except if one is not a number, returns
NaN (and signals if one is sNaN). Also rounds.
"""
- other = _convert_other(other)
- if other is NotImplemented:
- return other
+ other = _convert_other(other, raiseit=True)
if self._is_special or other._is_special:
# If one operand is a quiet NaN and the other is number, then the
@@ -2145,25 +2470,13 @@ class Decimal(object):
return other
return self._check_nans(other, context)
- ans = self
c = self.__cmp__(other)
if c == 0:
- # If both operands are finite and equal in numerical value
- # then an ordering is applied:
- #
- # If the signs differ then max returns the operand with the
- # positive sign and min returns the operand with the negative sign
- #
- # If the signs are the same then the exponent is used to select
- # the result.
- if self._sign != other._sign:
- if other._sign:
- ans = other
- elif self._exp > other._exp and not self._sign:
- ans = other
- elif self._exp < other._exp and self._sign:
- ans = other
- elif c == 1:
+ c = self.compare_total(other)
+
+ if c == -1:
+ ans = self
+ else:
ans = other
if context is None:
@@ -2174,15 +2487,17 @@ class Decimal(object):
def _isinteger(self):
"""Returns whether self is an integer"""
+ if self._is_special:
+ return False
if self._exp >= 0:
return True
rest = self._int[self._exp:]
return rest == (0,)*len(rest)
def _iseven(self):
- """Returns 1 if self is even. Assumes self is an integer."""
- if self._exp > 0:
- return 1
+ """Returns True if self is even. Assumes self is an integer."""
+ if not self or self._exp > 0:
+ return True
return self._int[-1+self._exp] & 1 == 0
def adjusted(self):
@@ -2193,6 +2508,872 @@ class Decimal(object):
except TypeError:
return 0
+ def canonical(self, context=None):
+ """Returns the same Decimal object.
+
+ As we do not have different encodings for the same number, the
+ received object already is in its canonical form.
+ """
+ return self
+
+ def compare_signal(self, other, context=None):
+ """Compares self to the other operand numerically.
+
+ It's pretty much like compare(), but all NaNs signal, with signaling
+ NaNs taking precedence over quiet NaNs.
+ """
+ if context is None:
+ context = getcontext()
+
+ self_is_nan = self._isnan()
+ other_is_nan = other._isnan()
+ if self_is_nan == 2:
+ return context._raise_error(InvalidOperation, 'sNaN',
+ 1, self)
+ if other_is_nan == 2:
+ return context._raise_error(InvalidOperation, 'sNaN',
+ 1, other)
+ if self_is_nan:
+ return context._raise_error(InvalidOperation, 'NaN in compare_signal',
+ 1, self)
+ if other_is_nan:
+ return context._raise_error(InvalidOperation, 'NaN in compare_signal',
+ 1, other)
+ return self.compare(other, context=context)
+
+ def compare_total(self, other):
+ """Compares self to other using the abstract representations.
+
+ This is not like the standard compare, which use their numerical
+ value. Note that a total ordering is defined for all possible abstract
+ representations.
+ """
+ # if one is negative and the other is positive, it's easy
+ if self._sign and not other._sign:
+ return Dec_n1
+ if not self._sign and other._sign:
+ return Dec_p1
+ sign = self._sign
+
+ # let's handle both NaN types
+ self_nan = self._isnan()
+ other_nan = other._isnan()
+ if self_nan or other_nan:
+ if self_nan == other_nan:
+ if self._int < other._int:
+ if sign:
+ return Dec_p1
+ else:
+ return Dec_n1
+ if self._int > other._int:
+ if sign:
+ return Dec_n1
+ else:
+ return Dec_p1
+ return Dec_0
+
+ if sign:
+ if self_nan == 1:
+ return Dec_n1
+ if other_nan == 1:
+ return Dec_p1
+ if self_nan == 2:
+ return Dec_n1
+ if other_nan == 2:
+ return Dec_p1
+ else:
+ if self_nan == 1:
+ return Dec_p1
+ if other_nan == 1:
+ return Dec_n1
+ if self_nan == 2:
+ return Dec_p1
+ if other_nan == 2:
+ return Dec_n1
+
+ if self < other:
+ return Dec_n1
+ if self > other:
+ return Dec_p1
+
+ if self._exp < other._exp:
+ if sign:
+ return Dec_p1
+ else:
+ return Dec_n1
+ if self._exp > other._exp:
+ if sign:
+ return Dec_n1
+ else:
+ return Dec_p1
+ return Dec_0
+
+
+ def compare_total_mag(self, other):
+ """Compares self to other using abstract repr., ignoring sign.
+
+ Like compare_total, but with operand's sign ignored and assumed to be 0.
+ """
+ s = self.copy_abs()
+ o = other.copy_abs()
+ return s.compare_total(o)
+
+ def copy_abs(self):
+ """Returns a copy with the sign set to 0. """
+ return Decimal((0, self._int, self._exp))
+
+ def copy_negate(self):
+ """Returns a copy with the sign inverted."""
+ if self._sign:
+ return Decimal((0, self._int, self._exp))
+ else:
+ return Decimal((1, self._int, self._exp))
+
+ def copy_sign(self, other):
+ """Returns self with the sign of other."""
+ return Decimal((other._sign, self._int, self._exp))
+
+ def exp(self, context=None):
+ """Returns e ** self."""
+
+ if context is None:
+ context = getcontext()
+
+ # exp(NaN) = NaN
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ # exp(-Infinity) = 0
+ if self._isinfinity() == -1:
+ return Dec_0
+
+ # exp(0) = 1
+ if not self:
+ return Dec_p1
+
+ # exp(Infinity) = Infinity
+ if self._isinfinity() == 1:
+ return Decimal(self)
+
+ # the result is now guaranteed to be inexact (the true
+ # mathematical result is transcendental). There's no need to
+ # raise Rounded and Inexact here---they'll always be raised as
+ # a result of the call to _fix.
+ p = context.prec
+ adj = self.adjusted()
+
+ # we only need to do any computation for quite a small range
+ # of adjusted exponents---for example, -29 <= adj <= 10 for
+ # the default context. For smaller exponent the result is
+ # indistinguishable from 1 at the given precision, while for
+ # larger exponent the result either overflows or underflows.
+ if self._sign == 0 and adj > len(str((context.Emax+1)*3)):
+ # overflow
+ ans = Decimal((0, (1,), context.Emax+1))
+ elif self._sign == 1 and adj > len(str((-context.Etiny()+1)*3)):
+ # underflow to 0
+ ans = Decimal((0, (1,), context.Etiny()-1))
+ elif self._sign == 0 and adj < -p:
+ # p+1 digits; final round will raise correct flags
+ ans = Decimal((0, (1,) + (0,)*(p-1) + (1,), -p))
+ elif self._sign == 1 and adj < -p-1:
+ # p+1 digits; final round will raise correct flags
+ ans = Decimal((0, (9,)*(p+1), -p-1))
+ # general case
+ else:
+ op = _WorkRep(self)
+ c, e = op.int, op.exp
+ if op.sign == 1:
+ c = -c
+
+ # compute correctly rounded result: increase precision by
+ # 3 digits at a time until we get an unambiguously
+ # roundable result
+ extra = 3
+ while True:
+ coeff, exp = _dexp(c, e, p+extra)
+ if coeff % (5*10**(len(str(coeff))-p-1)):
+ break
+ extra += 3
+
+ ans = Decimal((0, map(int, str(coeff)), exp))
+
+ # at this stage, ans should round correctly with *any*
+ # rounding mode, not just with ROUND_HALF_EVEN
+ context = context._shallow_copy()
+ rounding = context._set_rounding(ROUND_HALF_EVEN)
+ ans = ans._fix(context)
+ context.rounding = rounding
+
+ return ans
+
+ def is_canonical(self):
+ """Returns 1 if self is canonical; otherwise returns 0."""
+ return Dec_p1
+
+ def is_finite(self):
+ """Returns 1 if self is finite, otherwise returns 0.
+
+ For it to be finite, it must be neither infinite nor a NaN.
+ """
+ if self._is_special:
+ return Dec_0
+ else:
+ return Dec_p1
+
+ def is_infinite(self):
+ """Returns 1 if self is an Infinite, otherwise returns 0."""
+ if self._isinfinity():
+ return Dec_p1
+ else:
+ return Dec_0
+
+ def is_nan(self):
+ """Returns 1 if self is qNaN or sNaN, otherwise returns 0."""
+ if self._isnan():
+ return Dec_p1
+ else:
+ return Dec_0
+
+ def is_normal(self, context=None):
+ """Returns 1 if self is a normal number, otherwise returns 0."""
+ if self._is_special:
+ return Dec_0
+ if not self:
+ return Dec_0
+ if context is None:
+ context = getcontext()
+ if context.Emin <= self.adjusted() <= context.Emax:
+ return Dec_p1
+ else:
+ return Dec_0
+
+ def is_qnan(self):
+ """Returns 1 if self is a quiet NaN, otherwise returns 0."""
+ if self._isnan() == 1:
+ return Dec_p1
+ else:
+ return Dec_0
+
+ def is_signed(self):
+ """Returns 1 if self is negative, otherwise returns 0."""
+ return Decimal(self._sign)
+
+ def is_snan(self):
+ """Returns 1 if self is a signaling NaN, otherwise returns 0."""
