summaryrefslogtreecommitdiffstats
path: root/Lib/functools.py
diff options
context:
space:
mode:
Diffstat (limited to 'Lib/functools.py')
-rw-r--r--Lib/functools.py94
1 files changed, 93 insertions, 1 deletions
diff --git a/Lib/functools.py b/Lib/functools.py
index 1a1f22e..863706d 100644
--- a/Lib/functools.py
+++ b/Lib/functools.py
@@ -4,10 +4,17 @@
# to allow utilities written in Python to be added
# to the functools module.
# Written by Nick Coghlan <ncoghlan at gmail.com>
-# Copyright (C) 2006 Python Software Foundation.
+# and Raymond Hettinger <python at rcn.com>
+# Copyright (C) 2006-2010 Python Software Foundation.
# See C source code for _functools credits/copyright
+__all__ = ['update_wrapper', 'wraps', 'WRAPPER_ASSIGNMENTS', 'WRAPPER_UPDATES',
+ 'total_ordering', 'cmp_to_key', 'lfu_cache', 'lru_cache']
+
from _functools import partial, reduce
+from collections import OrderedDict, Counter
+from heapq import nsmallest
+from operator import itemgetter
# update_wrapper() and wraps() are tools to help write
# wrapper functions that can handle naive introspection
@@ -97,3 +104,88 @@ def cmp_to_key(mycmp):
def __hash__(self):
raise TypeError('hash not implemented')
return K
+
+def lfu_cache(maxsize=100):
+ '''Least-frequently-used cache decorator.
+
+ Arguments to the cached function must be hashable.
+ Cache performance statistics stored in f.hits and f.misses.
+ Clear the cache using f.clear().
+ http://en.wikipedia.org/wiki/Cache_algorithms#Least-Frequently_Used
+
+ '''
+ def decorating_function(user_function):
+ cache = {} # mapping of args to results
+ use_count = Counter() # times each key has been accessed
+ kwd_mark = object() # separate positional and keyword args
+
+ @wraps(user_function)
+ def wrapper(*args, **kwds):
+ key = args
+ if kwds:
+ key += (kwd_mark,) + tuple(sorted(kwds.items()))
+ use_count[key] += 1 # count a use of this key
+ try:
+ result = cache[key]
+ wrapper.hits += 1
+ except KeyError:
+ result = user_function(*args, **kwds)
+ cache[key] = result
+ wrapper.misses += 1
+ if len(cache) > maxsize:
+ # purge the 10% least frequently used entries
+ for key, _ in nsmallest(maxsize // 10,
+ use_count.items(),
+ key=itemgetter(1)):
+ del cache[key], use_count[key]
+ return result
+
+ def clear():
+ 'Clear the cache and cache statistics'
+ cache.clear()
+ use_count.clear()
+ wrapper.hits = wrapper.misses = 0
+
+ wrapper.hits = wrapper.misses = 0
+ wrapper.clear = clear
+ return wrapper
+ return decorating_function
+
+def lru_cache(maxsize=100):
+ '''Least-recently-used cache decorator.
+
+ Arguments to the cached function must be hashable.
+ Cache performance statistics stored in f.hits and f.misses.
+ Clear the cache using f.clear().
+ http://en.wikipedia.org/wiki/Cache_algorithms#Least_Recently_Used
+
+ '''
+ def decorating_function(user_function):
+ cache = OrderedDict() # ordered least recent to most recent
+ kwd_mark = object() # separate positional and keyword args
+
+ @wraps(user_function)
+ def wrapper(*args, **kwds):
+ key = args
+ if kwds:
+ key += (kwd_mark,) + tuple(sorted(kwds.items()))
+ try:
+ result = cache.pop(key)
+ wrapper.hits += 1
+ except KeyError:
+ result = user_function(*args, **kwds)
+ wrapper.misses += 1
+ if len(cache) >= maxsize:
+ cache.popitem(0) # purge least recently used cache entry
+ cache[key] = result # record recent use of this key
+ return result
+
+ def clear():
+ 'Clear the cache and cache statistics'
+ cache.clear()
+ wrapper.hits = wrapper.misses = 0
+
+ wrapper.hits = wrapper.misses = 0
+ wrapper.clear = clear
+ return wrapper
+ return decorating_function