summaryrefslogtreecommitdiffstats
path: root/Lib/packaging/compiler/ccompiler.py
diff options
context:
space:
mode:
Diffstat (limited to 'Lib/packaging/compiler/ccompiler.py')
-rw-r--r--Lib/packaging/compiler/ccompiler.py863
1 files changed, 0 insertions, 863 deletions
diff --git a/Lib/packaging/compiler/ccompiler.py b/Lib/packaging/compiler/ccompiler.py
deleted file mode 100644
index 98c4b68..0000000
--- a/Lib/packaging/compiler/ccompiler.py
+++ /dev/null
@@ -1,863 +0,0 @@
-"""Abstract base class for compilers.
-
-This modules contains CCompiler, an abstract base class that defines the
-interface for the compiler abstraction model used by packaging.
-"""
-
-import os
-from shutil import move
-from packaging import logger
-from packaging.util import split_quoted, execute, newer_group, spawn
-from packaging.errors import (CompileError, LinkError, UnknownFileError)
-from packaging.compiler import gen_preprocess_options
-
-
-class CCompiler:
- """Abstract base class to define the interface that must be implemented
- by real compiler classes. Also has some utility methods used by
- several compiler classes.
-
- The basic idea behind a compiler abstraction class is that each
- instance can be used for all the compile/link steps in building a
- single project. Thus, attributes common to all of those compile and
- link steps -- include directories, macros to define, libraries to link
- against, etc. -- are attributes of the compiler instance. To allow for
- variability in how individual files are treated, most of those
- attributes may be varied on a per-compilation or per-link basis.
- """
-
- # 'name' is a class attribute that identifies this class. It
- # keeps code that wants to know what kind of compiler it's dealing with
- # from having to import all possible compiler classes just to do an
- # 'isinstance'.
- name = None
- description = None
-
- # XXX things not handled by this compiler abstraction model:
- # * client can't provide additional options for a compiler,
- # e.g. warning, optimization, debugging flags. Perhaps this
- # should be the domain of concrete compiler abstraction classes
- # (UnixCCompiler, MSVCCompiler, etc.) -- or perhaps the base
- # class should have methods for the common ones.
- # * can't completely override the include or library searchg
- # path, ie. no "cc -I -Idir1 -Idir2" or "cc -L -Ldir1 -Ldir2".
- # I'm not sure how widely supported this is even by Unix
- # compilers, much less on other platforms. And I'm even less
- # sure how useful it is; maybe for cross-compiling, but
- # support for that is a ways off. (And anyways, cross
- # compilers probably have a dedicated binary with the
- # right paths compiled in. I hope.)
- # * can't do really freaky things with the library list/library
- # dirs, e.g. "-Ldir1 -lfoo -Ldir2 -lfoo" to link against
- # different versions of libfoo.a in different locations. I
- # think this is useless without the ability to null out the
- # library search path anyways.
-
-
- # Subclasses that rely on the standard filename generation methods
- # implemented below should override these; see the comment near
- # those methods ('object_filenames()' et. al.) for details:
- src_extensions = None # list of strings
- obj_extension = None # string
- static_lib_extension = None
- shared_lib_extension = None # string
- static_lib_format = None # format string
- shared_lib_format = None # prob. same as static_lib_format
- exe_extension = None # string
-
- # Default language settings. language_map is used to detect a source
- # file or Extension target language, checking source filenames.
- # language_order is used to detect the language precedence, when deciding
- # what language to use when mixing source types. For example, if some
- # extension has two files with ".c" extension, and one with ".cpp", it
- # is still linked as c++.
- language_map = {".c": "c",
- ".cc": "c++",
- ".cpp": "c++",
- ".cxx": "c++",
- ".m": "objc",
- }
- language_order = ["c++", "objc", "c"]
-
- def __init__(self, dry_run=False, force=False):
- self.dry_run = dry_run
- self.force = force
-
- # 'output_dir': a common output directory for object, library,
- # shared object, and shared library files
- self.output_dir = None
-
- # 'macros': a list of macro definitions (or undefinitions). A
- # macro definition is a 2-tuple (name, value), where the value is
- # either a string or None (no explicit value). A macro
- # undefinition is a 1-tuple (name,).