+ if self._isnan() == 2:
+ return Dec_p1
+ else:
+ return Dec_0
+
+ def is_subnormal(self, context=None):
+ """Returns 1 if self is subnormal, otherwise returns 0."""
+ if self._is_special:
+ return Dec_0
+ if not self:
+ return Dec_0
+ if context is None:
+ context = getcontext()
+
+ r = self._exp + len(self._int)
+ if r <= context.Emin:
+ return Dec_p1
+ return Dec_0
+
+ def is_zero(self):
+ """Returns 1 if self is a zero, otherwise returns 0."""
+ if self:
+ return Dec_0
+ else:
+ return Dec_p1
+
+ def _ln_exp_bound(self):
+ """Compute a lower bound for the adjusted exponent of self.ln().
+ In other words, compute r such that self.ln() >= 10**r. Assumes
+ that self is finite and positive and that self != 1.
+ """
+
+ # for 0.1 <= x <= 10 we use the inequalities 1-1/x <= ln(x) <= x-1
+ adj = self._exp + len(self._int) - 1
+ if adj >= 1:
+ # argument >= 10; we use 23/10 = 2.3 as a lower bound for ln(10)
+ return len(str(adj*23//10)) - 1
+ if adj <= -2:
+ # argument <= 0.1
+ return len(str((-1-adj)*23//10)) - 1
+ op = _WorkRep(self)
+ c, e = op.int, op.exp
+ if adj == 0:
+ # 1 < self < 10
+ num = str(c-10**-e)
+ den = str(c)
+ return len(num) - len(den) - (num < den)
+ # adj == -1, 0.1 <= self < 1
+ return e + len(str(10**-e - c)) - 1
+
+
+ def ln(self, context=None):
+ """Returns the natural (base e) logarithm of self."""
+
+ if context is None:
+ context = getcontext()
+
+ # ln(NaN) = NaN
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ # ln(0.0) == -Infinity
+ if not self:
+ return negInf
+
+ # ln(Infinity) = Infinity
+ if self._isinfinity() == 1:
+ return Inf
+
+ # ln(1.0) == 0.0
+ if self == Dec_p1:
+ return Dec_0
+
+ # ln(negative) raises InvalidOperation
+ if self._sign == 1:
+ return context._raise_error(InvalidOperation,
+ 'ln of a negative value')
+
+ # result is irrational, so necessarily inexact
+ op = _WorkRep(self)
+ c, e = op.int, op.exp
+ p = context.prec
+
+ # correctly rounded result: repeatedly increase precision by 3
+ # until we get an unambiguously roundable result
+ places = p - self._ln_exp_bound() + 2 # at least p+3 places
+ while True:
+ coeff = _dlog(c, e, places)
+ # assert len(str(abs(coeff)))-p >= 1
+ if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
+ break
+ places += 3
+ ans = Decimal((int(coeff<0), map(int, str(abs(coeff))), -places))
+
+ context = context._shallow_copy()
+ rounding = context._set_rounding(ROUND_HALF_EVEN)
+ ans = ans._fix(context)
+ context.rounding = rounding
+ return ans
+
+ def _log10_exp_bound(self):
+ """Compute a lower bound for the adjusted exponent of self.log10().
+ In other words, find r such that self.log10() >= 10**r.
+ Assumes that self is finite and positive and that self != 1.
+ """
+
+ # For x >= 10 or x < 0.1 we only need a bound on the integer
+ # part of log10(self), and this comes directly from the
+ # exponent of x. For 0.1 <= x <= 10 we use the inequalities
+ # 1-1/x <= log(x) <= x-1. If x > 1 we have |log10(x)| >
+ # (1-1/x)/2.31 > 0. If x < 1 then |log10(x)| > (1-x)/2.31 > 0
+
+ adj = self._exp + len(self._int) - 1
+ if adj >= 1:
+ # self >= 10
+ return len(str(adj))-1
+ if adj <= -2:
+ # self < 0.1
+ return len(str(-1-adj))-1
+ op = _WorkRep(self)
+ c, e = op.int, op.exp
+ if adj == 0:
+ # 1 < self < 10
+ num = str(c-10**-e)
+ den = str(231*c)
+ return len(num) - len(den) - (num < den) + 2
+ # adj == -1, 0.1 <= self < 1
+ num = str(10**-e-c)
+ return len(num) + e - (num < "231") - 1
+
+ def log10(self, context=None):
+ """Returns the base 10 logarithm of self."""
+
+ if context is None:
+ context = getcontext()
+
+ # log10(NaN) = NaN
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ # log10(0.0) == -Infinity
+ if not self:
+ return negInf
+
+ # log10(Infinity) = Infinity
+ if self._isinfinity() == 1:
+ return Inf
+
+ # log10(negative or -Infinity) raises InvalidOperation
+ if self._sign == 1:
+ return context._raise_error(InvalidOperation,
+ 'log10 of a negative value')
+
+ # log10(10**n) = n
+ if self._int[0] == 1 and self._int[1:] == (0,)*(len(self._int) - 1):
+ # answer may need rounding
+ ans = Decimal(self._exp + len(self._int) - 1)
+ else:
+ # result is irrational, so necessarily inexact
+ op = _WorkRep(self)
+ c, e = op.int, op.exp
+ p = context.prec
+
+ # correctly rounded result: repeatedly increase precision
+ # until result is unambiguously roundable
+ places = p-self._log10_exp_bound()+2
+ while True:
+ coeff = _dlog10(c, e, places)
+ # assert len(str(abs(coeff)))-p >= 1
+ if coeff % (5*10**(len(str(abs(coeff)))-p-1)):
+ break
+ places += 3
+ ans = Decimal((int(coeff<0), map(int, str(abs(coeff))), -places))
+
+ context = context._shallow_copy()
+ rounding = context._set_rounding(ROUND_HALF_EVEN)
+ ans = ans._fix(context)
+ context.rounding = rounding
+ return ans
+
+ def logb(self, context=None):
+ """ Returns the exponent of the magnitude of self's MSD.
+
+ The result is the integer which is the exponent of the magnitude
+ of the most significant digit of self (as though it were truncated
+ to a single digit while maintaining the value of that digit and
+ without limiting the resulting exponent).
+ """
+ # logb(NaN) = NaN
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ if context is None:
+ context = getcontext()
+
+ # logb(+/-Inf) = +Inf
+ if self._isinfinity():
+ return Inf
+
+ # logb(0) = -Inf, DivisionByZero
+ if not self:
+ return context._raise_error(DivisionByZero, 'logb(0)', -1)
+
+ # otherwise, simply return the adjusted exponent of self, as a
+ # Decimal. Note that no attempt is made to fit the result
+ # into the current context.
+ return Decimal(self.adjusted())
+
+ def _islogical(self):
+ """Return True if self is a logical operand.
+
+ For being logical, it must be a finite numbers with a sign of 0,
+ an exponent of 0, and a coefficient whose digits must all be
+ either 0 or 1.
+ """
+ if self._sign != 0 or self._exp != 0:
+ return False
+ for dig in self._int:
+ if dig not in (0, 1):
+ return False
+ return True
+
+ def _fill_logical(self, context, opa, opb):
+ dif = context.prec - len(opa)
+ if dif > 0:
+ opa = (0,)*dif + opa
+ elif dif < 0:
+ opa = opa[-context.prec:]
+ dif = context.prec - len(opb)
+ if dif > 0:
+ opb = (0,)*dif + opb
+ elif dif < 0:
+ opb = opb[-context.prec:]
+ return opa, opb
+
+ def logical_and(self, other, context=None):
+ """Applies an 'and' operation between self and other's digits."""
+ if context is None:
+ context = getcontext()
+ if not self._islogical() or not other._islogical():
+ return context._raise_error(InvalidOperation)
+
+ # fill to context.prec
+ (opa, opb) = self._fill_logical(context, self._int, other._int)
+
+ # make the operation, and clean starting zeroes
+ result = [a&b for a,b in zip(opa,opb)]
+ for i,d in enumerate(result):
+ if d == 1:
+ break
+ result = tuple(result[i:])
+
+ # if empty, we must have at least a zero
+ if not result:
+ result = (0,)
+ return Decimal((0, result, 0))
+
+ def logical_invert(self, context=None):
+ """Invert all its digits."""
+ if context is None:
+ context = getcontext()
+ return self.logical_xor(Decimal((0,(1,)*context.prec,0)), context)
+
+ def logical_or(self, other, context=None):
+ """Applies an 'or' operation between self and other's digits."""
+ if context is None:
+ context = getcontext()
+ if not self._islogical() or not other._islogical():
+ return context._raise_error(InvalidOperation)
+
+ # fill to context.prec
+ (opa, opb) = self._fill_logical(context, self._int, other._int)
+
+ # make the operation, and clean starting zeroes
+ result = [a|b for a,b in zip(opa,opb)]
+ for i,d in enumerate(result):
+ if d == 1:
+ break
+ result = tuple(result[i:])
+
+ # if empty, we must have at least a zero
+ if not result:
+ result = (0,)
+ return Decimal((0, result, 0))
+
+ def logical_xor(self, other, context=None):
+ """Applies an 'xor' operation between self and other's digits."""
