summaryrefslogtreecommitdiffstats
path: root/Lib/email/_encoded_words.py
diff options
context:
space:
mode:
Diffstat (limited to 'Lib/email/_encoded_words.py')
-rw-r--r--Lib/email/_encoded_words.py211
1 files changed, 211 insertions, 0 deletions
diff --git a/Lib/email/_encoded_words.py b/Lib/email/_encoded_words.py
new file mode 100644
index 0000000..01fe42f
--- /dev/null
+++ b/Lib/email/_encoded_words.py
@@ -0,0 +1,211 @@
+""" Routines for manipulating RFC2047 encoded words.
+
+This is currently a package-private API, but will be considered for promotion
+to a public API if there is demand.
+
+"""
+
+# An ecoded word looks like this:
+#
+# =?charset[*lang]?cte?encoded_string?=
+#
+# for more information about charset see the charset module. Here it is one
+# of the preferred MIME charset names (hopefully; you never know when parsing).
+# cte (Content Transfer Encoding) is either 'q' or 'b' (ignoring case). In
+# theory other letters could be used for other encodings, but in practice this
+# (almost?) never happens. There could be a public API for adding entries
+# to to the CTE tables, but YAGNI for now. 'q' is Quoted Printable, 'b' is
+# Base64. The meaning of encoded_string should be obvious. 'lang' is optional
+# as indicated by the brackets (they are not part of the syntax) but is almost
+# never encountered in practice.
+#
+# The general interface for a CTE decoder is that it takes the encoded_string
+# as its argument, and returns a tuple (cte_decoded_string, defects). The
+# cte_decoded_string is the original binary that was encoded using the
+# specified cte. 'defects' is a list of MessageDefect instances indicating any
+# problems encountered during conversion. 'charset' and 'lang' are the
+# corresponding strings extracted from the EW, case preserved.
+#
+# The general interface for a CTE encoder is that it takes a binary sequence
+# as input and returns the cte_encoded_string, which is an ascii-only string.
+#
+# Each decoder must also supply a length function that takes the binary
+# sequence as its argument and returns the length of the resulting encoded
+# string.
+#
+# The main API functions for the module are decode, which calls the decoder
+# referenced by the cte specifier, and encode, which adds the appropriate
+# RFC 2047 "chrome" to the encoded string, and can optionally automatically
+# select the shortest possible encoding. See their docstrings below for
+# details.
+
+import re
+import base64
+import binascii
+import functools
+from string import ascii_letters, digits
+from email import errors
+
+#
+# Quoted Printable
+#
+
+# regex based decoder.
+_q_byte_subber = functools.partial(re.compile(br'=([a-fA-F0-9]{2})').sub,
+ lambda m: bytes([int(m.group(1), 16)]))
+
+def decode_q(encoded):
+ encoded = encoded.replace(b'_', b' ')
+ return _q_byte_subber(encoded), []
+
+
+# dict mapping bytes to their encoded form
+class QByteMap(dict):
+
+ safe = b'-!*+/' + ascii_letters.encode('ascii') + digits.encode('ascii')
+
+ def __missing__(self, key):
+ if key in self.safe:
+ self[key] = chr(key)
+ else:
+ self[key] = "={:02X}".format(key)
+ return self[key]
+
+_q_byte_map = QByteMap()
+
+# In headers spaces are mapped to '_'.
+_q_byte_map[ord(' ')] = '_'
+
+def encode_q(bstring):
+ return ''.join(_q_byte_map[x] for x in bstring)
+
+def len_q(bstring):
+ return sum(len(_q_byte_map[x]) for x in bstring)
+
+
+#
+# Base64
+#
+
+def decode_b(encoded):
+ defects = []
+ pad_err = len(encoded) % 4
+ if pad_err:
+ defects.append(errors.InvalidBase64PaddingDefect())
+ padded_encoded = encoded + b'==='[:4-pad_err]
+ else:
+ padded_encoded = encoded
+ try:
+ return base64.b64decode(padded_encoded, validate=True), defects
+ except binascii.Error:
+ # Since we had correct padding, this must an invalid char error.
+ defects = [errors.InvalidBase64CharactersDefect()]
+ # The non-alphabet characters are ignored as far as padding
+ # goes, but we don't know how many there are. So we'll just
+ # try various padding lengths until something works.