- self.macros = []
-
- # 'include_dirs': a list of directories to search for include files
- self.include_dirs = []
-
- # 'libraries': a list of libraries to include in any link
- # (library names, not filenames: eg. "foo" not "libfoo.a")
- self.libraries = []
-
- # 'library_dirs': a list of directories to search for libraries
- self.library_dirs = []
-
- # 'runtime_library_dirs': a list of directories to search for
- # shared libraries/objects at runtime
- self.runtime_library_dirs = []
-
- # 'objects': a list of object files (or similar, such as explicitly
- # named library files) to include on any link
- self.objects = []
-
- for key, value in self.executables.items():
- self.set_executable(key, value)
-
- def set_executables(self, **args):
- """Define the executables (and options for them) that will be run
- to perform the various stages of compilation. The exact set of
- executables that may be specified here depends on the compiler
- class (via the 'executables' class attribute), but most will have:
- compiler the C/C++ compiler
- linker_so linker used to create shared objects and libraries
- linker_exe linker used to create binary executables
- archiver static library creator
-
- On platforms with a command line (Unix, DOS/Windows), each of these
- is a string that will be split into executable name and (optional)
- list of arguments. (Splitting the string is done similarly to how
- Unix shells operate: words are delimited by spaces, but quotes and
- backslashes can override this. See
- 'distutils.util.split_quoted()'.)
- """
-
- # Note that some CCompiler implementation classes will define class
- # attributes 'cpp', 'cc', etc. with hard-coded executable names;
- # this is appropriate when a compiler class is for exactly one
- # compiler/OS combination (eg. MSVCCompiler). Other compiler
- # classes (UnixCCompiler, in particular) are driven by information
- # discovered at run-time, since there are many different ways to do
- # basically the same things with Unix C compilers.
-
- for key, value in args.items():
- if key not in self.executables:
- raise ValueError("unknown executable '%s' for class %s" % \
- (key, self.__class__.__name__))
- self.set_executable(key, value)
-
- def set_executable(self, key, value):
- if isinstance(value, str):
- setattr(self, key, split_quoted(value))
- else:
- setattr(self, key, value)
-
- def _find_macro(self, name):
- i = 0
- for defn in self.macros:
- if defn[0] == name:
- return i
- i = i + 1
- return None
-
- def _check_macro_definitions(self, definitions):
- """Ensures that every element of 'definitions' is a valid macro
- definition, ie. either (name,value) 2-tuple or a (name,) tuple. Do
- nothing if all definitions are OK, raise TypeError otherwise.
- """
- for defn in definitions:
- if not (isinstance(defn, tuple) and
- (len(defn) == 1 or
- (len(defn) == 2 and
- (isinstance(defn[1], str) or defn[1] is None))) and
- isinstance(defn[0], str)):
- raise TypeError(("invalid macro definition '%s': " % defn) + \
- "must be tuple (string,), (string, string), or " + \
- "(string, None)")
-
-
- # -- Bookkeeping methods -------------------------------------------
-
- def define_macro(self, name, value=None):
- """Define a preprocessor macro for all compilations driven by this
- compiler object. The optional parameter 'value' should be a
- string; if it is not supplied, then the macro will be defined
- without an explicit value and the exact outcome depends on the
- compiler used (XXX true? does ANSI say anything about this?)
- """
- # Delete from the list of macro definitions/undefinitions if
- # already there (so that this one will take precedence).
- i = self._find_macro(name)
- if i is not None:
- del self.macros[i]
-
- defn = (name, value)
- self.macros.append(defn)
-
- def undefine_macro(self, name):
- """Undefine a preprocessor macro for all compilations driven by
- this compiler object. If the same macro is defined by
- 'define_macro()' and undefined by 'undefine_macro()' the last call
- takes precedence (including multiple redefinitions or
- undefinitions). If the macro is redefined/undefined on a
- per-compilation basis (ie. in the call to 'compile()'), then that
- takes precedence.