+ if context is None:
+ context = getcontext()
+ if not self._islogical() or not other._islogical():
+ return context._raise_error(InvalidOperation)
+
+ # fill to context.prec
+ (opa, opb) = self._fill_logical(context, self._int, other._int)
+
+ # make the operation, and clean starting zeroes
+ result = [a^b for a,b in zip(opa,opb)]
+ for i,d in enumerate(result):
+ if d == 1:
+ break
+ result = tuple(result[i:])
+
+ # if empty, we must have at least a zero
+ if not result:
+ result = (0,)
+ return Decimal((0, result, 0))
+
+ def max_mag(self, other, context=None):
+ """Compares the values numerically with their sign ignored."""
+ other = _convert_other(other, raiseit=True)
+
+ if self._is_special or other._is_special:
+ # If one operand is a quiet NaN and the other is number, then the
+ # number is always returned
+ sn = self._isnan()
+ on = other._isnan()
+ if sn or on:
+ if on == 1 and sn != 2:
+ return self
+ if sn == 1 and on != 2:
+ return other
+ return self._check_nans(other, context)
+
+ c = self.copy_abs().__cmp__(other.copy_abs())
+ if c == 0:
+ c = self.compare_total(other)
+
+ if c == -1:
+ ans = other
+ else:
+ ans = self
+
+ if context is None:
+ context = getcontext()
+ if context._rounding_decision == ALWAYS_ROUND:
+ return ans._fix(context)
+ return ans
+
+ def min_mag(self, other, context=None):
+ """Compares the values numerically with their sign ignored."""
+ other = _convert_other(other, raiseit=True)
+
+ if self._is_special or other._is_special:
+ # If one operand is a quiet NaN and the other is number, then the
+ # number is always returned
+ sn = self._isnan()
+ on = other._isnan()
+ if sn or on:
+ if on == 1 and sn != 2:
+ return self
+ if sn == 1 and on != 2:
+ return other
+ return self._check_nans(other, context)
+
+ c = self.copy_abs().__cmp__(other.copy_abs())
+ if c == 0:
+ c = self.compare_total(other)
+
+ if c == -1:
+ ans = self
+ else:
+ ans = other
+
+ if context is None:
+ context = getcontext()
+ if context._rounding_decision == ALWAYS_ROUND:
+ return ans._fix(context)
+ return ans
+
+ def next_minus(self, context=None):
+ """Returns the largest representable number smaller than itself."""
+ if context is None:
+ context = getcontext()
+
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ if self._isinfinity() == -1:
+ return negInf
+ if self._isinfinity() == 1:
+ return Decimal((0, (9,)*context.prec, context.Etop()))
+
+ context = context.copy()
+ context._set_rounding(ROUND_FLOOR)
+ context._ignore_all_flags()
+ new_self = self._fix(context)
+ if new_self != self:
+ return new_self
+ return self.__sub__(Decimal((0, (1,), context.Etiny()-1)), context)
+
+ def next_plus(self, context=None):
+ """Returns the smallest representable number larger than itself."""
+ if context is None:
+ context = getcontext()
+
+ ans = self._check_nans(context=context)
+ if ans:
+ return ans
+
+ if self._isinfinity() == 1:
+ return Inf
+ if self._isinfinity() == -1:
+ return Decimal((1, (9,)*context.prec, context.Etop()))
+
+ context = context.copy()
+ context._set_rounding(ROUND_CEILING)
+ context._ignore_all_flags()
+ new_self = self._fix(context)
+ if new_self != self:
+ return new_self
+ return self.__add__(Decimal((0, (1,), context.Etiny()-1)), context)
+
+ def next_toward(self, other, context=None):
+ """Returns the number closest to self, in the direction towards other.
+
+ The result is the closest representable number to self
+ (excluding self) that is in the direction towards other,
+ unless both have the same value. If the two operands are
+ numerically equal, then the result is a copy of self with the
+ sign set to be the same as the sign of other.
+ """
+ other = _convert_other(other, raiseit=True)
+
+ if context is None:
+ context = getcontext()
+
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ comparison = self.__cmp__(other)
+ if comparison == 0:
+ return Decimal((other._sign, self._int, self._exp))
+
+ if comparison == -1:
+ ans = self.next_plus(context)
+ else: # comparison == 1
+ ans = self.next_minus(context)
+
+ # decide which flags to raise using value of ans
+ if ans._isinfinity():
+ context._raise_error(Overflow,
+ 'Infinite result from next_toward',
+ ans._sign)
+ context._raise_error(Rounded)
+ context._raise_error(Inexact)
+ elif ans.adjusted() < context.Emin:
+ context._raise_error(Underflow)
+ context._raise_error(Subnormal)
+ context._raise_error(Rounded)
+ context._raise_error(Inexact)
+ # if precision == 1 then we don't raise Clamped for a
+ # result 0E-Etiny.
+ if not ans:
+ context._raise_error(Clamped)
+
+ return ans
+
+ def number_class(self, context=None):
+ """Returns an indication of the class of self.
+
+ The class is one of the following strings:
+ -sNaN
+ -NaN
+ -Infinity
+ -Normal
+ -Subnormal
+ -Zero
+ +Zero
+ +Subnormal
+ +Normal
+ +Infinity
+ """
+ if self.is_snan():
+ return "sNaN"
+ if self.is_qnan():
+ return "NaN"
+ inf = self._isinfinity()
+ if inf == 1:
+ return "+Infinity"
+ if inf == -1:
+ return "-Infinity"
+ if self.is_zero():
+ if self._sign:
+ return "-Zero"
+ else:
+ return "+Zero"
+ if context is None:
+ context = getcontext()
+ if self.is_subnormal(context=context):
+ if self._sign:
+ return "-Subnormal"
+ else:
+ return "+Subnormal"
+ # just a normal, regular, boring number, :)
+ if self._sign:
+ return "-Normal"
+ else:
+ return "+Normal"
+
+ def radix(self):
+ """Just returns 10, as this is Decimal, :)"""
+ return Decimal(10)
+
+ def rotate(self, other, context=None):
+ """Returns a rotated copy of self, value-of-other times."""
+ if context is None:
+ context = getcontext()
+
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ if other._exp != 0:
+ return context._raise_error(InvalidOperation)
+ if not (-context.prec <= int(other) <= context.prec):
+ return context._raise_error(InvalidOperation)
+
+ if self._isinfinity():
+ return self
+
+ # get values, pad if necessary
+ torot = int(other)
+ rotdig = self._int
+ topad = context.prec - len(rotdig)
+ if topad:
+ rotdig = ((0,)*topad) + rotdig
+
+ # let's rotate!
+ rotated = rotdig[torot:] + rotdig[:torot]
+
+ # clean starting zeroes
+ for i,d in enumerate(rotated):
+ if d != 0:
+ break
+ rotated = rotated[i:]
+
+ return Decimal((self._sign, rotated, self._exp))
+
+
+ def scaleb (self, other, context=None):
+ """Returns self operand after adding the second value to its exp."""
+ if context is None:
+ context = getcontext()
+
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ if other._exp != 0:
+ return context._raise_error(InvalidOperation)
+ liminf = -2 * (context.Emax + context.prec)
+ limsup = 2 * (context.Emax + context.prec)
+ if not (liminf <= int(other) <= limsup):
+ return context._raise_error(InvalidOperation)
+
+ if self._isinfinity():
+ return self
+
+ d = Decimal((self._sign, self._int, self._exp + int(other)))
+ d = d._fix(context)
+ return d
+
+ def shift(self, other, context=None):
+ """Returns a shifted copy of self, value-of-other times."""
+ if context is None:
+ context = getcontext()
+
+ ans = self._check_nans(other, context)
+ if ans:
+ return ans
+
+ if other._exp != 0:
+ return context._raise_error(InvalidOperation)
+ if not (-context.prec <= int(other) <= context.prec):
+ return context._raise_error(InvalidOperation)
+
+ if self._isinfinity():
+ return self
+
+ # get values, pad if necessary
+ torot = int(other)
+ if not torot:
+ return self
+ rotdig = self._int
+ topad = context.prec - len(rotdig)
+ if topad:
+ rotdig = ((0,)*topad) + rotdig
+
+ # let's shift!
+ if torot < 0:
+ rotated = rotdig[:torot]
+ else:
+ rotated = (rotdig + ((0,) * torot))
+ rotated = rotated[-context.prec:]
+
+ # clean starting zeroes
+ if rotated:
+ for i,d in enumerate(rotated):
+ if d != 0:
+ break
+ rotated = rotated[i:]
+ else:
+ rotated = (0,)
+
+ return Decimal((self._sign, rotated, self._exp))
+
+
# Support for pickling, copy, and deepcopy
def __reduce__(self):
return (self.__class__, (str(self),))
@@ -2407,6 +3588,9 @@ class Context(object):
def create_decimal(self, num='0'):
"""Creates a new Decimal instance but using self as context."""
d = Decimal(num, context=self)
+ if d._isnan() and len(d._int) > self.prec - self._clamp:
+ return self._raise_error(ConversionSyntax,
+ "diagnostic info too long in NaN")
return d._fix(self)
# Methods
@@ -2441,6 +3625,17 @@ class Context(object):
def _apply(self, a):
return str(a._fix(self))
+ def canonical(self, a):
+ """Returns the same Decimal object.
+
+ As we do not have different encodings for the same number, the
+ received object already is in its canonical form.
+
+ >>> ExtendedContext.canonical(Decimal('2.50'))
+ Decimal("2.50")
+ """
+ return a.canonical(context=self)
+
def compare(self, a, b):
"""Compares values numerically.
