diff options
Diffstat (limited to 'Lib/lib-old')
-rw-r--r-- | Lib/lib-old/poly.py | 52 | ||||
-rw-r--r-- | Lib/lib-old/zmod.py | 94 |
2 files changed, 146 insertions, 0 deletions
diff --git a/Lib/lib-old/poly.py b/Lib/lib-old/poly.py new file mode 100644 index 0000000..57bd203 --- /dev/null +++ b/Lib/lib-old/poly.py @@ -0,0 +1,52 @@ +# module 'poly' -- Polynomials + +# A polynomial is represented by a list of coefficients, e.g., +# [1, 10, 5] represents 1*x**0 + 10*x**1 + 5*x**2 (or 1 + 10x + 5x**2). +# There is no way to suppress internal zeros; trailing zeros are +# taken out by normalize(). + +def normalize(p): # Strip unnecessary zero coefficients + n = len(p) + while p: + if p[n-1]: return p[:n] + n = n-1 + return [] + +def plus(a, b): + if len(a) < len(b): a, b = b, a # make sure a is the longest + res = a[:] # make a copy + for i in range(len(b)): + res[i] = res[i] + b[i] + return normalize(res) + +def minus(a, b): + neg_b = map(lambda x: -x, b[:]) + return plus(a, neg_b) + +def one(power, coeff): # Representation of coeff * x**power + res = [] + for i in range(power): res.append(0) + return res + [coeff] + +def times(a, b): + res = [] + for i in range(len(a)): + for j in range(len(b)): + res = plus(res, one(i+j, a[i]*b[j])) + return res + +def power(a, n): # Raise polynomial a to the positive integral power n + if n == 0: return [1] + if n == 1: return a + if n/2*2 == n: + b = power(a, n/2) + return times(b, b) + return times(power(a, n-1), a) + +def der(a): # First derivative + res = a[1:] + for i in range(len(res)): + res[i] = res[i] * (i+1) + return res + +# Computing a primitive function would require rational arithmetic... diff --git a/Lib/lib-old/zmod.py b/Lib/lib-old/zmod.py new file mode 100644 index 0000000..4f03626 --- /dev/null +++ b/Lib/lib-old/zmod.py @@ -0,0 +1,94 @@ +# module 'zmod' + +# Compute properties of mathematical "fields" formed by taking +# Z/n (the whole numbers modulo some whole number n) and an +# irreducible polynomial (i.e., a polynomial with only complex zeros), +# e.g., Z/5 and X**2 + 2. +# +# The field is formed by taking all possible linear combinations of +# a set of d base vectors (where d is the degree of the polynomial). +# +# Note that this procedure doesn't yield a field for all combinations +# of n and p: it may well be that some numbers have more than one +# inverse and others have none. This is what we check. +# +# Remember that a field is a ring where each element has an inverse. +# A ring has commutative addition and multiplication, a zero and a one: +# 0*x = x*0 = 0, 0+x = x+0 = x, 1*x = x*1 = x. Also, the distributive +# property holds: a*(b+c) = a*b + b*c. +# (XXX I forget if this is an axiom or follows from the rules.) + +import poly + + +# Example N and polynomial + +N = 5 +P = poly.plus(poly.one(0, 2), poly.one(2, 1)) # 2 + x**2 + + +# Return x modulo y. Returns >= 0 even if x < 0. + +def mod(x, y): + return divmod(x, y)[1] + + +# Normalize a polynomial modulo n and modulo p. + +def norm(a, n, p): + a = poly.modulo(a, p) + a = a[:] + for i in range(len(a)): a[i] = mod(a[i], n) + a = poly.normalize(a) + return a + + +# Make a list of all n^d elements of the proposed field. + +def make_all(mat): + all = [] + for row in mat: + for a in row: + all.append(a) + return all + +def make_elements(n, d): + if d == 0: return [poly.one(0, 0)] + sub = make_elements(n, d-1) + all = [] + for a in sub: + for i in range(n): + all.append(poly.plus(a, poly.one(d-1, i))) + return all + +def make_inv(all, n, p): + x = poly.one(1, 1) + inv = [] + for a in all: + inv.append(norm(poly.times(a, x), n, p)) + return inv + +def checkfield(n, p): + all = make_elements(n, len(p)-1) + inv = make_inv(all, n, p) + all1 = all[:] + inv1 = inv[:] + all1.sort() + inv1.sort() + if all1 == inv1: print 'BINGO!' + else: + print 'Sorry:', n, p + print all + print inv + +def rj(s, width): + if type(s) <> type(''): s = `s` + n = len(s) + if n >= width: return s + return ' '*(width - n) + s + +def lj(s, width): + if type(s) <> type(''): s = `s` + n = len(s) + if n >= width: return s + return s + ' '*(width - n) |