- """
- # Delete from the list of macro definitions/undefinitions if
- # already there (so that this one will take precedence).
- i = self._find_macro(name)
- if i is not None:
- del self.macros[i]
-
- undefn = (name,)
- self.macros.append(undefn)
-
- def add_include_dir(self, dir):
- """Add 'dir' to the list of directories that will be searched for
- header files. The compiler is instructed to search directories in
- the order in which they are supplied by successive calls to
- 'add_include_dir()'.
- """
- self.include_dirs.append(dir)
-
- def set_include_dirs(self, dirs):
- """Set the list of directories that will be searched to 'dirs' (a
- list of strings). Overrides any preceding calls to
- 'add_include_dir()'; subsequence calls to 'add_include_dir()' add
- to the list passed to 'set_include_dirs()'. This does not affect
- any list of standard include directories that the compiler may
- search by default.
- """
- self.include_dirs = dirs[:]
-
- def add_library(self, libname):
- """Add 'libname' to the list of libraries that will be included in
- all links driven by this compiler object. Note that 'libname'
- should *not* be the name of a file containing a library, but the
- name of the library itself: the actual filename will be inferred by
- the linker, the compiler, or the compiler class (depending on the
- platform).
-
- The linker will be instructed to link against libraries in the
- order they were supplied to 'add_library()' and/or
- 'set_libraries()'. It is perfectly valid to duplicate library
- names; the linker will be instructed to link against libraries as
- many times as they are mentioned.
- """
- self.libraries.append(libname)
-
- def set_libraries(self, libnames):
- """Set the list of libraries to be included in all links driven by
- this compiler object to 'libnames' (a list of strings). This does
- not affect any standard system libraries that the linker may
- include by default.
- """
- self.libraries = libnames[:]
-
-
- def add_library_dir(self, dir):
- """Add 'dir' to the list of directories that will be searched for
- libraries specified to 'add_library()' and 'set_libraries()'. The
- linker will be instructed to search for libraries in the order they
- are supplied to 'add_library_dir()' and/or 'set_library_dirs()'.
- """
- self.library_dirs.append(dir)
-
- def set_library_dirs(self, dirs):
- """Set the list of library search directories to 'dirs' (a list of
- strings). This does not affect any standard library search path
- that the linker may search by default.
- """
- self.library_dirs = dirs[:]
-
- def add_runtime_library_dir(self, dir):
- """Add 'dir' to the list of directories that will be searched for
- shared libraries at runtime.
- """
- self.runtime_library_dirs.append(dir)
-
- def set_runtime_library_dirs(self, dirs):
- """Set the list of directories to search for shared libraries at
- runtime to 'dirs' (a list of strings). This does not affect any
- standard search path that the runtime linker may search by
- default.
- """
- self.runtime_library_dirs = dirs[:]
-
- def add_link_object(self, object):
- """Add 'object' to the list of object files (or analogues, such as
- explicitly named library files or the output of "resource
- compilers") to be included in every link driven by this compiler
- object.
- """
- self.objects.append(object)
-
- def set_link_objects(self, objects):
- """Set the list of object files (or analogues) to be included in
- every link to 'objects'. This does not affect any standard object
- files that the linker may include by default (such as system
- libraries).
- """
- self.objects = objects[:]
-
-
- # -- Private utility methods --------------------------------------
- # (here for the convenience of subclasses)
-
- # Helper method to prep compiler in subclass compile() methods
- def _setup_compile(self, outdir, macros, incdirs, sources, depends,
- extra):
- """Process arguments and decide which source files to compile."""