@@ -2470,6 +3665,110 @@ class Context(object):
"""
return a.compare(b, context=self)
+ def compare_signal(self, a, b):
+ """Compares the values of the two operands numerically.
+
+ It's pretty much like compare(), but all NaNs signal, with signaling
+ NaNs taking precedence over quiet NaNs.
+
+ >>> c = ExtendedContext
+ >>> c.compare_signal(Decimal('2.1'), Decimal('3'))
+ Decimal("-1")
+ >>> c.compare_signal(Decimal('2.1'), Decimal('2.1'))
+ Decimal("0")
+ >>> c.flags[InvalidOperation] = 0
+ >>> print c.flags[InvalidOperation]
+ 0
+ >>> c.compare_signal(Decimal('NaN'), Decimal('2.1'))
+ Decimal("NaN")
+ >>> print c.flags[InvalidOperation]
+ 1
+ >>> c.flags[InvalidOperation] = 0
+ >>> print c.flags[InvalidOperation]
+ 0
+ >>> c.compare_signal(Decimal('sNaN'), Decimal('2.1'))
+ Decimal("NaN")
+ >>> print c.flags[InvalidOperation]
+ 1
+ """
+ return a.compare_signal(b, context=self)
+
+ def compare_total(self, a, b):
+ """Compares two operands using their abstract representation.
+
+ This is not like the standard compare, which use their numerical
+ value. Note that a total ordering is defined for all possible abstract
+ representations.
+
+ >>> ExtendedContext.compare_total(Decimal('12.73'), Decimal('127.9'))
+ Decimal("-1")
+ >>> ExtendedContext.compare_total(Decimal('-127'), Decimal('12'))
+ Decimal("-1")
+ >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.3'))
+ Decimal("-1")
+ >>> ExtendedContext.compare_total(Decimal('12.30'), Decimal('12.30'))
+ Decimal("0")
+ >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('12.300'))
+ Decimal("1")
+ >>> ExtendedContext.compare_total(Decimal('12.3'), Decimal('NaN'))
+ Decimal("-1")
+ """
+ return a.compare_total(b)
+
+ def compare_total_mag(self, a, b):
+ """Compares two operands using their abstract representation ignoring sign.
+
+ Like compare_total, but with operand's sign ignored and assumed to be 0.
+ """
+ return a.compare_total_mag(b)
+
+ def copy_abs(self, a):
+ """Returns a copy of the operand with the sign set to 0.
+
+ >>> ExtendedContext.copy_abs(Decimal('2.1'))
+ Decimal("2.1")
+ >>> ExtendedContext.copy_abs(Decimal('-100'))
+ Decimal("100")
+ """
+ return a.copy_abs()
+
+ def copy_decimal(self, a):
+ """Returns a copy of the decimal objet.
+
+ >>> ExtendedContext.copy_decimal(Decimal('2.1'))
+ Decimal("2.1")
+ >>> ExtendedContext.copy_decimal(Decimal('-1.00'))
+ Decimal("-1.00")
+ """
+ return a
+
+ def copy_negate(self, a):
+ """Returns a copy of the operand with the sign inverted.
+
+ >>> ExtendedContext.copy_negate(Decimal('101.5'))
+ Decimal("-101.5")
+ >>> ExtendedContext.copy_negate(Decimal('-101.5'))
+ Decimal("101.5")
+ """
+ return a.copy_negate()
+
+ def copy_sign(self, a, b):
+ """Copies the second operand's sign to the first one.
+
+ In detail, it returns a copy of the first operand with the sign
+ equal to the sign of the second operand.
+
+ >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('7.33'))
+ Decimal("1.50")
+ >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('7.33'))
+ Decimal("1.50")
+ >>> ExtendedContext.copy_sign(Decimal( '1.50'), Decimal('-7.33'))
+ Decimal("-1.50")
+ >>> ExtendedContext.copy_sign(Decimal('-1.50'), Decimal('-7.33'))
+ Decimal("-1.50")
+ """
+ return a.copy_sign(b)
+
def divide(self, a, b):
"""Decimal division in a specified context.
@@ -2511,6 +3810,316 @@ class Context(object):
def divmod(self, a, b):
return a.__divmod__(b, context=self)
+ def exp(self, a):
+ """Returns e ** a.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.exp(Decimal('-Infinity'))
+ Decimal("0")
+ >>> c.exp(Decimal('-1'))
+ Decimal("0.367879441")
+ >>> c.exp(Decimal('0'))
+ Decimal("1")
+ >>> c.exp(Decimal('1'))
+ Decimal("2.71828183")
+ >>> c.exp(Decimal('0.693147181'))
+ Decimal("2.00000000")
+ >>> c.exp(Decimal('+Infinity'))
+ Decimal("Infinity")
+ """
+ return a.exp(context=self)
+
+ def fma(self, a, b, c):
+ """Returns a multiplied by b, plus c.
+
+ The first two operands are multiplied together, using multiply,
+ the third operand is then added to the result of that
+ multiplication, using add, all with only one final rounding.
+
+ >>> ExtendedContext.fma(Decimal('3'), Decimal('5'), Decimal('7'))
+ Decimal("22")
+ >>> ExtendedContext.fma(Decimal('3'), Decimal('-5'), Decimal('7'))
+ Decimal("-8")
+ >>> ExtendedContext.fma(Decimal('888565290'), Decimal('1557.96930'), Decimal('-86087.7578'))
+ Decimal("1.38435736E+12")
+ """
+ return a.fma(b, c, context=self)
+
+ def is_canonical(self, a):
+ """Returns 1 if the operand is canonical; otherwise returns 0.
+
+ >>> ExtendedContext.is_canonical(Decimal('2.50'))
+ Decimal("1")
+ """
+ return Dec_p1
+
+ def is_finite(self, a):
+ """Returns 1 if the operand is finite, otherwise returns 0.
+
+ For it to be finite, it must be neither infinite nor a NaN.
+
+ >>> ExtendedContext.is_finite(Decimal('2.50'))
+ Decimal("1")
+ >>> ExtendedContext.is_finite(Decimal('-0.3'))
+ Decimal("1")
+ >>> ExtendedContext.is_finite(Decimal('0'))
+ Decimal("1")
+ >>> ExtendedContext.is_finite(Decimal('Inf'))
+ Decimal("0")
+ >>> ExtendedContext.is_finite(Decimal('NaN'))
+ Decimal("0")
+ """
+ return a.is_finite()
+
+ def is_infinite(self, a):
+ """Returns 1 if the operand is an Infinite, otherwise returns 0.
+
+ >>> ExtendedContext.is_infinite(Decimal('2.50'))
+ Decimal("0")
+ >>> ExtendedContext.is_infinite(Decimal('-Inf'))
+ Decimal("1")
+ >>> ExtendedContext.is_infinite(Decimal('NaN'))
+ Decimal("0")
+ """
+ return a.is_infinite()
+
+ def is_nan(self, a):
+ """Returns 1 if the operand is qNaN or sNaN, otherwise returns 0.
+
+ >>> ExtendedContext.is_nan(Decimal('2.50'))
+ Decimal("0")
+ >>> ExtendedContext.is_nan(Decimal('NaN'))
+ Decimal("1")
+ >>> ExtendedContext.is_nan(Decimal('-sNaN'))
+ Decimal("1")
+ """
+ return a.is_nan()
+
+ def is_normal(self, a):
+ """Returns 1 if the operand is a normal number, otherwise returns 0.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.is_normal(Decimal('2.50'))
+ Decimal("1")
+ >>> c.is_normal(Decimal('0.1E-999'))
+ Decimal("0")
+ >>> c.is_normal(Decimal('0.00'))
+ Decimal("0")
+ >>> c.is_normal(Decimal('-Inf'))
+ Decimal("0")
+ >>> c.is_normal(Decimal('NaN'))
+ Decimal("0")
+ """
+ return a.is_normal(context=self)
+
+ def is_qnan(self, a):
+ """Returns 1 if the operand is a quiet NaN, otherwise returns 0.
+
+ >>> ExtendedContext.is_qnan(Decimal('2.50'))
+ Decimal("0")
+ >>> ExtendedContext.is_qnan(Decimal('NaN'))
+ Decimal("1")
+ >>> ExtendedContext.is_qnan(Decimal('sNaN'))
+ Decimal("0")
+ """
+ return a.is_qnan()
+
+ def is_signed(self, a):
+ """Returns 1 if the operand is negative, otherwise returns 0.
+
+ >>> ExtendedContext.is_signed(Decimal('2.50'))
+ Decimal("0")
+ >>> ExtendedContext.is_signed(Decimal('-12'))
+ Decimal("1")
+ >>> ExtendedContext.is_signed(Decimal('-0'))
+ Decimal("1")
+ """
+ return a.is_signed()
+
+ def is_snan(self, a):
+ """Returns 1 if the operand is a signaling NaN, otherwise returns 0.
