summaryrefslogtreecommitdiffstats
path: root/Lib/random.py
diff options
context:
space:
mode:
Diffstat (limited to 'Lib/random.py')
-rw-r--r--Lib/random.py212
1 files changed, 212 insertions, 0 deletions
diff --git a/Lib/random.py b/Lib/random.py
new file mode 100644
index 0000000..51ecb32
--- /dev/null
+++ b/Lib/random.py
@@ -0,0 +1,212 @@
+# R A N D O M V A R I A B L E G E N E R A T O R S
+#
+# distributions on the real line:
+# ------------------------------
+# normal (Gaussian)
+# lognormal
+# negative exponential
+# gamma
+#
+# distributions on the circle (angles 0 to 2pi)
+# ---------------------------------------------
+# circular uniform
+# von Mises
+
+# Translated from anonymously contributed C/C++ source.
+
+from whrandom import random, uniform, randint, choice # Also for export!
+from math import log, exp, pi, e, sqrt, acos, cos
+
+# Housekeeping function to verify that magic constants have been
+# computed correctly
+
+def verify(name, expected):
+ computed = eval(name)
+ if abs(computed - expected) > 1e-7:
+ raise ValueError, \
+ 'computed value for %s deviates too much (computed %g, expected %g)' % \
+ (name, computed, expected)
+
+# -------------------- normal distribution --------------------
+
+NV_MAGICCONST = 4*exp(-0.5)/sqrt(2)
+verify('NV_MAGICCONST', 1.71552776992141)
+def normalvariate(mu, sigma):
+ # mu = mean, sigma = standard deviation
+
+ # Uses Kinderman and Monahan method. Reference: Kinderman,
+ # A.J. and Monahan, J.F., "Computer generation of random
+ # variables using the ratio of uniform deviates", ACM Trans
+ # Math Software, 3, (1977), pp257-260.
+
+ while 1:
+ u1 = random()
+ u2 = random()
+ z = NV_MAGICCONST*(u1-0.5)/u2
+ zz = z*z/4
+ if zz <= -log(u2):
+ break
+ return mu+z*sigma
+
+# -------------------- lognormal distribution --------------------
+
+def lognormvariate(mu, sigma):
+ return exp(normalvariate(mu, sigma))
+
+# -------------------- circular uniform --------------------
+
+def cunifvariate(mean, arc):
+ # mean: mean angle (in radians between 0 and pi)
+ # arc: range of distribution (in radians between 0 and pi)
+
+ return (mean + arc * (random() - 0.5)) % pi
+
+# -------------------- exponential distribution --------------------
+
+def expovariate(lambd):
+ # lambd: rate lambd = 1/mean
+ # ('lambda' is a Python reserved word)
+
+ u = random()
+ while u <= 1e-7:
+ u = random()
+ return -log(u)/lambd
+
+# -------------------- von Mises distribution --------------------
+
+TWOPI = 2*pi
+verify('TWOPI', 6.28318530718)
+
+def vonmisesvariate(mu, kappa):
+ # mu: mean angle (in radians between 0 and 180 degrees)
+ # kappa: concentration parameter kappa (>= 0)
+
+ # if kappa = 0 generate uniform random angle
+ if kappa <= 1e-6:
+ return TWOPI * random()
+
+ a = 1.0 + sqrt(1 + 4 * kappa * kappa)
+ b = (a - sqrt(2 * a))/(2 * kappa)
+ r = (1 + b * b)/(2 * b)
+
+ while 1:
+ u1 = random()
+
+ z = cos(pi * u1)
+ f = (1 + r * z)/(r + z)
+ c = kappa * (r - f)
+
+ u2 = random()
+
+ if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
+ break
+
+ u3 = random()
+ if u3 > 0.5:
+ theta = mu + 0.5*acos(f)
+ else:
+ theta = mu - 0.5*acos(f)
+
+ return theta % pi
+
+# -------------------- gamma distribution --------------------
+
+LOG4 = log(4)
+verify('LOG4', 1.38629436111989)
+
+def gammavariate(alpha, beta):
+ # beta times standard gamma
+ ainv = sqrt(2 * alpha - 1)
+ return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
+
+SG_MAGICCONST = 1+log(4.5)
+verify('SG_MAGICCONST', 2.50407739677627)
+
+def stdgamma(alpha, ainv, bbb, ccc):
+ # ainv = sqrt(2 * alpha - 1)
+ # bbb = alpha - log(4)
+ # ccc = alpha + ainv
+
+ if alpha <= 0.0:
+ raise ValueError, 'stdgamma: alpha must be > 0.0'
+
+ if alpha > 1.0:
+
+ # Uses R.C.H. Cheng, "The generation of Gamma
+ # variables with non-integral shape parameters",
+ # Applied Statistics, (1977), 26, No. 1, p71-74
+
+ while 1:
+ u1 = random()
+ u2 = random()
+ v = log(u1/(1-u1))/ainv
+ x = alpha*exp(v)
+ z = u1*u1*u2
+ r = bbb+ccc*v-x
+ if r + SG_MAGICCONST - 4.5*z >= 0 or r >= log(z):
+ return x
+
+ elif alpha == 1.0:
+ # expovariate(1)
+ u = random()
+ while u <= 1e-7:
+ u = random()
+ return -log(u)
+
+ else: # alpha is between 0 and 1 (exclusive)
+
+ # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
+
+ while 1:
+ u = random()
+ b = (e + alpha)/e
+ p = b*u
+ if p <= 1.0:
+ x = pow(p, 1.0/alpha)
+ else:
+ # p > 1
+ x = -log((b-p)/alpha)
+ u1 = random()
+ if not (((p <= 1.0) and (u1 > exp(-x))) or
+ ((p > 1) and (u1 > pow(x, alpha - 1.0)))):
+ break
+ return x
+
+# -------------------- test program --------------------
+
+def test():
+ print 'TWOPI =', TWOPI
+ print 'LOG4 =', LOG4
+ print 'NV_MAGICCONST =', NV_MAGICCONST
+ print 'SG_MAGICCONST =', SG_MAGICCONST
+ N = 100
+ test_generator(N, 'random()')
+ test_generator(N, 'normalvariate(0.0, 1.0)')
+ test_generator(N, 'lognormvariate(0.0, 1.0)')
+ test_generator(N, 'cunifvariate(0.0, 1.0)')
+ test_generator(N, 'expovariate(1.0)')
+ test_generator(N, 'vonmisesvariate(0.0, 1.0)')
+ test_generator(N, 'gammavariate(0.5, 1.0)')
+ test_generator(N, 'gammavariate(0.9, 1.0)')
+ test_generator(N, 'gammavariate(1.0, 1.0)')
+ test_generator(N, 'gammavariate(2.0, 1.0)')
+ test_generator(N, 'gammavariate(20.0, 1.0)')
+ test_generator(N, 'gammavariate(200.0, 1.0)')
+
+def test_generator(n, funccall):
+ import sys
+ print '%d calls to %s:' % (n, funccall),
+ sys.stdout.flush()
+ code = compile(funccall, funccall, 'eval')
+ sum = 0.0
+ sqsum = 0.0
+ for i in range(n):
+ x = eval(code)
+ sum = sum + x
+ sqsum = sqsum + x*x
+ avg = sum/n
+ stddev = sqrt(sqsum/n - avg*avg)
+ print 'avg %g, stddev %g' % (avg, stddev)
+
+if __name__ == '__main__':
+ test()