- if outdir is None:
- outdir = self.output_dir
- elif not isinstance(outdir, str):
- raise TypeError("'output_dir' must be a string or None")
-
- if macros is None:
- macros = self.macros
- elif isinstance(macros, list):
- macros = macros + (self.macros or [])
- else:
- raise TypeError("'macros' (if supplied) must be a list of tuples")
-
- if incdirs is None:
- incdirs = self.include_dirs
- elif isinstance(incdirs, (list, tuple)):
- incdirs = list(incdirs) + (self.include_dirs or [])
- else:
- raise TypeError(
- "'include_dirs' (if supplied) must be a list of strings")
-
- if extra is None:
- extra = []
-
- # Get the list of expected output (object) files
- objects = self.object_filenames(sources,
- strip_dir=False,
- output_dir=outdir)
- assert len(objects) == len(sources)
-
- pp_opts = gen_preprocess_options(macros, incdirs)
-
- build = {}
- for i in range(len(sources)):
- src = sources[i]
- obj = objects[i]
- ext = os.path.splitext(src)[1]
- self.mkpath(os.path.dirname(obj))
- build[obj] = (src, ext)
-
- return macros, objects, extra, pp_opts, build
-
- def _get_cc_args(self, pp_opts, debug, before):
- # works for unixccompiler and cygwinccompiler
- cc_args = pp_opts + ['-c']
- if debug:
- cc_args[:0] = ['-g']
- if before:
- cc_args[:0] = before
- return cc_args
-
- def _fix_compile_args(self, output_dir, macros, include_dirs):
- """Typecheck and fix-up some of the arguments to the 'compile()'
- method, and return fixed-up values. Specifically: if 'output_dir'
- is None, replaces it with 'self.output_dir'; ensures that 'macros'
- is a list, and augments it with 'self.macros'; ensures that
- 'include_dirs' is a list, and augments it with 'self.include_dirs'.
- Guarantees that the returned values are of the correct type,
- i.e. for 'output_dir' either string or None, and for 'macros' and
- 'include_dirs' either list or None.
- """
- if output_dir is None:
- output_dir = self.output_dir
- elif not isinstance(output_dir, str):
- raise TypeError("'output_dir' must be a string or None")
-
- if macros is None:
- macros = self.macros
- elif isinstance(macros, list):
- macros = macros + (self.macros or [])
- else:
- raise TypeError("'macros' (if supplied) must be a list of tuples")
-
- if include_dirs is None:
- include_dirs = self.include_dirs
- elif isinstance(include_dirs, (list, tuple)):
- include_dirs = list(include_dirs) + (self.include_dirs or [])
- else:
- raise TypeError(
- "'include_dirs' (if supplied) must be a list of strings")
-
- return output_dir, macros, include_dirs
-
- def _fix_object_args(self, objects, output_dir):
- """Typecheck and fix up some arguments supplied to various methods.
- Specifically: ensure that 'objects' is a list; if output_dir is
- None, replace with self.output_dir. Return fixed versions of
- 'objects' and 'output_dir'.
- """
- if not isinstance(objects, (list, tuple)):
- raise TypeError("'objects' must be a list or tuple of strings")
- objects = list(objects)
-
- if output_dir is None:
- output_dir = self.output_dir
- elif not isinstance(output_dir, str):
- raise TypeError("'output_dir' must be a string or None")
-
- return objects, output_dir
-
- def _fix_lib_args(self, libraries, library_dirs, runtime_library_dirs):
- """Typecheck and fix up some of the arguments supplied to the
- 'link_*' methods. Specifically: ensure that all arguments are
- lists, and augment them with their permanent versions
- (eg. 'self.libraries' augments 'libraries'). Return a tuple with
- fixed versions of all arguments.