+
+ >>> ExtendedContext.is_snan(Decimal('2.50'))
+ Decimal("0")
+ >>> ExtendedContext.is_snan(Decimal('NaN'))
+ Decimal("0")
+ >>> ExtendedContext.is_snan(Decimal('sNaN'))
+ Decimal("1")
+ """
+ return a.is_snan()
+
+ def is_subnormal(self, a):
+ """Returns 1 if the operand is subnormal, otherwise returns 0.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.is_subnormal(Decimal('2.50'))
+ Decimal("0")
+ >>> c.is_subnormal(Decimal('0.1E-999'))
+ Decimal("1")
+ >>> c.is_subnormal(Decimal('0.00'))
+ Decimal("0")
+ >>> c.is_subnormal(Decimal('-Inf'))
+ Decimal("0")
+ >>> c.is_subnormal(Decimal('NaN'))
+ Decimal("0")
+ """
+ return a.is_subnormal(context=self)
+
+ def is_zero(self, a):
+ """Returns 1 if the operand is a zero, otherwise returns 0.
+
+ >>> ExtendedContext.is_zero(Decimal('0'))
+ Decimal("1")
+ >>> ExtendedContext.is_zero(Decimal('2.50'))
+ Decimal("0")
+ >>> ExtendedContext.is_zero(Decimal('-0E+2'))
+ Decimal("1")
+ """
+ return a.is_zero()
+
+ def ln(self, a):
+ """Returns the natural (base e) logarithm of the operand.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.ln(Decimal('0'))
+ Decimal("-Infinity")
+ >>> c.ln(Decimal('1.000'))
+ Decimal("0")
+ >>> c.ln(Decimal('2.71828183'))
+ Decimal("1.00000000")
+ >>> c.ln(Decimal('10'))
+ Decimal("2.30258509")
+ >>> c.ln(Decimal('+Infinity'))
+ Decimal("Infinity")
+ """
+ return a.ln(context=self)
+
+ def log10(self, a):
+ """Returns the base 10 logarithm of the operand.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.log10(Decimal('0'))
+ Decimal("-Infinity")
+ >>> c.log10(Decimal('0.001'))
+ Decimal("-3")
+ >>> c.log10(Decimal('1.000'))
+ Decimal("0")
+ >>> c.log10(Decimal('2'))
+ Decimal("0.301029996")
+ >>> c.log10(Decimal('10'))
+ Decimal("1")
+ >>> c.log10(Decimal('70'))
+ Decimal("1.84509804")
+ >>> c.log10(Decimal('+Infinity'))
+ Decimal("Infinity")
+ """
+ return a.log10(context=self)
+
+ def logb(self, a):
+ """ Returns the exponent of the magnitude of the operand's MSD.
+
+ The result is the integer which is the exponent of the magnitude
+ of the most significant digit of the operand (as though the
+ operand were truncated to a single digit while maintaining the
+ value of that digit and without limiting the resulting exponent).
+
+ >>> ExtendedContext.logb(Decimal('250'))
+ Decimal("2")
+ >>> ExtendedContext.logb(Decimal('2.50'))
+ Decimal("0")
+ >>> ExtendedContext.logb(Decimal('0.03'))
+ Decimal("-2")
+ >>> ExtendedContext.logb(Decimal('0'))
+ Decimal("-Infinity")
+ """
+ return a.logb(context=self)
+
+ def logical_and(self, a, b):
+ """Applies the logical operation 'and' between each operand's digits.
+
+ The operands must be both logical numbers.
+
+ >>> ExtendedContext.logical_and(Decimal('0'), Decimal('0'))
+ Decimal("0")
+ >>> ExtendedContext.logical_and(Decimal('0'), Decimal('1'))
+ Decimal("0")
+ >>> ExtendedContext.logical_and(Decimal('1'), Decimal('0'))
+ Decimal("0")
+ >>> ExtendedContext.logical_and(Decimal('1'), Decimal('1'))
+ Decimal("1")
+ >>> ExtendedContext.logical_and(Decimal('1100'), Decimal('1010'))
+ Decimal("1000")
+ >>> ExtendedContext.logical_and(Decimal('1111'), Decimal('10'))
+ Decimal("10")
+ """
+ return a.logical_and(b, context=self)
+
+ def logical_invert(self, a):
+ """Invert all the digits in the operand.
+
+ The operand must be a logical number.
+
+ >>> ExtendedContext.logical_invert(Decimal('0'))
+ Decimal("111111111")
+ >>> ExtendedContext.logical_invert(Decimal('1'))
+ Decimal("111111110")
+ >>> ExtendedContext.logical_invert(Decimal('111111111'))
+ Decimal("0")
+ >>> ExtendedContext.logical_invert(Decimal('101010101'))
+ Decimal("10101010")
+ """
+ return a.logical_invert(context=self)
+
+ def logical_or(self, a, b):
+ """Applies the logical operation 'or' between each operand's digits.
+
+ The operands must be both logical numbers.
+
+ >>> ExtendedContext.logical_or(Decimal('0'), Decimal('0'))
+ Decimal("0")
+ >>> ExtendedContext.logical_or(Decimal('0'), Decimal('1'))
+ Decimal("1")
+ >>> ExtendedContext.logical_or(Decimal('1'), Decimal('0'))
+ Decimal("1")
+ >>> ExtendedContext.logical_or(Decimal('1'), Decimal('1'))
+ Decimal("1")
+ >>> ExtendedContext.logical_or(Decimal('1100'), Decimal('1010'))
+ Decimal("1110")
+ >>> ExtendedContext.logical_or(Decimal('1110'), Decimal('10'))
+ Decimal("1110")
+ """
+ return a.logical_or(b, context=self)
+
+ def logical_xor(self, a, b):
+ """Applies the logical operation 'xor' between each operand's digits.
+
+ The operands must be both logical numbers.
+
+ >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('0'))
+ Decimal("0")
+ >>> ExtendedContext.logical_xor(Decimal('0'), Decimal('1'))
+ Decimal("1")
+ >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('0'))
+ Decimal("1")
+ >>> ExtendedContext.logical_xor(Decimal('1'), Decimal('1'))
+ Decimal("0")
+ >>> ExtendedContext.logical_xor(Decimal('1100'), Decimal('1010'))
+ Decimal("110")
+ >>> ExtendedContext.logical_xor(Decimal('1111'), Decimal('10'))
+ Decimal("1101")
+ """
+ return a.logical_xor(b, context=self)
+
def max(self, a,b):
"""max compares two values numerically and returns the maximum.
@@ -2531,6 +4140,10 @@ class Context(object):
"""
return a.max(b, context=self)
+ def max_mag(self, a, b):
+ """Compares the values numerically with their sign ignored."""
+ return a.max_mag(b, context=self)
+
def min(self, a,b):
"""min compares two values numerically and returns the minimum.
@@ -2551,6 +4164,10 @@ class Context(object):
"""
return a.min(b, context=self)
+ def min_mag(self, a, b):
+ """Compares the values numerically with their sign ignored."""
+ return a.min_mag(b, context=self)
+
def minus(self, a):
"""Minus corresponds to unary prefix minus in Python.
@@ -2586,6 +4203,68 @@ class Context(object):
"""
return a.__mul__(b, context=self)
+ def next_minus(self, a):
+ """Returns the largest representable number smaller than a.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> ExtendedContext.next_minus(Decimal('1'))
+ Decimal("0.999999999")
+ >>> c.next_minus(Decimal('1E-1007'))
+ Decimal("0E-1007")
+ >>> ExtendedContext.next_minus(Decimal('-1.00000003'))
+ Decimal("-1.00000004")
+ >>> c.next_minus(Decimal('Infinity'))
+ Decimal("9.99999999E+999")
+ """
+ return a.next_minus(context=self)
+
+ def next_plus(self, a):
+ """Returns the smallest representable number larger than a.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> ExtendedContext.next_plus(Decimal('1'))
+ Decimal("1.00000001")
+ >>> c.next_plus(Decimal('-1E-1007'))
+ Decimal("-0E-1007")
+ >>> ExtendedContext.next_plus(Decimal('-1.00000003'))
+ Decimal("-1.00000002")
+ >>> c.next_plus(Decimal('-Infinity'))
+ Decimal("-9.99999999E+999")
+ """
+ return a.next_plus(context=self)
+
+ def next_toward(self, a, b):
+ """Returns the number closest to a, in direction towards b.
+
+ The result is the closest representable number from the first
+ operand (but not the first operand) that is in the direction
+ towards the second operand, unless the operands have the same
+ value.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.next_toward(Decimal('1'), Decimal('2'))
+ Decimal("1.00000001")
+ >>> c.next_toward(Decimal('-1E-1007'), Decimal('1'))
+ Decimal("-0E-1007")
+ >>> c.next_toward(Decimal('-1.00000003'), Decimal('0'))
+ Decimal("-1.00000002")
+ >>> c.next_toward(Decimal('1'), Decimal('0'))
+ Decimal("0.999999999")
+ >>> c.next_toward(Decimal('1E-1007'), Decimal('-100'))
+ Decimal("0E-1007")
+ >>> c.next_toward(Decimal('-1.00000003'), Decimal('-10'))
+ Decimal("-1.00000004")
+ >>> c.next_toward(Decimal('0.00'), Decimal('-0.0000'))
+ Decimal("-0.00")
+ """
+ return a.next_toward(b, context=self)
+
def normalize(self, a):
"""normalize reduces an operand to its simplest form.
@@ -2607,6 +4286,53 @@ class Context(object):
"""
return a.normalize(context=self)
+ def number_class(self, a):
+ """Returns an indication of the class of the operand.
