diff options
Diffstat (limited to 'Lib/statistics.py')
-rw-r--r-- | Lib/statistics.py | 103 |
1 files changed, 100 insertions, 3 deletions
diff --git a/Lib/statistics.py b/Lib/statistics.py index fc00891..f3ce2d8 100644 --- a/Lib/statistics.py +++ b/Lib/statistics.py @@ -113,6 +113,7 @@ __all__ = [ 'geometric_mean', 'harmonic_mean', 'kde', + 'kde_random', 'linear_regression', 'mean', 'median', @@ -138,12 +139,13 @@ from decimal import Decimal from itertools import count, groupby, repeat from bisect import bisect_left, bisect_right from math import hypot, sqrt, fabs, exp, erf, tau, log, fsum, sumprod -from math import isfinite, isinf, pi, cos, sin, cosh, atan +from math import isfinite, isinf, pi, cos, sin, tan, cosh, asin, atan, acos from functools import reduce from operator import itemgetter from collections import Counter, namedtuple, defaultdict _SQRT2 = sqrt(2.0) +_random = random # === Exceptions === @@ -978,11 +980,9 @@ def kde(data, h, kernel='normal', *, cumulative=False): return sum(K((x - x_i) / h) for x_i in data) / (n * h) def cdf(x): - n = len(data) return sum(W((x - x_i) / h) for x_i in data) / n - else: sample = sorted(data) @@ -1078,6 +1078,7 @@ def quantiles(data, *, n=4, method='exclusive'): if ld == 1: return data * (n - 1) raise StatisticsError('must have at least one data point') + if method == 'inclusive': m = ld - 1 result = [] @@ -1086,6 +1087,7 @@ def quantiles(data, *, n=4, method='exclusive'): interpolated = (data[j] * (n - delta) + data[j + 1] * delta) / n result.append(interpolated) return result + if method == 'exclusive': m = ld + 1 result = [] @@ -1096,6 +1098,7 @@ def quantiles(data, *, n=4, method='exclusive'): interpolated = (data[j - 1] * (n - delta) + data[j] * delta) / n result.append(interpolated) return result + raise ValueError(f'Unknown method: {method!r}') @@ -1709,3 +1712,97 @@ class NormalDist: def __setstate__(self, state): self._mu, self._sigma = state + + +## kde_random() ############################################################## + +def _newton_raphson(f_inv_estimate, f, f_prime, tolerance=1e-12): + def f_inv(y): + "Return x such that f(x) ≈ y within the specified tolerance." + x = f_inv_estimate(y) + while abs(diff := f(x) - y) > tolerance: + x -= diff / f_prime(x) + return x + return f_inv + +def _quartic_invcdf_estimate(p): + sign, p = (1.0, p) if p <= 1/2 else (-1.0, 1.0 - p) + x = (2.0 * p) ** 0.4258865685331 - 1.0 + if p >= 0.004 < 0.499: + x += 0.026818732 * sin(7.101753784 * p + 2.73230839482953) + return x * sign + +_quartic_invcdf = _newton_raphson( + f_inv_estimate = _quartic_invcdf_estimate, + f = lambda t: 3/16 * t**5 - 5/8 * t**3 + 15/16 * t + 1/2, + f_prime = lambda t: 15/16 * (1.0 - t * t) ** 2) + +def _triweight_invcdf_estimate(p): + sign, p = (1.0, p) if p <= 1/2 else (-1.0, 1.0 - p) + x = (2.0 * p) ** 0.3400218741872791 - 1.0 + return x * sign + +_triweight_invcdf = _newton_raphson( + f_inv_estimate = _triweight_invcdf_estimate, + f = lambda t: 35/32 * (-1/7*t**7 + 3/5*t**5 - t**3 + t) + 1/2, + f_prime = lambda t: 35/32 * (1.0 - t * t) ** 3) + +_kernel_invcdfs = { + 'normal': NormalDist().inv_cdf, + 'logistic': lambda p: log(p / (1 - p)), + 'sigmoid': lambda p: log(tan(p * pi/2)), + 'rectangular': lambda p: 2*p - 1, + 'parabolic': lambda p: 2 * cos((acos(2*p-1) + pi) / 3), + 'quartic': _quartic_invcdf, + 'triweight': _triweight_invcdf, + 'triangular': lambda p: sqrt(2*p) - 1 if p < 1/2 else 1 - sqrt(2 - 2*p), + 'cosine': lambda p: 2 * asin(2*p - 1) / pi, +} +_kernel_invcdfs['gauss'] = _kernel_invcdfs['normal'] +_kernel_invcdfs['uniform'] = _kernel_invcdfs['rectangular'] +_kernel_invcdfs['epanechnikov'] = _kernel_invcdfs['parabolic'] +_kernel_invcdfs['biweight'] = _kernel_invcdfs['quartic'] + +def kde_random(data, h, kernel='normal', *, seed=None): + """Return a function that makes a random selection from the estimated + probability density function created by kde(data, h, kernel). + + Providing a *seed* allows reproducible selections within a single + thread. The seed may be an integer, float, str, or bytes. + + A StatisticsError will be raised if the *data* sequence is empty. + + Example: + + >>> data = [-2.1, -1.3, -0.4, 1.9, 5.1, 6.2] + >>> rand = kde_random(data, h=1.5, seed=8675309) + >>> new_selections = [rand() for i in range(10)] + >>> [round(x, 1) for x in new_selections] + [0.7, 6.2, 1.2, 6.9, 7.0, 1.8, 2.5, -0.5, -1.8, 5.6] + + """ + n = len(data) + if not n: + raise StatisticsError('Empty data sequence') + + if not isinstance(data[0], (int, float)): + raise TypeError('Data sequence must contain ints or floats') + + if h <= 0.0: + raise StatisticsError(f'Bandwidth h must be positive, not {h=!r}') + + try: + kernel_invcdf = _kernel_invcdfs[kernel] + except KeyError: + raise StatisticsError(f'Unknown kernel name: {kernel!r}') + + prng = _random.Random(seed) + random = prng.random + choice = prng.choice + + def rand(): + return choice(data) + h * kernel_invcdf(random()) + + rand.__doc__ = f'Random KDE selection with {h=!r} and {kernel=!r}' + + return rand |