- """
- if libraries is None:
- libraries = self.libraries
- elif isinstance(libraries, (list, tuple)):
- libraries = list(libraries) + (self.libraries or [])
- else:
- raise TypeError(
- "'libraries' (if supplied) must be a list of strings")
-
- if library_dirs is None:
- library_dirs = self.library_dirs
- elif isinstance(library_dirs, (list, tuple)):
- library_dirs = list(library_dirs) + (self.library_dirs or [])
- else:
- raise TypeError(
- "'library_dirs' (if supplied) must be a list of strings")
-
- if runtime_library_dirs is None:
- runtime_library_dirs = self.runtime_library_dirs
- elif isinstance(runtime_library_dirs, (list, tuple)):
- runtime_library_dirs = (list(runtime_library_dirs) +
- (self.runtime_library_dirs or []))
- else:
- raise TypeError("'runtime_library_dirs' (if supplied) "
- "must be a list of strings")
-
- return libraries, library_dirs, runtime_library_dirs
-
- def _need_link(self, objects, output_file):
- """Return true if we need to relink the files listed in 'objects'
- to recreate 'output_file'.
- """
- if self.force:
- return True
- else:
- if self.dry_run:
- newer = newer_group(objects, output_file, missing='newer')
- else:
- newer = newer_group(objects, output_file)
- return newer
-
- def detect_language(self, sources):
- """Detect the language of a given file, or list of files. Uses
- language_map, and language_order to do the job.
- """
- if not isinstance(sources, list):
- sources = [sources]
- lang = None
- index = len(self.language_order)
- for source in sources:
- base, ext = os.path.splitext(source)
- extlang = self.language_map.get(ext)
- try:
- extindex = self.language_order.index(extlang)
- if extindex < index:
- lang = extlang
- index = extindex
- except ValueError:
- pass
- return lang
-
- # -- Worker methods ------------------------------------------------
- # (must be implemented by subclasses)
-
- def preprocess(self, source, output_file=None, macros=None,
- include_dirs=None, extra_preargs=None, extra_postargs=None):
- """Preprocess a single C/C++ source file, named in 'source'.
- Output will be written to file named 'output_file', or stdout if
- 'output_file' not supplied. 'macros' is a list of macro
- definitions as for 'compile()', which will augment the macros set
- with 'define_macro()' and 'undefine_macro()'. 'include_dirs' is a
- list of directory names that will be added to the default list.
-
- Raises PreprocessError on failure.
- """
- pass
-
- def compile(self, sources, output_dir=None, macros=None,
- include_dirs=None, debug=False, extra_preargs=None,
- extra_postargs=None, depends=None):
- """Compile one or more source files.
-
- 'sources' must be a list of filenames, most likely C/C++
- files, but in reality anything that can be handled by a
- particular compiler and compiler class (eg. MSVCCompiler can
- handle resource files in 'sources'). Return a list of object
- filenames, one per source filename in 'sources'. Depending on
- the implementation, not all source files will necessarily be
- compiled, but all corresponding object filenames will be
- returned.
-
- If 'output_dir' is given, object files will be put under it, while
- retaining their original path component. That is, "foo/bar.c"
- normally compiles to "foo/bar.o" (for a Unix implementation); if
- 'output_dir' is "build", then it would compile to
- "build/foo/bar.o".
-
- 'macros', if given, must be a list of macro definitions. A macro
- definition is either a (name, value) 2-tuple or a (name,) 1-tuple.
- The former defines a macro; if the value is None, the macro is
- defined without an explicit value. The 1-tuple case undefines a
- macro. Later definitions/redefinitions/ undefinitions take
- precedence.
-
- 'include_dirs', if given, must be a list of strings, the
- directories to add to the default include file search path for this
- compilation only.
-
- 'debug' is a boolean; if true, the compiler will be instructed to
- output debug symbols in (or alongside) the object file(s).
-
- 'extra_preargs' and 'extra_postargs' are implementation- dependent.
- On platforms that have the notion of a command line (e.g. Unix,
- DOS/Windows), they are most likely lists of strings: extra
- command-line arguments to prepand/append to the compiler command
- line. On other platforms, consult the implementation class
- documentation. In any event, they are intended as an escape hatch
- for those occasions when the abstract compiler framework doesn't
- cut the mustard.
