summaryrefslogtreecommitdiffstats
path: root/Lib/random.py
diff options
context:
space:
mode:
Diffstat (limited to 'Lib/random.py')
-rw-r--r--Lib/random.py438
1 files changed, 219 insertions, 219 deletions
diff --git a/Lib/random.py b/Lib/random.py
index ef755a5..d10ce78 100644
--- a/Lib/random.py
+++ b/Lib/random.py
@@ -28,101 +28,101 @@ from math import log, exp, pi, e, sqrt, acos, cos, sin
# XXX TO DO: make the distribution functions below into methods.
def makeseed(a=None):
- """Turn a hashable value into three seed values for whrandom.seed().
-
- None or no argument returns (0, 0, 0), to seed from current time.
-
- """
- if a is None:
- return (0, 0, 0)
- a = hash(a)
- a, x = divmod(a, 256)
- a, y = divmod(a, 256)
- a, z = divmod(a, 256)
- x = (x + a) % 256 or 1
- y = (y + a) % 256 or 1
- z = (z + a) % 256 or 1
- return (x, y, z)
+ """Turn a hashable value into three seed values for whrandom.seed().
+
+ None or no argument returns (0, 0, 0), to seed from current time.
+
+ """
+ if a is None:
+ return (0, 0, 0)
+ a = hash(a)
+ a, x = divmod(a, 256)
+ a, y = divmod(a, 256)
+ a, z = divmod(a, 256)
+ x = (x + a) % 256 or 1
+ y = (y + a) % 256 or 1
+ z = (z + a) % 256 or 1
+ return (x, y, z)
def seed(a=None):
- """Seed the default generator from any hashable value.
+ """Seed the default generator from any hashable value.
- None or no argument seeds from current time.
+ None or no argument seeds from current time.
- """
- x, y, z = makeseed(a)
- whrandom.seed(x, y, z)
+ """
+ x, y, z = makeseed(a)
+ whrandom.seed(x, y, z)
class generator(whrandom.whrandom):
- """Random generator class."""
+ """Random generator class."""
- def __init__(self, a=None):
- """Constructor. Seed from current time or hashable value."""
- self.seed(a)
+ def __init__(self, a=None):
+ """Constructor. Seed from current time or hashable value."""
+ self.seed(a)
- def seed(self, a=None):
- """Seed the generator from current time or hashable value."""
- x, y, z = makeseed(a)
- whrandom.whrandom.seed(self, x, y, z)
+ def seed(self, a=None):
+ """Seed the generator from current time or hashable value."""
+ x, y, z = makeseed(a)
+ whrandom.whrandom.seed(self, x, y, z)
def new_generator(a=None):
- """Return a new random generator instance."""
- return generator(a)
+ """Return a new random generator instance."""
+ return generator(a)
# Housekeeping function to verify that magic constants have been
# computed correctly
def verify(name, expected):
- computed = eval(name)
- if abs(computed - expected) > 1e-7:
- raise ValueError, \
- 'computed value for %s deviates too much (computed %g, expected %g)' % \
- (name, computed, expected)
+ computed = eval(name)
+ if abs(computed - expected) > 1e-7:
+ raise ValueError, \
+'computed value for %s deviates too much (computed %g, expected %g)' % \
+(name, computed, expected)
# -------------------- normal distribution --------------------
NV_MAGICCONST = 4*exp(-0.5)/sqrt(2.0)
verify('NV_MAGICCONST', 1.71552776992141)
def normalvariate(mu, sigma):
- # mu = mean, sigma = standard deviation
-
- # Uses Kinderman and Monahan method. Reference: Kinderman,
- # A.J. and Monahan, J.F., "Computer generation of random
- # variables using the ratio of uniform deviates", ACM Trans
- # Math Software, 3, (1977), pp257-260.