+ for i in 0, 1, 2, 3:
+ try:
+ return base64.b64decode(encoded+b'='*i, validate=False), defects
+ except binascii.Error:
+ if i==0:
+ defects.append(errors.InvalidBase64PaddingDefect())
+ else:
+ # This should never happen.
+ raise AssertionError("unexpected binascii.Error")
+
+def encode_b(bstring):
+ return base64.b64encode(bstring).decode('ascii')
+
+def len_b(bstring):
+ groups_of_3, leftover = divmod(len(bstring), 3)
+ # 4 bytes out for each 3 bytes (or nonzero fraction thereof) in.
+ return groups_of_3 * 4 + (4 if leftover else 0)
+
+
+_cte_decoders = {
+ 'q': decode_q,
+ 'b': decode_b,
+ }
+
+def decode(ew):
+ """Decode encoded word and return (string, charset, lang, defects) tuple.
+
+ An RFC 2047/2243 encoded word has the form:
+
+ =?charset*lang?cte?encoded_string?=
+
+ where '*lang' may be omitted but the other parts may not be.
+
+ This function expects exactly such a string (that is, it does not check the
+ syntax and may raise errors if the string is not well formed), and returns
+ the encoded_string decoded first from its Content Transfer Encoding and
+ then from the resulting bytes into unicode using the specified charset. If
+ the cte-decoded string does not successfully decode using the specified
+ character set, a defect is added to the defects list and the unknown octets
+ are replaced by the unicode 'unknown' character \uFDFF.
+
+ The specified charset and language are returned. The default for language,
+ which is rarely if ever encountered, is the empty string.
+
+ """
+ _, charset, cte, cte_string, _ = ew.split('?')
+ charset, _, lang = charset.partition('*')
+ cte = cte.lower()
+ # Recover the original bytes and do CTE decoding.
+ bstring = cte_string.encode('ascii', 'surrogateescape')
+ bstring, defects = _cte_decoders[cte](bstring)
+ # Turn the CTE decoded bytes into unicode.
+ try:
+ string = bstring.decode(charset)
+ except UnicodeError:
+ defects.append(errors.UndecodableBytesDefect("Encoded word "
+ "contains bytes not decodable using {} charset".format(charset)))
+ string = bstring.decode(charset, 'surrogateescape')
+ except LookupError:
+ string = bstring.decode('ascii', 'surrogateescape')
+ if charset.lower() != 'unknown-8bit':
+ defects.append(errors.CharsetError("Unknown charset {} "
+ "in encoded word; decoded as unknown bytes".format(charset)))
+ return string, charset, lang, defects
+
+
+_cte_encoders = {
+ 'q': encode_q,
+ 'b': encode_b,
+ }
+
+_cte_encode_length = {
+ 'q': len_q,
+ 'b': len_b,
+ }
+
+def encode(string, charset='utf-8', encoding=None, lang=''):
+ """Encode string using the CTE encoding that produces the shorter result.
+
+ Produces an RFC 2047/2243 encoded word of the form:
+
+ =?charset*lang?cte?encoded_string?=
+
+ where '*lang' is omitted unless the 'lang' parameter is given a value.
+ Optional argument charset (defaults to utf-8) specifies the charset to use
+ to encode the string to binary before CTE encoding it. Optional argument
+ 'encoding' is the cte specifier for the encoding that should be used ('q'
+ or 'b'); if it is None (the default) the encoding which produces the
+ shortest encoded sequence is used, except that 'q' is preferred if it is up
+ to five characters longer. Optional argument 'lang' (default '') gives the
+ RFC 2243 language string to specify in the encoded word.
+
+ """
+ if charset == 'unknown-8bit':
+ bstring = string.encode('ascii', 'surrogateescape')
+ else:
+ bstring = string.encode(charset)
+ if encoding is None:
+ qlen = _cte_encode_length['q'](bstring)
+ blen = _cte_encode_length['b'](bstring)
+ # Bias toward q. 5 is arbitrary.
+ encoding = 'q' if qlen - blen < 5 else 'b'
+ encoded = _cte_encoders[encoding](bstring)
+ if lang:
+ lang = '*' + lang
+ return "=?{}{}?{}?{}?=".format(charset, lang, encoding, encoded)