+
+ The class is one of the following strings:
+ -sNaN
+ -NaN
+ -Infinity
+ -Normal
+ -Subnormal
+ -Zero
+ +Zero
+ +Subnormal
+ +Normal
+ +Infinity
+
+ >>> c = Context(ExtendedContext)
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.number_class(Decimal('Infinity'))
+ '+Infinity'
+ >>> c.number_class(Decimal('1E-10'))
+ '+Normal'
+ >>> c.number_class(Decimal('2.50'))
+ '+Normal'
+ >>> c.number_class(Decimal('0.1E-999'))
+ '+Subnormal'
+ >>> c.number_class(Decimal('0'))
+ '+Zero'
+ >>> c.number_class(Decimal('-0'))
+ '-Zero'
+ >>> c.number_class(Decimal('-0.1E-999'))
+ '-Subnormal'
+ >>> c.number_class(Decimal('-1E-10'))
+ '-Normal'
+ >>> c.number_class(Decimal('-2.50'))
+ '-Normal'
+ >>> c.number_class(Decimal('-Infinity'))
+ '-Infinity'
+ >>> c.number_class(Decimal('NaN'))
+ 'NaN'
+ >>> c.number_class(Decimal('-NaN'))
+ 'NaN'
+ >>> c.number_class(Decimal('sNaN'))
+ 'sNaN'
+ """
+ return a.number_class(context=self)
+
def plus(self, a):
"""Plus corresponds to unary prefix plus in Python.
@@ -2624,49 +4350,69 @@ class Context(object):
def power(self, a, b, modulo=None):
"""Raises a to the power of b, to modulo if given.
- The right-hand operand must be a whole number whose integer part (after
- any exponent has been applied) has no more than 9 digits and whose
- fractional part (if any) is all zeros before any rounding. The operand
- may be positive, negative, or zero; if negative, the absolute value of
- the power is used, and the left-hand operand is inverted (divided into
- 1) before use.
-
- If the increased precision needed for the intermediate calculations
- exceeds the capabilities of the implementation then an Invalid
- operation condition is raised.
-
- If, when raising to a negative power, an underflow occurs during the
- division into 1, the operation is not halted at that point but
- continues.
-
- >>> ExtendedContext.power(Decimal('2'), Decimal('3'))
+ With two arguments, compute a**b. If a is negative then b
+ must be integral. The result will be inexact unless b is
+ integral and the result is finite and can be expressed exactly
+ in 'precision' digits.
+
+ With three arguments, compute (a**b) % modulo. For the
+ three argument form, the following restrictions on the
+ arguments hold:
+
+ - all three arguments must be integral
+ - b must be nonnegative
+ - at least one of a or b must be nonzero
+ - modulo must be nonzero and have at most 'precision' digits
+
+ The result of pow(a, b, modulo) is identical to the result
+ that would be obtained by computing (a**b) % modulo with
+ unbounded precision, but is computed more efficiently. It is
+ always exact.
+
+ >>> c = ExtendedContext.copy()
+ >>> c.Emin = -999
+ >>> c.Emax = 999
+ >>> c.power(Decimal('2'), Decimal('3'))
Decimal("8")
- >>> ExtendedContext.power(Decimal('2'), Decimal('-3'))
+ >>> c.power(Decimal('-2'), Decimal('3'))
+ Decimal("-8")
+ >>> c.power(Decimal('2'), Decimal('-3'))
Decimal("0.125")
- >>> ExtendedContext.power(Decimal('1.7'), Decimal('8'))
+ >>> c.power(Decimal('1.7'), Decimal('8'))
Decimal("69.7575744")
- >>> ExtendedContext.power(Decimal('Infinity'), Decimal('-2'))
- Decimal("0")
- >>> ExtendedContext.power(Decimal('Infinity'), Decimal('-1'))
+ >>> c.power(Decimal('10'), Decimal('0.301029996'))
+ Decimal("2.00000000")
+ >>> c.power(Decimal('Infinity'), Decimal('-1'))
Decimal("0")
- >>> ExtendedContext.power(Decimal('Infinity'), Decimal('0'))
+ >>> c.power(Decimal('Infinity'), Decimal('0'))
Decimal("1")
- >>> ExtendedContext.power(Decimal('Infinity'), Decimal('1'))
+ >>> c.power(Decimal('Infinity'), Decimal('1'))
Decimal("Infinity")
- >>> ExtendedContext.power(Decimal('Infinity'), Decimal('2'))
- Decimal("Infinity")
- >>> ExtendedContext.power(Decimal('-Infinity'), Decimal('-2'))
- Decimal("0")
- >>> ExtendedContext.power(Decimal('-Infinity'), Decimal('-1'))
+ >>> c.power(Decimal('-Infinity'), Decimal('-1'))
Decimal("-0")
- >>> ExtendedContext.power(Decimal('-Infinity'), Decimal('0'))
+ >>> c.power(Decimal('-Infinity'), Decimal('0'))
Decimal("1")
- >>> ExtendedContext.power(Decimal('-Infinity'), Decimal('1'))
+ >>> c.power(Decimal('-Infinity'), Decimal('1'))
Decimal("-Infinity")
- >>> ExtendedContext.power(Decimal('-Infinity'), Decimal('2'))
+ >>> c.power(Decimal('-Infinity'), Decimal('2'))
Decimal("Infinity")
- >>> ExtendedContext.power(Decimal('0'), Decimal('0'))
+ >>> c.power(Decimal('0'), Decimal('0'))
Decimal("NaN")
+
+ >>> c.power(Decimal('3'), Decimal('7'), Decimal('16'))
+ Decimal("11")
+ >>> c.power(Decimal('-3'), Decimal('7'), Decimal('16'))
+ Decimal("-11")
+ >>> c.power(Decimal('-3'), Decimal('8'), Decimal('16'))
+ Decimal("1")
+ >>> c.power(Decimal('3'), Decimal('7'), Decimal('-16'))
+ Decimal("11")
+ >>> c.power(Decimal('23E12345'), Decimal('67E189'), Decimal('123456789'))
+ Decimal("11729830")
+ >>> c.power(Decimal('-0'), Decimal('17'), Decimal('1729'))
+ Decimal("-0")
+ >>> c.power(Decimal('-23'), Decimal('0'), Decimal('65537'))
+ Decimal("1")
"""
return a.__pow__(b, modulo, context=self)
@@ -2721,6 +4467,14 @@ class Context(object):
"""
return a.quantize(b, context=self)
+ def radix(self):
+ """Just returns 10, as this is Decimal, :)
+
+ >>> ExtendedContext.radix()
+ Decimal("10")
+ """
+ return Decimal(10)
+
def remainder(self, a, b):
"""Returns the remainder from integer division.
@@ -2775,6 +4529,28 @@ class Context(object):
"""
return a.remainder_near(b, context=self)
+ def rotate(self, a, b):
+ """Returns a rotated copy of a, b times.
+
+ The coefficient of the result is a rotated copy of the digits in
+ the coefficient of the first operand. The number of places of
+ rotation is taken from the absolute value of the second operand,
+ with the rotation being to the left if the second operand is
+ positive or to the right otherwise.
+
+ >>> ExtendedContext.rotate(Decimal('34'), Decimal('8'))
+ Decimal("400000003")
+ >>> ExtendedContext.rotate(Decimal('12'), Decimal('9'))
+ Decimal("12")
+ >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('-2'))
+ Decimal("891234567")
+ >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('0'))
+ Decimal("123456789")
+ >>> ExtendedContext.rotate(Decimal('123456789'), Decimal('+2'))
+ Decimal("345678912")
+ """
+ return a.rotate(b, context=self)
+
def same_quantum(self, a, b):
"""Returns True if the two operands have the same exponent.
@@ -2792,6 +4568,41 @@ class Context(object):
"""
return a.same_quantum(b)
+ def scaleb (self, a, b):
+ """Returns the first operand after adding the second value its exp.
+
+ >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('-2'))
+ Decimal("0.0750")
+ >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('0'))
+ Decimal("7.50")
+ >>> ExtendedContext.scaleb(Decimal('7.50'), Decimal('3'))
+ Decimal("7.50E+3")
+ """
+ return a.scaleb (b, context=self)
+
+ def shift(self, a, b):
+ """Returns a shifted copy of a, b times.
+
+ The coefficient of the result is a shifted copy of the digits
+ in the coefficient of the first operand. The number of places
+ to shift is taken from the absolute value of the second operand,
+ with the shift being to the left if the second operand is
+ positive or to the right otherwise. Digits shifted into the
+ coefficient are zeros.
+
+ >>> ExtendedContext.shift(Decimal('34'), Decimal('8'))
+ Decimal("400000000")
+ >>> ExtendedContext.shift(Decimal('12'), Decimal('9'))
+ Decimal("0")
+ >>> ExtendedContext.shift(Decimal('123456789'), Decimal('-2'))
+ Decimal("1234567")
+ >>> ExtendedContext.shift(Decimal('123456789'), Decimal('0'))
+ Decimal("123456789")
+ >>> ExtendedContext.shift(Decimal('123456789'), Decimal('+2'))
+ Decimal("345678900")
+ """
+ return a.shift(b, context=self)
+
def sqrt(self, a):
"""Square root of a non-negative number to context precision.
@@ -2847,7 +4658,36 @@ class Context(object):
"""
return a.__str__(context=self)
- def to_integral(self, a):
+ def to_integral_exact(self, a):
+ """Rounds to an integer.