-
- while 1:
- u1 = random()
- u2 = random()
- z = NV_MAGICCONST*(u1-0.5)/u2
- zz = z*z/4.0
- if zz <= -log(u2):
- break
- return mu+z*sigma
+ # mu = mean, sigma = standard deviation
+
+ # Uses Kinderman and Monahan method. Reference: Kinderman,
+ # A.J. and Monahan, J.F., "Computer generation of random
+ # variables using the ratio of uniform deviates", ACM Trans
+ # Math Software, 3, (1977), pp257-260.
+
+ while 1:
+ u1 = random()
+ u2 = random()
+ z = NV_MAGICCONST*(u1-0.5)/u2
+ zz = z*z/4.0
+ if zz <= -log(u2):
+ break
+ return mu+z*sigma
# -------------------- lognormal distribution --------------------
def lognormvariate(mu, sigma):
- return exp(normalvariate(mu, sigma))
+ return exp(normalvariate(mu, sigma))
# -------------------- circular uniform --------------------
def cunifvariate(mean, arc):
- # mean: mean angle (in radians between 0 and pi)
- # arc: range of distribution (in radians between 0 and pi)
+ # mean: mean angle (in radians between 0 and pi)
+ # arc: range of distribution (in radians between 0 and pi)
- return (mean + arc * (random() - 0.5)) % pi
+ return (mean + arc * (random() - 0.5)) % pi
# -------------------- exponential distribution --------------------
def expovariate(lambd):
- # lambd: rate lambd = 1/mean
- # ('lambda' is a Python reserved word)
+ # lambd: rate lambd = 1/mean
+ # ('lambda' is a Python reserved word)
- u = random()
- while u <= 1e-7:
- u = random()
- return -log(u)/lambd
+ u = random()
+ while u <= 1e-7:
+ u = random()
+ return -log(u)/lambd
# -------------------- von Mises distribution --------------------
@@ -130,43 +130,43 @@ TWOPI = 2.0*pi
verify('TWOPI', 6.28318530718)
def vonmisesvariate(mu, kappa):
- # mu: mean angle (in radians between 0 and 2*pi)
- # kappa: concentration parameter kappa (>= 0)
- # if kappa = 0 generate uniform random angle
+ # mu: mean angle (in radians between 0 and 2*pi)
+ # kappa: concentration parameter kappa (>= 0)
+ # if kappa = 0 generate uniform random angle
- # Based upon an algorithm published in: Fisher, N.I.,
- # "Statistical Analysis of Circular Data", Cambridge
- # University Press, 1993.
+ # Based upon an algorithm published in: Fisher, N.I.,
+ # "Statistical Analysis of Circular Data", Cambridge
+ # University Press, 1993.
- # Thanks to Magnus Kessler for a correction to the
- # implementation of step 4.
+ # Thanks to Magnus Kessler for a correction to the
+ # implementation of step 4.