-
- 'depends', if given, is a list of filenames that all targets
- depend on. If a source file is older than any file in
- depends, then the source file will be recompiled. This
- supports dependency tracking, but only at a coarse
- granularity.
-
- Raises CompileError on failure.
- """
- # A concrete compiler class can either override this method
- # entirely or implement _compile().
-
- macros, objects, extra_postargs, pp_opts, build = \
- self._setup_compile(output_dir, macros, include_dirs, sources,
- depends, extra_postargs)
- cc_args = self._get_cc_args(pp_opts, debug, extra_preargs)
-
- for obj in objects:
- try:
- src, ext = build[obj]
- except KeyError:
- continue
- self._compile(obj, src, ext, cc_args, extra_postargs, pp_opts)
-
- # Return *all* object filenames, not just the ones we just built.
- return objects
-
- def _compile(self, obj, src, ext, cc_args, extra_postargs, pp_opts):
- """Compile 'src' to product 'obj'."""
-
- # A concrete compiler class that does not override compile()
- # should implement _compile().
- pass
-
- def create_static_lib(self, objects, output_libname, output_dir=None,
- debug=False, target_lang=None):
- """Link a bunch of stuff together to create a static library file.
- The "bunch of stuff" consists of the list of object files supplied
- as 'objects', the extra object files supplied to
- 'add_link_object()' and/or 'set_link_objects()', the libraries
- supplied to 'add_library()' and/or 'set_libraries()', and the
- libraries supplied as 'libraries' (if any).
-
- 'output_libname' should be a library name, not a filename; the
- filename will be inferred from the library name. 'output_dir' is
- the directory where the library file will be put.
-
- 'debug' is a boolean; if true, debugging information will be
- included in the library (note that on most platforms, it is the
- compile step where this matters: the 'debug' flag is included here
- just for consistency).
-
- 'target_lang' is the target language for which the given objects
- are being compiled. This allows specific linkage time treatment of
- certain languages.
-
- Raises LibError on failure.
- """
- pass
-
- # values for target_desc parameter in link()
- SHARED_OBJECT = "shared_object"
- SHARED_LIBRARY = "shared_library"
- EXECUTABLE = "executable"
-
- def link(self, target_desc, objects, output_filename, output_dir=None,
- libraries=None, library_dirs=None, runtime_library_dirs=None,
- export_symbols=None, debug=False, extra_preargs=None,
- extra_postargs=None, build_temp=None, target_lang=None):
- """Link a bunch of stuff together to create an executable or
- shared library file.
-
- The "bunch of stuff" consists of the list of object files supplied
- as 'objects'. 'output_filename' should be a filename. If
- 'output_dir' is supplied, 'output_filename' is relative to it
- (i.e. 'output_filename' can provide directory components if
- needed).
-
- 'libraries' is a list of libraries to link against. These are
- library names, not filenames, since they're translated into
- filenames in a platform-specific way (eg. "foo" becomes "libfoo.a"
- on Unix and "foo.lib" on DOS/Windows). However, they can include a
- directory component, which means the linker will look in that
- specific directory rather than searching all the normal locations.
-
- 'library_dirs', if supplied, should be a list of directories to
- search for libraries that were specified as bare library names
- (ie. no directory component). These are on top of the system
- default and those supplied to 'add_library_dir()' and/or
- 'set_library_dirs()'. 'runtime_library_dirs' is a list of
- directories that will be embedded into the shared library and used
- to search for other shared libraries that *it* depends on at
- run-time. (This may only be relevant on Unix.)
-
- 'export_symbols' is a list of symbols that the shared library will
- export. (This appears to be relevant only on Windows.)
-
- 'debug' is as for 'compile()' and 'create_static_lib()', with the
- slight distinction that it actually matters on most platforms (as
- opposed to 'create_static_lib()', which includes a 'debug' flag
- mostly for form's sake).
-
- 'extra_preargs' and 'extra_postargs' are as for 'compile()' (except
- of course that they supply command-line arguments for the
- particular linker being used).