+
+ When the operand has a negative exponent, the result is the same
+ as using the quantize() operation using the given operand as the
+ left-hand-operand, 1E+0 as the right-hand-operand, and the precision
+ of the operand as the precision setting; Inexact and Rounded flags
+ are allowed in this operation. The rounding mode is taken from the
+ context.
+
+ >>> ExtendedContext.to_integral_exact(Decimal('2.1'))
+ Decimal("2")
+ >>> ExtendedContext.to_integral_exact(Decimal('100'))
+ Decimal("100")
+ >>> ExtendedContext.to_integral_exact(Decimal('100.0'))
+ Decimal("100")
+ >>> ExtendedContext.to_integral_exact(Decimal('101.5'))
+ Decimal("102")
+ >>> ExtendedContext.to_integral_exact(Decimal('-101.5'))
+ Decimal("-102")
+ >>> ExtendedContext.to_integral_exact(Decimal('10E+5'))
+ Decimal("1.0E+6")
+ >>> ExtendedContext.to_integral_exact(Decimal('7.89E+77'))
+ Decimal("7.89E+77")
+ >>> ExtendedContext.to_integral_exact(Decimal('-Inf'))
+ Decimal("-Infinity")
+ """
+ return a.to_integral_exact(context=self)
+
+ def to_integral_value(self, a):
"""Rounds to an integer.
When the operand has a negative exponent, the result is the same
@@ -2856,24 +4696,27 @@ class Context(object):
of the operand as the precision setting, except that no flags will
be set. The rounding mode is taken from the context.
- >>> ExtendedContext.to_integral(Decimal('2.1'))
+ >>> ExtendedContext.to_integral_value(Decimal('2.1'))
Decimal("2")
- >>> ExtendedContext.to_integral(Decimal('100'))
+ >>> ExtendedContext.to_integral_value(Decimal('100'))
Decimal("100")
- >>> ExtendedContext.to_integral(Decimal('100.0'))
+ >>> ExtendedContext.to_integral_value(Decimal('100.0'))
Decimal("100")
- >>> ExtendedContext.to_integral(Decimal('101.5'))
+ >>> ExtendedContext.to_integral_value(Decimal('101.5'))
Decimal("102")
- >>> ExtendedContext.to_integral(Decimal('-101.5'))
+ >>> ExtendedContext.to_integral_value(Decimal('-101.5'))
Decimal("-102")
- >>> ExtendedContext.to_integral(Decimal('10E+5'))
+ >>> ExtendedContext.to_integral_value(Decimal('10E+5'))
Decimal("1.0E+6")
- >>> ExtendedContext.to_integral(Decimal('7.89E+77'))
+ >>> ExtendedContext.to_integral_value(Decimal('7.89E+77'))
Decimal("7.89E+77")
- >>> ExtendedContext.to_integral(Decimal('-Inf'))
+ >>> ExtendedContext.to_integral_value(Decimal('-Inf'))
Decimal("-Infinity")
"""
- return a.to_integral(context=self)
+ return a.to_integral_value(context=self)
+
+ # the method name changed, but we provide also the old one, for compatibility
+ to_integral = to_integral_value
class _WorkRep(object):
__slots__ = ('sign','int','exp')
@@ -2911,39 +4754,28 @@ def _normalize(op1, op2, shouldround = 0, prec = 0):
Done during addition.
"""
- # Yes, the exponent is a long, but the difference between exponents
- # must be an int-- otherwise you'd get a big memory problem.
- numdigits = int(op1.exp - op2.exp)
- if numdigits < 0:
- numdigits = -numdigits
+ if op1.exp < op2.exp:
tmp = op2
other = op1
else:
tmp = op1
other = op2
-
- if shouldround and numdigits > prec + 1:
- # Big difference in exponents - check the adjusted exponents
+ # Let exp = min(tmp.exp - 1, tmp.adjusted() - precision - 1).
+ # Then adding 10**exp to tmp has the same effect (after rounding)
+ # as adding any positive quantity smaller than 10**exp; similarly
+ # for subtraction. So if other is smaller than 10**exp we replace
+ # it with 10**exp. This avoids tmp.exp - other.exp getting too large.
+ if shouldround:
tmp_len = len(str(tmp.int))
other_len = len(str(other.int))
- if numdigits > (other_len + prec + 1 - tmp_len):
- # If the difference in adjusted exps is > prec+1, we know
- # other is insignificant, so might as well put a 1 after the
- # precision (since this is only for addition). Also stops
- # use of massive longs.
-
- extend = prec + 2 - tmp_len
- if extend <= 0:
- extend = 1
- tmp.int *= 10 ** extend
- tmp.exp -= extend
+ exp = tmp.exp + min(-1, tmp_len - prec - 2)
+ if other_len + other.exp - 1 < exp:
other.int = 1
- other.exp = tmp.exp
- return op1, op2
+ other.exp = exp
- tmp.int *= 10 ** numdigits
- tmp.exp -= numdigits
+ tmp.int *= 10 ** (tmp.exp - other.exp)
+ tmp.exp = other.exp
return op1, op2
def _adjust_coefficients(op1, op2):
@@ -2968,9 +4800,315 @@ def _adjust_coefficients(op1, op2):
return op1, op2, adjust
+
+##### Integer arithmetic functions used by ln, log10, exp and __pow__ #####
+
+# This function from Tim Peters was taken from here:
+# http://mail.python.org/pipermail/python-list/1999-July/007758.html
+# The correction being in the function definition is for speed, and
+# the whole function is not resolved with math.log because of avoiding
+# the use of floats.
+def _nbits(n, correction = {
+ '0': 4, '1': 3, '2': 2, '3': 2,
+ '4': 1, '5': 1, '6': 1, '7': 1,
+ '8': 0, '9': 0, 'a': 0, 'b': 0,
+ 'c': 0, 'd': 0, 'e': 0, 'f': 0}):
+ """Number of bits in binary representation of the positive integer n,
+ or 0 if n == 0.
+ """
+ if n < 0:
+ raise ValueError("The argument to _nbits should be nonnegative.")
+ hex_n = "%x" % n
+ return 4*len(hex_n) - correction[hex_n[0]]
+
+def _sqrt_nearest(n, a):
+ """Closest integer to the square root of the positive integer n. a is
+ an initial approximation to the square root. Any positive integer
+ will do for a, but the closer a is to the square root of n the
+ faster convergence will be.
+
+ """
+ if n <= 0 or a <= 0:
+ raise ValueError("Both arguments to _sqrt_nearest should be positive.")
+
+ b=0
+ while a != b:
+ b, a = a, a--n//a>>1
+ return a
+
+def _rshift_nearest(x, shift):
+ """Given an integer x and a nonnegative integer shift, return closest
+ integer to x / 2**shift; use round-to-even in case of a tie.
+
+ """
+ b, q = 1L << shift, x >> shift
+ return q + (2*(x & (b-1)) + (q&1) > b)
+
+def _div_nearest(a, b):
+ """Closest integer to a/b, a and b positive integers; rounds to even
+ in the case of a tie.
+
+ """
+ q, r = divmod(a, b)
+ return q + (2*r + (q&1) > b)
+
+def _ilog(x, M, L = 8):
+ """Integer approximation to M*log(x/M), with absolute error boundable
+ in terms only of x/M.
+
+ Given positive integers x and M, return an integer approximation to
+ M * log(x/M). For L = 8 and 0.1 <= x/M <= 10 the difference
+ between the approximation and the exact result is at most 22. For
+ L = 8 and 1.0 <= x/M <= 10.0 the difference is at most 15. In
+ both cases these are upper bounds on the error; it will usually be
+ much smaller."""
+
+ # The basic algorithm is the following: let log1p be the function
+ # log1p(x) = log(1+x). Then log(x/M) = log1p((x-M)/M). We use
+ # the reduction
+ #
+ # log1p(y) = 2*log1p(y/(1+sqrt(1+y)))
+ #
+ # repeatedly until the argument to log1p is small (< 2**-L in
+ # absolute value). For small y we can use the Taylor series
+ # expansion
+ #
+ # log1p(y) ~ y - y**2/2 + y**3/3 - ... - (-y)**T/T
+ #
+ # truncating at T such that y**T is small enough. The whole
+ # computation is carried out in a form of fixed-point arithmetic,
+ # with a real number z being represented by an integer
+ # approximation to z*M. To avoid loss of precision, the y below
+ # is actually an integer approximation to 2**R*y*M, where R is the
+ # number of reductions performed so far.
+
+ y = x-M
+ # argument reduction; R = number of reductions performed
+ R = 0
+ while (R <= L and long(abs(y)) << L-R >= M or
+ R > L and abs(y) >> R-L >= M):
+ y = _div_nearest(long(M*y) << 1,
+ M + _sqrt_nearest(M*(M+_rshift_nearest(y, R)), M))
+ R += 1
+
+ # Taylor series with T terms
+ T = -int(-10*len(str(M))//(3*L))
+ yshift = _rshift_nearest(y, R)
+ w = _div_nearest(M, T)
+ for k in xrange(T-1, 0, -1):
+ w = _div_nearest(M, k) - _div_nearest(yshift*w, M)
+
+ return _div_nearest(w*y, M)
+
+def _dlog10(c, e, p):
+ """Given integers c, e and p with c > 0, p >= 0, compute an integer
+ approximation to 10**p * log10(c*10**e), with an absolute error of
+ at most 1. Assumes that c*10**e is not exactly 1."""