- if kappa <= 1e-6:
- return TWOPI * random()
+ if kappa <= 1e-6:
+ return TWOPI * random()
- a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa)
- b = (a - sqrt(2.0 * a))/(2.0 * kappa)
- r = (1.0 + b * b)/(2.0 * b)
+ a = 1.0 + sqrt(1.0 + 4.0 * kappa * kappa)
+ b = (a - sqrt(2.0 * a))/(2.0 * kappa)
+ r = (1.0 + b * b)/(2.0 * b)
- while 1:
- u1 = random()
+ while 1:
+ u1 = random()
- z = cos(pi * u1)
- f = (1.0 + r * z)/(r + z)
- c = kappa * (r - f)
+ z = cos(pi * u1)
+ f = (1.0 + r * z)/(r + z)
+ c = kappa * (r - f)
- u2 = random()
+ u2 = random()
- if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
- break
+ if not (u2 >= c * (2.0 - c) and u2 > c * exp(1.0 - c)):
+ break
- u3 = random()
- if u3 > 0.5:
- theta = (mu % TWOPI) + acos(f)
- else:
- theta = (mu % TWOPI) - acos(f)
+ u3 = random()
+ if u3 > 0.5:
+ theta = (mu % TWOPI) + acos(f)
+ else:
+ theta = (mu % TWOPI) - acos(f)
- return theta
+ return theta
# -------------------- gamma distribution --------------------
@@ -174,62 +174,62 @@ LOG4 = log(4.0)
verify('LOG4', 1.38629436111989)
def gammavariate(alpha, beta):
- # beta times standard gamma
- ainv = sqrt(2.0 * alpha - 1.0)
- return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
+ # beta times standard gamma
+ ainv = sqrt(2.0 * alpha - 1.0)
+ return beta * stdgamma(alpha, ainv, alpha - LOG4, alpha + ainv)
SG_MAGICCONST = 1.0 + log(4.5)
verify('SG_MAGICCONST', 2.50407739677627)
def stdgamma(alpha, ainv, bbb, ccc):
- # ainv = sqrt(2 * alpha - 1)
- # bbb = alpha - log(4)
- # ccc = alpha + ainv
-
- if alpha <= 0.0:
- raise ValueError, 'stdgamma: alpha must be > 0.0'
-
- if alpha > 1.0:
-
- # Uses R.C.H. Cheng, "The generation of Gamma
- # variables with non-integral shape parameters",
- # Applied Statistics, (1977), 26, No. 1, p71-74
-
- while 1:
- u1 = random()
- u2 = random()
- v = log(u1/(1.0-u1))/ainv
- x = alpha*exp(v)
- z = u1*u1*u2
- r = bbb+ccc*v-x
- if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z):
- return x
-
- elif alpha == 1.0:
- # expovariate(1)
- u = random()
- while u <= 1e-7:
- u = random()
- return -log(u)
-
- else: # alpha is between 0 and 1 (exclusive)
-
- # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
-
- while 1:
- u = random()
- b = (e + alpha)/e
- p = b*u
- if p <= 1.0:
- x = pow(p, 1.0/alpha)
- else:
- # p > 1
- x = -log((b-p)/alpha)
- u1 = random()
- if not (((p <= 1.0) and (u1 > exp(-x))) or
- ((p > 1) and (u1 > pow(x, alpha - 1.0)))):
- break
- return x
+ # ainv = sqrt(2 * alpha - 1)
+ # bbb = alpha - log(4)
+ # ccc = alpha + ainv
+
+ if alpha <= 0.0:
+ raise ValueError, 'stdgamma: alpha must be > 0.0'
+
+ if alpha > 1.0:
+
+ # Uses R.C.H. Cheng, "The generation of Gamma
+ # variables with non-integral shape parameters",
+ # Applied Statistics, (1977), 26, No. 1, p71-74
+
+ while 1:
+ u1 = random()
+ u2 = random()
+ v = log(u1/(1.0-u1))/ainv
+ x = alpha*exp(v)
+ z = u1*u1*u2
+ r = bbb+ccc*v-x
+ if r + SG_MAGICCONST - 4.5*z >= 0.0 or r >= log(z):
+ return x
+
+ elif alpha == 1.0:
+ # expovariate(1)
+ u = random()
+ while u <= 1e-7:
+ u = random()
+ return -log(u)
+
+ else: # alpha is between 0 and 1 (exclusive)
+
+ # Uses ALGORITHM GS of Statistical Computing - Kennedy & Gentle
+
+ while 1:
+ u = random()
+ b = (e + alpha)/e
+ p = b*u
+ if p <= 1.0:
+ x = pow(p, 1.0/alpha)
+ else:
+ # p > 1
+ x = -log((b-p)/alpha)
+ u1 = random()
+ if not (((p <= 1.0) and (u1 > exp(-x))) or
+ ((p > 1) and (u1 > pow(x, alpha - 1.0)))):
+ break
+ return x
# -------------------- Gauss (faster alternative) --------------------
@@ -237,61 +237,61 @@ def stdgamma(alpha, ainv, bbb, ccc):
gauss_next = None
def gauss(mu, sigma):
- # When x and y are two variables from [0, 1), uniformly
- # distributed, then
- #
- # cos(2*pi*x)*sqrt(-2*log(1-y))
- # sin(2*pi*x)*sqrt(-2*log(1-y))
- #
- # are two *independent* variables with normal distribution
- # (mu = 0, sigma = 1).