-
- 'target_lang' is the target language for which the given objects
- are being compiled. This allows specific linkage time treatment of
- certain languages.
-
- Raises LinkError on failure.
- """
- raise NotImplementedError
-
-
- # Old 'link_*()' methods, rewritten to use the new 'link()' method.
-
- def link_shared_lib(self, objects, output_libname, output_dir=None,
- libraries=None, library_dirs=None,
- runtime_library_dirs=None, export_symbols=None,
- debug=False, extra_preargs=None, extra_postargs=None,
- build_temp=None, target_lang=None):
- self.link(CCompiler.SHARED_LIBRARY, objects,
- self.library_filename(output_libname, lib_type='shared'),
- output_dir,
- libraries, library_dirs, runtime_library_dirs,
- export_symbols, debug,
- extra_preargs, extra_postargs, build_temp, target_lang)
-
- def link_shared_object(self, objects, output_filename, output_dir=None,
- libraries=None, library_dirs=None,
- runtime_library_dirs=None, export_symbols=None,
- debug=False, extra_preargs=None, extra_postargs=None,
- build_temp=None, target_lang=None):
- self.link(CCompiler.SHARED_OBJECT, objects,
- output_filename, output_dir,
- libraries, library_dirs, runtime_library_dirs,
- export_symbols, debug,
- extra_preargs, extra_postargs, build_temp, target_lang)
-
- def link_executable(self, objects, output_progname, output_dir=None,
- libraries=None, library_dirs=None,
- runtime_library_dirs=None, debug=False,
- extra_preargs=None, extra_postargs=None,
- target_lang=None):
- self.link(CCompiler.EXECUTABLE, objects,
- self.executable_filename(output_progname), output_dir,
- libraries, library_dirs, runtime_library_dirs, None,
- debug, extra_preargs, extra_postargs, None, target_lang)
-
-
- # -- Miscellaneous methods -----------------------------------------
- # These are all used by the 'gen_lib_options() function; there is
- # no appropriate default implementation so subclasses should
- # implement all of these.
-
- def library_dir_option(self, dir):
- """Return the compiler option to add 'dir' to the list of
- directories searched for libraries.
- """
- raise NotImplementedError
-
- def runtime_library_dir_option(self, dir):
- """Return the compiler option to add 'dir' to the list of
- directories searched for runtime libraries.
- """
- raise NotImplementedError
-
- def library_option(self, lib):
- """Return the compiler option to add 'dir' to the list of libraries
- linked into the shared library or executable.
- """
- raise NotImplementedError
-
- def has_function(self, funcname, includes=None, include_dirs=None,
- libraries=None, library_dirs=None):
- """Return a boolean indicating whether funcname is supported on
- the current platform. The optional arguments can be used to
- augment the compilation environment.
- """
-
- # this can't be included at module scope because it tries to
- # import math which might not be available at that point - maybe
- # the necessary logic should just be inlined?
- import tempfile
- if includes is None:
- includes = []
- if include_dirs is None:
- include_dirs = []
- if libraries is None:
- libraries = []
- if library_dirs is None:
- library_dirs = []
- fd, fname = tempfile.mkstemp(".c", funcname, text=True)
- with os.fdopen(fd, "w") as f:
- for incl in includes:
- f.write("""#include "%s"\n""" % incl)
- f.write("""\
-main (int argc, char **argv) {
- %s();
-}
-""" % funcname)
- try:
- objects = self.compile([fname], include_dirs=include_dirs)
- except CompileError:
- return False
-
- try:
- self.link_executable(objects, "a.out",
- libraries=libraries,
- library_dirs=library_dirs)
- except (LinkError, TypeError):
- return False
- return True
-
- def find_library_file(self, dirs, lib, debug=False):
- """Search the specified list of directories for a static or shared
- library file 'lib' and return the full path to that file. If
- 'debug' is true, look for a debugging version (if that makes sense on
- the current platform). Return None if 'lib' wasn't found in any of
- the specified directories.
