diff options
Diffstat (limited to 'Lib/decimal.py')
-rw-r--r-- | Lib/decimal.py | 143 |
1 files changed, 82 insertions, 61 deletions
diff --git a/Lib/decimal.py b/Lib/decimal.py index f5277c5..e946182 100644 --- a/Lib/decimal.py +++ b/Lib/decimal.py @@ -1871,6 +1871,7 @@ class Decimal(object): """ other = _convert_other(other, raiseit=True) + third = _convert_other(third, raiseit=True) # compute product; raise InvalidOperation if either operand is # a signaling NaN or if the product is zero times infinity. @@ -1900,7 +1901,6 @@ class Decimal(object): str(int(self._int) * int(other._int)), self._exp + other._exp) - third = _convert_other(third, raiseit=True) return product.__add__(third, context) def _power_modulo(self, other, modulo, context=None): @@ -2001,9 +2001,9 @@ class Decimal(object): nonzero. For efficiency, other._exp should not be too large, so that 10**abs(other._exp) is a feasible calculation.""" - # In the comments below, we write x for the value of self and - # y for the value of other. Write x = xc*10**xe and y = - # yc*10**ye. + # In the comments below, we write x for the value of self and y for the + # value of other. Write x = xc*10**xe and abs(y) = yc*10**ye, with xc + # and yc positive integers not divisible by 10. # The main purpose of this method is to identify the *failure* # of x**y to be exactly representable with as little effort as @@ -2011,13 +2011,12 @@ class Decimal(object): # eliminate the possibility of x**y being exact. Only if all # these tests are passed do we go on to actually compute x**y. - # Here's the main idea. First normalize both x and y. We - # express y as a rational m/n, with m and n relatively prime - # and n>0. Then for x**y to be exactly representable (at - # *any* precision), xc must be the nth power of a positive - # integer and xe must be divisible by n. If m is negative - # then additionally xc must be a power of either 2 or 5, hence - # a power of 2**n or 5**n. + # Here's the main idea. Express y as a rational number m/n, with m and + # n relatively prime and n>0. Then for x**y to be exactly + # representable (at *any* precision), xc must be the nth power of a + # positive integer and xe must be divisible by n. If y is negative + # then additionally xc must be a power of either 2 or 5, hence a power + # of 2**n or 5**n. # # There's a limit to how small |y| can be: if y=m/n as above # then: @@ -2089,21 +2088,43 @@ class Decimal(object): return None # now xc is a power of 2; e is its exponent e = _nbits(xc)-1 - # find e*y and xe*y; both must be integers - if ye >= 0: - y_as_int = yc*10**ye - e = e*y_as_int - xe = xe*y_as_int - else: - ten_pow = 10**-ye - e, remainder = divmod(e*yc, ten_pow) - if remainder: - return None - xe, remainder = divmod(xe*yc, ten_pow) - if remainder: - return None - - if e*65 >= p*93: # 93/65 > log(10)/log(5) + + # We now have: + # + # x = 2**e * 10**xe, e > 0, and y < 0. + # + # The exact result is: + # + # x**y = 5**(-e*y) * 10**(e*y + xe*y) + # + # provided that both e*y and xe*y are integers. Note that if + # 5**(-e*y) >= 10**p, then the result can't be expressed + # exactly with p digits of precision. + # + # Using the above, we can guard against large values of ye. + # 93/65 is an upper bound for log(10)/log(5), so if + # + # ye >= len(str(93*p//65)) + # + # then + # + # -e*y >= -y >= 10**ye > 93*p/65 > p*log(10)/log(5), + # + # so 5**(-e*y) >= 10**p, and the coefficient of the result + # can't be expressed in p digits. + + # emax >= largest e such that 5**e < 10**p. + emax = p*93//65 + if ye >= len(str(emax)): + return None + + # Find -e*y and -xe*y; both must be integers + e = _decimal_lshift_exact(e * yc, ye) + xe = _decimal_lshift_exact(xe * yc, ye) + if e is None or xe is None: + return None + + if e > emax: return None xc = 5**e @@ -2117,19 +2138,20 @@ class Decimal(object): while xc % 5 == 0: xc //= 5 e -= 1 - if ye >= 0: - y_as_integer = yc*10**ye - e = e*y_as_integer - xe = xe*y_as_integer - else: - ten_pow = 10**-ye - e, remainder = divmod(e*yc, ten_pow) - if remainder: - return None - xe, remainder = divmod(xe*yc, ten_pow) - if remainder: - return None - if e*3 >= p*10: # 10/3 > log(10)/log(2) + + # Guard against large values of ye, using the same logic as in + # the 'xc is a power of 2' branch. 10/3 is an upper bound for + # log(10)/log(2). + emax = p*10//3 + if ye >= len(str(emax)): + return None + + e = _decimal_lshift_exact(e * yc, ye) + xe = _decimal_lshift_exact(xe * yc, ye) + if e is None or xe is None: + return None + + if e > emax: return None xc = 2**e else: @@ -3881,28 +3903,6 @@ class Context(object): return nc __copy__ = copy - # _clamp is provided for backwards compatibility with third-party - # code. May be removed in Python >= 3.3. - def _get_clamp(self): - "_clamp mirrors the clamp attribute. Its use is deprecated." - import warnings - warnings.warn('Use of the _clamp attribute is deprecated. ' - 'Please use clamp instead.', - DeprecationWarning) - return self.clamp - - def _set_clamp(self, clamp): - "_clamp mirrors the clamp attribute. Its use is deprecated." - import warnings - warnings.warn('Use of the _clamp attribute is deprecated. ' - 'Please use clamp instead.', - DeprecationWarning) - self.clamp = clamp - - # don't bother with _del_clamp; no sane 3rd party code should - # be deleting the _clamp attribute - _clamp = property(_get_clamp, _set_clamp) - def _raise_error(self, condition, explanation = None, *args): """Handles an error @@ -5529,6 +5529,27 @@ def _normalize(op1, op2, prec = 0): _nbits = int.bit_length +def _decimal_lshift_exact(n, e): + """ Given integers n and e, return n * 10**e if it's an integer, else None. + + The computation is designed to avoid computing large powers of 10 + unnecessarily. + + >>> _decimal_lshift_exact(3, 4) + 30000 + >>> _decimal_lshift_exact(300, -999999999) # returns None + + """ + if n == 0: + return 0 + elif e >= 0: + return n * 10**e + else: + # val_n = largest power of 10 dividing n. + str_n = str(abs(n)) + val_n = len(str_n) - len(str_n.rstrip('0')) + return None if val_n < -e else n // 10**-e + def _sqrt_nearest(n, a): """Closest integer to the square root of the positive integer n. a is an initial approximation to the square root. Any positive integer |