- # (Lambert Meertens)
- # (corrected version; bug discovered by Mike Miller, fixed by LM)
-
- # Multithreading note: When two threads call this function
- # simultaneously, it is possible that they will receive the
- # same return value. The window is very small though. To
- # avoid this, you have to use a lock around all calls. (I
- # didn't want to slow this down in the serial case by using a
- # lock here.)
-
- global gauss_next
-
- z = gauss_next
- gauss_next = None
- if z is None:
- x2pi = random() * TWOPI
- g2rad = sqrt(-2.0 * log(1.0 - random()))
- z = cos(x2pi) * g2rad
- gauss_next = sin(x2pi) * g2rad
-
- return mu + z*sigma
+ # When x and y are two variables from [0, 1), uniformly
+ # distributed, then
+ #
+ # cos(2*pi*x)*sqrt(-2*log(1-y))
+ # sin(2*pi*x)*sqrt(-2*log(1-y))
+ #
+ # are two *independent* variables with normal distribution
+ # (mu = 0, sigma = 1).
+ # (Lambert Meertens)
+ # (corrected version; bug discovered by Mike Miller, fixed by LM)
+
+ # Multithreading note: When two threads call this function
+ # simultaneously, it is possible that they will receive the
+ # same return value. The window is very small though. To
+ # avoid this, you have to use a lock around all calls. (I
+ # didn't want to slow this down in the serial case by using a
+ # lock here.)
+
+ global gauss_next
+
+ z = gauss_next
+ gauss_next = None
+ if z is None:
+ x2pi = random() * TWOPI
+ g2rad = sqrt(-2.0 * log(1.0 - random()))
+ z = cos(x2pi) * g2rad
+ gauss_next = sin(x2pi) * g2rad
+
+ return mu + z*sigma
# -------------------- beta --------------------
def betavariate(alpha, beta):
- # Discrete Event Simulation in C, pp 87-88.
+ # Discrete Event Simulation in C, pp 87-88.
- y = expovariate(alpha)
- z = expovariate(1.0/beta)
- return z/(y+z)
+ y = expovariate(alpha)
+ z = expovariate(1.0/beta)
+ return z/(y+z)
# -------------------- Pareto --------------------
def paretovariate(alpha):
- # Jain, pg. 495
+ # Jain, pg. 495
- u = random()
- return 1.0 / pow(u, 1.0/alpha)
+ u = random()
+ return 1.0 / pow(u, 1.0/alpha)
# -------------------- Weibull --------------------
def weibullvariate(alpha, beta):
- # Jain, pg. 499; bug fix courtesy Bill Arms
+ # Jain, pg. 499; bug fix courtesy Bill Arms
- u = random()
- return alpha * pow(-log(u), 1.0/beta)
+ u = random()
+ return alpha * pow(-log(u), 1.0/beta)