- """
- raise NotImplementedError
-
- # -- Filename generation methods -----------------------------------
-
- # The default implementation of the filename generating methods are
- # prejudiced towards the Unix/DOS/Windows view of the world:
- # * object files are named by replacing the source file extension
- # (eg. .c/.cpp -> .o/.obj)
- # * library files (shared or static) are named by plugging the
- # library name and extension into a format string, eg.
- # "lib%s.%s" % (lib_name, ".a") for Unix static libraries
- # * executables are named by appending an extension (possibly
- # empty) to the program name: eg. progname + ".exe" for
- # Windows
- #
- # To reduce redundant code, these methods expect to find
- # several attributes in the current object (presumably defined
- # as class attributes):
- # * src_extensions -
- # list of C/C++ source file extensions, eg. ['.c', '.cpp']
- # * obj_extension -
- # object file extension, eg. '.o' or '.obj'
- # * static_lib_extension -
- # extension for static library files, eg. '.a' or '.lib'
- # * shared_lib_extension -
- # extension for shared library/object files, eg. '.so', '.dll'
- # * static_lib_format -
- # format string for generating static library filenames,
- # eg. 'lib%s.%s' or '%s.%s'
- # * shared_lib_format
- # format string for generating shared library filenames
- # (probably same as static_lib_format, since the extension
- # is one of the intended parameters to the format string)
- # * exe_extension -
- # extension for executable files, eg. '' or '.exe'
-
- def object_filenames(self, source_filenames, strip_dir=False, output_dir=''):
- if output_dir is None:
- output_dir = ''
- obj_names = []
- for src_name in source_filenames:
- base, ext = os.path.splitext(src_name)
- base = os.path.splitdrive(base)[1] # Chop off the drive
- base = base[os.path.isabs(base):] # If abs, chop off leading /
- if ext not in self.src_extensions:
- raise UnknownFileError("unknown file type '%s' (from '%s')" %
- (ext, src_name))
- if strip_dir:
- base = os.path.basename(base)
- obj_names.append(os.path.join(output_dir,
- base + self.obj_extension))
- return obj_names
-
- def shared_object_filename(self, basename, strip_dir=False, output_dir=''):
- assert output_dir is not None
- if strip_dir:
- basename = os.path.basename(basename)
- return os.path.join(output_dir, basename + self.shared_lib_extension)
-
- def executable_filename(self, basename, strip_dir=False, output_dir=''):
- assert output_dir is not None
- if strip_dir:
- basename = os.path.basename(basename)
- return os.path.join(output_dir, basename + (self.exe_extension or ''))
-
- def library_filename(self, libname, lib_type='static', # or 'shared'
- strip_dir=False, output_dir=''):
- assert output_dir is not None
- if lib_type not in ("static", "shared", "dylib"):
- raise ValueError(
- "'lib_type' must be 'static', 'shared' or 'dylib'")
- fmt = getattr(self, lib_type + "_lib_format")
- ext = getattr(self, lib_type + "_lib_extension")
-
- dir, base = os.path.split(libname)
- filename = fmt % (base, ext)
- if strip_dir:
- dir = ''
-
- return os.path.join(output_dir, dir, filename)
-
-
- # -- Utility methods -----------------------------------------------
-
- def execute(self, func, args, msg=None, level=1):
- execute(func, args, msg, self.dry_run)
-
- def spawn(self, cmd):
- spawn(cmd, dry_run=self.dry_run)
-
- def move_file(self, src, dst):
- logger.info("moving %r to %r", src, dst)
- if self.dry_run:
- return
- return move(src, dst)
-
- def mkpath(self, name, mode=0o777):
- name = os.path.normpath(name)
- if os.path.isdir(name) or name == '':
- return
- if self.dry_run:
- head = ''
- for part in name.split(os.sep):
- logger.info("created directory %s%s", head, part)
- head += part + os.sep
- return
- os.makedirs(name, mode)