+
+ # increase precision by 2; compensate for this by dividing
+ # final result by 100
+ p += 2
+
+ # write c*10**e as d*10**f with either:
+ # f >= 0 and 1 <= d <= 10, or
+ # f <= 0 and 0.1 <= d <= 1.
+ # Thus for c*10**e close to 1, f = 0
+ l = len(str(c))
+ f = e+l - (e+l >= 1)
+
+ if p > 0:
+ M = 10**p
+ k = e+p-f
+ if k >= 0:
+ c *= 10**k
+ else:
+ c = _div_nearest(c, 10**-k)
+
+ log_d = _ilog(c, M) # error < 5 + 22 = 27
+ log_10 = _ilog(10*M, M) # error < 15
+ log_d = _div_nearest(log_d*M, log_10)
+ log_tenpower = f*M # exact
+ else:
+ log_d = 0 # error < 2.31
+ log_tenpower = div_nearest(f, 10**-p) # error < 0.5
+
+ return _div_nearest(log_tenpower+log_d, 100)
+
+def _dlog(c, e, p):
+ """Given integers c, e and p with c > 0, compute an integer
+ approximation to 10**p * log(c*10**e), with an absolute error of
+ at most 1. Assumes that c*10**e is not exactly 1."""
+
+ # Increase precision by 2. The precision increase is compensated
+ # for at the end with a division by 100.
+ p += 2
+
+ # rewrite c*10**e as d*10**f with either f >= 0 and 1 <= d <= 10,
+ # or f <= 0 and 0.1 <= d <= 1. Then we can compute 10**p * log(c*10**e)
+ # as 10**p * log(d) + 10**p*f * log(10).
+ l = len(str(c))
+ f = e+l - (e+l >= 1)
+
+ # compute approximation to 10**p*log(d), with error < 27
+ if p > 0:
+ k = e+p-f
+ if k >= 0:
+ c *= 10**k
+ else:
+ c = _div_nearest(c, 10**-k) # error of <= 0.5 in c
+
+ # _ilog magnifies existing error in c by a factor of at most 10
+ log_d = _ilog(c, 10**p) # error < 5 + 22 = 27
+ else:
+ # p <= 0: just approximate the whole thing by 0; error < 2.31
+ log_d = 0
+
+ # compute approximation to 10**p*f*log(10), with error < 17
+ if f:
+ sign_f = [-1, 1][f > 0]
+ if p >= 0:
+ M = 10**p * abs(f)
+ else:
+ M = _div_nearest(abs(f), 10**-p) # M = 10**p*|f|, error <= 0.5
+
+ if M:
+ f_log_ten = sign_f*_ilog(10*M, M) # M*log(10), error <= 1.2 + 15 < 17
+ else:
+ f_log_ten = 0
+ else:
+ f_log_ten = 0
+
+ # error in sum < 17+27 = 44; error after division < 0.44 + 0.5 < 1
+ return _div_nearest(f_log_ten + log_d, 100)
+
+def _iexp(x, M, L=8):
+ """Given integers x and M, M > 0, such that x/M is small in absolute
+ value, compute an integer approximation to M*exp(x/M). For 0 <=
+ x/M <= 2.4, the absolute error in the result is bounded by 60 (and
+ is usually much smaller)."""
+
+ # Algorithm: to compute exp(z) for a real number z, first divide z
+ # by a suitable power R of 2 so that |z/2**R| < 2**-L. Then
+ # compute expm1(z/2**R) = exp(z/2**R) - 1 using the usual Taylor
+ # series
+ #
+ # expm1(x) = x + x**2/2! + x**3/3! + ...
+ #
+ # Now use the identity
+ #
+ # expm1(2x) = expm1(x)*(expm1(x)+2)
+ #
+ # R times to compute the sequence expm1(z/2**R),
+ # expm1(z/2**(R-1)), ... , exp(z/2), exp(z).
+
+ # Find R such that x/2**R/M <= 2**-L
+ R = _nbits((long(x)<<L)//M)
+
+ # Taylor series. (2**L)**T > M
+ T = -int(-10*len(str(M))//(3*L))
+ y = _div_nearest(x, T)
+ Mshift = long(M)<<R
+ for i in xrange(T-1, 0, -1):
+ y = _div_nearest(x*(Mshift + y), Mshift * i)
+
+ # Expansion
+ for k in xrange(R-1, -1, -1):
+ Mshift = long(M)<<(k+2)
+ y = _div_nearest(y*(y+Mshift), Mshift)
+
+ return M+y
+
+def _dexp(c, e, p):
+ """Compute an approximation to exp(c*10**e), with p decimal places of
+ precision.
+
+ Returns d, f such that:
+
+ 10**(p-1) <= d <= 10**p, and
+ (d-1)*10**f < exp(c*10**e) < (d+1)*10**f
+
+ In other words, d*10**f is an approximation to exp(c*10**e) with p
+ digits of precision, and with an error in d of at most 1. This is
+ almost, but not quite, the same as the error being < 1ulp: when d
+ = 10**(p-1) the error could be up to 10 ulp."""
+
+ # we'll call iexp with M = 10**(p+2), giving p+3 digits of precision
+ p += 2
+
+ # compute log10 with extra precision = adjusted exponent of c*10**e
+ extra = max(0, e + len(str(c)) - 1)
+ q = p + extra
+ log10 = _dlog(10, 0, q) # error <= 1
+
+ # compute quotient c*10**e/(log10/10**q) = c*10**(e+q)/log10,
+ # rounding down
+ shift = e+q
+ if shift >= 0:
+ cshift = c*10**shift
+ else:
+ cshift = c//10**-shift
+ quot, rem = divmod(cshift, log10)
+
+ # reduce remainder back to original precision
+ rem = _div_nearest(rem, 10**extra)
+
+ # error in result of _iexp < 120; error after division < 0.62
+ return _div_nearest(_iexp(rem, 10**p), 1000), quot - p + 3
+
+def _dpower(xc, xe, yc, ye, p):
+ """Given integers xc, xe, yc and ye representing Decimals x = xc*10**xe and
+ y = yc*10**ye, compute x**y. Returns a pair of integers (c, e) such that:
+
+ 10**(p-1) <= c <= 10**p, and
+ (c-1)*10**e < x**y < (c+1)*10**e
+
+ in other words, c*10**e is an approximation to x**y with p digits
+ of precision, and with an error in c of at most 1. (This is
+ almost, but not quite, the same as the error being < 1ulp: when c
+ == 10**(p-1) we can only guarantee error < 10ulp.)
+
+ We assume that: x is positive and not equal to 1, and y is nonzero.
+ """
+
+ # Find b such that 10**(b-1) <= |y| <= 10**b
+ b = len(str(abs(yc))) + ye
+
+ # log(x) = lxc*10**(-p-b-1), to p+b+1 places after the decimal point
+ lxc = _dlog(xc, xe, p+b+1)
+
+ # compute product y*log(x) = yc*lxc*10**(-p-b-1+ye) = pc*10**(-p-1)
+ shift = ye-b
+ if shift >= 0:
+ pc = lxc*yc*10**shift
+ else:
+ pc = _div_nearest(lxc*yc, 10**-shift)
+
+ if pc == 0:
+ # we prefer a result that isn't exactly 1; this makes it
+ # easier to compute a correctly rounded result in __pow__
+ if ((len(str(xc)) + xe >= 1) == (yc > 0)): # if x**y > 1:
+ coeff, exp = 10**(p-1)+1, 1-p
+ else:
+ coeff, exp = 10**p-1, -p
+ else:
+ coeff, exp = _dexp(pc, -(p+1), p+1)
+ coeff = _div_nearest(coeff, 10)
+ exp += 1
+
+ return coeff, exp
+
+def _log10_lb(c, correction = {
+ '1': 100, '2': 70, '3': 53, '4': 40, '5': 31,
+ '6': 23, '7': 16, '8': 10, '9': 5}):
+ """Compute a lower bound for 100*log10(c) for a positive integer c."""
+ if c <= 0:
+ raise ValueError("The argument to _log10_lb should be nonnegative.")
+ str_c = str(c)
+ return 100*len(str_c) - correction[str_c[0]]
+
##### Helper Functions ####################################################
-def _convert_other(other):
+def _convert_other(other, raiseit=False):
"""Convert other to Decimal.
Verifies that it's ok to use in an implicit construction.
@@ -2979,6 +5117,8 @@ def _convert_other(other):
return other
if isinstance(other, (int, long)):
return Decimal(other)
+ if raiseit:
+ raise TypeError("Unable to convert %s to Decimal" % other)
return NotImplemented
_infinity_map = {
@@ -3066,12 +5206,16 @@ ExtendedContext = Context(
# Reusable defaults
Inf = Decimal('Inf')
negInf = Decimal('-Inf')
+NaN = Decimal('NaN')
+Dec_0 = Decimal(0)
+Dec_p1 = Decimal(1)
+Dec_n1 = Decimal(-1)
+Dec_p2 = Decimal(2)
+Dec_n2 = Decimal(-2)
# Infsign[sign] is infinity w/ that sign
Infsign = (Inf, negInf)
-NaN = Decimal('NaN')
-
##### crud for parsing strings #############################################
import re