summaryrefslogtreecommitdiffstats
path: root/Lib/lib-old
diff options
context:
space:
mode:
Diffstat (limited to 'Lib/lib-old')
-rw-r--r--Lib/lib-old/poly.py52
-rw-r--r--Lib/lib-old/zmod.py94
2 files changed, 146 insertions, 0 deletions
diff --git a/Lib/lib-old/poly.py b/Lib/lib-old/poly.py
new file mode 100644
index 0000000..57bd203
--- /dev/null
+++ b/Lib/lib-old/poly.py
@@ -0,0 +1,52 @@
+# module 'poly' -- Polynomials
+
+# A polynomial is represented by a list of coefficients, e.g.,
+# [1, 10, 5] represents 1*x**0 + 10*x**1 + 5*x**2 (or 1 + 10x + 5x**2).
+# There is no way to suppress internal zeros; trailing zeros are
+# taken out by normalize().
+
+def normalize(p): # Strip unnecessary zero coefficients
+ n = len(p)
+ while p:
+ if p[n-1]: return p[:n]
+ n = n-1
+ return []
+
+def plus(a, b):
+ if len(a) < len(b): a, b = b, a # make sure a is the longest
+ res = a[:] # make a copy
+ for i in range(len(b)):
+ res[i] = res[i] + b[i]
+ return normalize(res)
+
+def minus(a, b):
+ neg_b = map(lambda x: -x, b[:])
+ return plus(a, neg_b)
+
+def one(power, coeff): # Representation of coeff * x**power
+ res = []
+ for i in range(power): res.append(0)
+ return res + [coeff]
+
+def times(a, b):
+ res = []
+ for i in range(len(a)):
+ for j in range(len(b)):
+ res = plus(res, one(i+j, a[i]*b[j]))
+ return res
+
+def power(a, n): # Raise polynomial a to the positive integral power n
+ if n == 0: return [1]
+ if n == 1: return a
+ if n/2*2 == n:
+ b = power(a, n/2)
+ return times(b, b)
+ return times(power(a, n-1), a)
+
+def der(a): # First derivative
+ res = a[1:]
+ for i in range(len(res)):
+ res[i] = res[i] * (i+1)
+ return res
+
+# Computing a primitive function would require rational arithmetic...
diff --git a/Lib/lib-old/zmod.py b/Lib/lib-old/zmod.py
new file mode 100644
index 0000000..4f03626
--- /dev/null
+++ b/Lib/lib-old/zmod.py
@@ -0,0 +1,94 @@
+# module 'zmod'
+
+# Compute properties of mathematical "fields" formed by taking
+# Z/n (the whole numbers modulo some whole number n) and an
+# irreducible polynomial (i.e., a polynomial with only complex zeros),
+# e.g., Z/5 and X**2 + 2.
+#
+# The field is formed by taking all possible linear combinations of
+# a set of d base vectors (where d is the degree of the polynomial).
+#
+# Note that this procedure doesn't yield a field for all combinations
+# of n and p: it may well be that some numbers have more than one
+# inverse and others have none. This is what we check.
+#
+# Remember that a field is a ring where each element has an inverse.
+# A ring has commutative addition and multiplication, a zero and a one:
+# 0*x = x*0 = 0, 0+x = x+0 = x, 1*x = x*1 = x. Also, the distributive
+# property holds: a*(b+c) = a*b + b*c.
+# (XXX I forget if this is an axiom or follows from the rules.)
+
+import poly
+
+
+# Example N and polynomial
+
+N = 5
+P = poly.plus(poly.one(0, 2), poly.one(2, 1)) # 2 + x**2
+
+
+# Return x modulo y. Returns >= 0 even if x < 0.
+
+def mod(x, y):
+ return divmod(x, y)[1]
+
+
+# Normalize a polynomial modulo n and modulo p.
+
+def norm(a, n, p):
+ a = poly.modulo(a, p)
+ a = a[:]
+ for i in range(len(a)): a[i] = mod(a[i], n)
+ a = poly.normalize(a)
+ return a
+
+
+# Make a list of all n^d elements of the proposed field.
+
+def make_all(mat):
+ all = []
+ for row in mat:
+ for a in row:
+ all.append(a)
+ return all
+
+def make_elements(n, d):
+ if d == 0: return [poly.one(0, 0)]
+ sub = make_elements(n, d-1)
+ all = []
+ for a in sub:
+ for i in range(n):
+ all.append(poly.plus(a, poly.one(d-1, i)))
+ return all
+
+def make_inv(all, n, p):
+ x = poly.one(1, 1)
+ inv = []
+ for a in all:
+ inv.append(norm(poly.times(a, x), n, p))
+ return inv
+
+def checkfield(n, p):
+ all = make_elements(n, len(p)-1)
+ inv = make_inv(all, n, p)
+ all1 = all[:]
+ inv1 = inv[:]
+ all1.sort()
+ inv1.sort()
+ if all1 == inv1: print 'BINGO!'
+ else:
+ print 'Sorry:', n, p
+ print all
+ print inv
+
+def rj(s, width):
+ if type(s) <> type(''): s = `s`
+ n = len(s)
+ if n >= width: return s
+ return ' '*(width - n) + s
+
+def lj(s, width):
+ if type(s) <> type(''): s = `s`
+ n = len(s)
+ if n >= width: return s
+ return s + ' '*(width - n)