# -------------------- shuffle --------------------
# Not quite a random distribution, but a standard algorithm.
@@ -310,55 +310,55 @@ def shuffle(x, random=random, int=int):
"""
for i in xrange(len(x)-1, 0, -1):
- # pick an element in x[:i+1] with which to exchange x[i]
+ # pick an element in x[:i+1] with which to exchange x[i]
j = int(random() * (i+1))
x[i], x[j] = x[j], x[i]
# -------------------- test program --------------------
def test(N = 200):
- print 'TWOPI =', TWOPI
- print 'LOG4 =', LOG4
- print 'NV_MAGICCONST =', NV_MAGICCONST
- print 'SG_MAGICCONST =', SG_MAGICCONST
- test_generator(N, 'random()')
- test_generator(N, 'normalvariate(0.0, 1.0)')
- test_generator(N, 'lognormvariate(0.0, 1.0)')
- test_generator(N, 'cunifvariate(0.0, 1.0)')
- test_generator(N, 'expovariate(1.0)')
- test_generator(N, 'vonmisesvariate(0.0, 1.0)')
- test_generator(N, 'gammavariate(0.5, 1.0)')
- test_generator(N, 'gammavariate(0.9, 1.0)')
- test_generator(N, 'gammavariate(1.0, 1.0)')
- test_generator(N, 'gammavariate(2.0, 1.0)')
- test_generator(N, 'gammavariate(20.0, 1.0)')
- test_generator(N, 'gammavariate(200.0, 1.0)')
- test_generator(N, 'gauss(0.0, 1.0)')
- test_generator(N, 'betavariate(3.0, 3.0)')
- test_generator(N, 'paretovariate(1.0)')
- test_generator(N, 'weibullvariate(1.0, 1.0)')
+ print 'TWOPI =', TWOPI
+ print 'LOG4 =', LOG4
+ print 'NV_MAGICCONST =', NV_MAGICCONST
+ print 'SG_MAGICCONST =', SG_MAGICCONST
+ test_generator(N, 'random()')
+ test_generator(N, 'normalvariate(0.0, 1.0)')
+ test_generator(N, 'lognormvariate(0.0, 1.0)')
+ test_generator(N, 'cunifvariate(0.0, 1.0)')
+ test_generator(N, 'expovariate(1.0)')
+ test_generator(N, 'vonmisesvariate(0.0, 1.0)')
+ test_generator(N, 'gammavariate(0.5, 1.0)')
+ test_generator(N, 'gammavariate(0.9, 1.0)')
+ test_generator(N, 'gammavariate(1.0, 1.0)')
+ test_generator(N, 'gammavariate(2.0, 1.0)')
+ test_generator(N, 'gammavariate(20.0, 1.0)')
+ test_generator(N, 'gammavariate(200.0, 1.0)')
+ test_generator(N, 'gauss(0.0, 1.0)')
+ test_generator(N, 'betavariate(3.0, 3.0)')
+ test_generator(N, 'paretovariate(1.0)')
+ test_generator(N, 'weibullvariate(1.0, 1.0)')
def test_generator(n, funccall):
- import time
- print n, 'times', funccall
- code = compile(funccall, funccall, 'eval')
- sum = 0.0
- sqsum = 0.0
- smallest = 1e10
- largest = -1e10
- t0 = time.time()
- for i in range(n):
- x = eval(code)
- sum = sum + x
- sqsum = sqsum + x*x
- smallest = min(x, smallest)
- largest = max(x, largest)
- t1 = time.time()
- print round(t1-t0, 3), 'sec,',
- avg = sum/n
- stddev = sqrt(sqsum/n - avg*avg)
- print 'avg %g, stddev %g, min %g, max %g' % \
- (avg, stddev, smallest, largest)
+ import time
+ print n, 'times', funccall
+ code = compile(funccall, funccall, 'eval')
+ sum = 0.0
+ sqsum = 0.0
+ smallest = 1e10
+ largest = -1e10
+ t0 = time.time()
+ for i in range(n):
+ x = eval(code)
+ sum = sum + x
+ sqsum = sqsum + x*x
+ smallest = min(x, smallest)
+ largest = max(x, largest)
+ t1 = time.time()
+ print round(t1-t0, 3), 'sec,',
+ avg = sum/n
+ stddev = sqrt(sqsum/n - avg*avg)
+ print 'avg %g, stddev %g, min %g, max %g' % \
+ (avg, stddev, smallest, largest)
if __name__ == '__main__':
- test()
+ test()