diff options
Diffstat (limited to 'Lib/test/test_cmath.py')
-rwxr-xr-x | Lib/test/test_cmath.py | 338 |
1 files changed, 314 insertions, 24 deletions
diff --git a/Lib/test/test_cmath.py b/Lib/test/test_cmath.py index 7c5f4a5..ca4945d 100755 --- a/Lib/test/test_cmath.py +++ b/Lib/test/test_cmath.py @@ -1,6 +1,81 @@ from test.test_support import run_unittest +from test.test_math import parse_testfile, test_file import unittest +import os, sys import cmath, math +from cmath import phase, polar, rect, pi + +INF = float('inf') +NAN = float('nan') + +complex_zeros = [complex(x, y) for x in [0.0, -0.0] for y in [0.0, -0.0]] +complex_infinities = [complex(x, y) for x, y in [ + (INF, 0.0), # 1st quadrant + (INF, 2.3), + (INF, INF), + (2.3, INF), + (0.0, INF), + (-0.0, INF), # 2nd quadrant + (-2.3, INF), + (-INF, INF), + (-INF, 2.3), + (-INF, 0.0), + (-INF, -0.0), # 3rd quadrant + (-INF, -2.3), + (-INF, -INF), + (-2.3, -INF), + (-0.0, -INF), + (0.0, -INF), # 4th quadrant + (2.3, -INF), + (INF, -INF), + (INF, -2.3), + (INF, -0.0) + ]] +complex_nans = [complex(x, y) for x, y in [ + (NAN, -INF), + (NAN, -2.3), + (NAN, -0.0), + (NAN, 0.0), + (NAN, 2.3), + (NAN, INF), + (-INF, NAN), + (-2.3, NAN), + (-0.0, NAN), + (0.0, NAN), + (2.3, NAN), + (INF, NAN) + ]] + +def almostEqualF(a, b, rel_err=2e-15, abs_err = 5e-323): + """Determine whether floating-point values a and b are equal to within + a (small) rounding error. The default values for rel_err and + abs_err are chosen to be suitable for platforms where a float is + represented by an IEEE 754 double. They allow an error of between + 9 and 19 ulps.""" + + # special values testing + if math.isnan(a): + return math.isnan(b) + if math.isinf(a): + return a == b + + # if both a and b are zero, check whether they have the same sign + # (in theory there are examples where it would be legitimate for a + # and b to have opposite signs; in practice these hardly ever + # occur). + if not a and not b: + return math.copysign(1., a) == math.copysign(1., b) + + # if a-b overflows, or b is infinite, return False. Again, in + # theory there are examples where a is within a few ulps of the + # max representable float, and then b could legitimately be + # infinite. In practice these examples are rare. + try: + absolute_error = abs(b-a) + except OverflowError: + return False + else: + return absolute_error <= max(abs_err, rel_err * abs(a)) class CMathTests(unittest.TestCase): # list of all functions in cmath @@ -12,25 +87,51 @@ class CMathTests(unittest.TestCase): test_functions.append(lambda x : cmath.log(x, 1729. + 0j)) test_functions.append(lambda x : cmath.log(14.-27j, x)) - def cAssertAlmostEqual(self, a, b, rel_eps = 1e-10, abs_eps = 1e-100): - """Check that two complex numbers are almost equal.""" - # the two complex numbers are considered almost equal if - # either the relative error is <= rel_eps or the absolute error - # is tiny, <= abs_eps. - if a == b == 0: - return - absolute_error = abs(a-b) - relative_error = absolute_error/max(abs(a), abs(b)) - if relative_error > rel_eps and absolute_error > abs_eps: - self.fail("%s and %s are not almost equal" % (a, b)) + def setUp(self): + self.test_values = open(test_file) + + def tearDown(self): + self.test_values.close() + + def rAssertAlmostEqual(self, a, b, rel_err = 2e-15, abs_err = 5e-323): + """Check that two floating-point numbers are almost equal.""" + + # special values testing + if math.isnan(a): + if math.isnan(b): + return + self.fail("%s should be nan" % repr(b)) + + if math.isinf(a): + if a == b: + return + self.fail("finite result where infinity excpected: " + "expected %s, got %s" % (repr(a), repr(b))) + + if not a and not b: + if math.atan2(a, -1.) != math.atan2(b, -1.): + self.fail("zero has wrong sign: expected %s, got %s" % + (repr(a), repr(b))) + + # test passes if either the absolute error or the relative + # error is sufficiently small. The defaults amount to an + # error of between 9 ulps and 19 ulps on an IEEE-754 compliant + # machine. + + try: + absolute_error = abs(b-a) + except OverflowError: + pass + else: + if absolute_error <= max(abs_err, rel_err * abs(a)): + return + self.fail("%s and %s are not sufficiently close" % (repr(a), repr(b))) def test_constants(self): e_expected = 2.71828182845904523536 pi_expected = 3.14159265358979323846 - self.assertAlmostEqual(cmath.pi, pi_expected, places=9, - msg="cmath.pi is %s; should be %s" % (cmath.pi, pi_expected)) - self.assertAlmostEqual(cmath.e, e_expected, places=9, - msg="cmath.e is %s; should be %s" % (cmath.e, e_expected)) + self.assertAlmostEqual(cmath.pi, pi_expected) + self.assertAlmostEqual(cmath.e, e_expected) def test_user_object(self): # Test automatic calling of __complex__ and __float__ by cmath @@ -109,13 +210,13 @@ class CMathTests(unittest.TestCase): for f in self.test_functions: # usual usage - self.cAssertAlmostEqual(f(MyComplex(cx_arg)), f(cx_arg)) - self.cAssertAlmostEqual(f(MyComplexOS(cx_arg)), f(cx_arg)) + self.assertEqual(f(MyComplex(cx_arg)), f(cx_arg)) + self.assertEqual(f(MyComplexOS(cx_arg)), f(cx_arg)) # other combinations of __float__ and __complex__ - self.cAssertAlmostEqual(f(FloatAndComplex()), f(cx_arg)) - self.cAssertAlmostEqual(f(FloatAndComplexOS()), f(cx_arg)) - self.cAssertAlmostEqual(f(JustFloat()), f(flt_arg)) - self.cAssertAlmostEqual(f(JustFloatOS()), f(flt_arg)) + self.assertEqual(f(FloatAndComplex()), f(cx_arg)) + self.assertEqual(f(FloatAndComplexOS()), f(cx_arg)) + self.assertEqual(f(JustFloat()), f(flt_arg)) + self.assertEqual(f(JustFloatOS()), f(flt_arg)) # TypeError should be raised for classes not providing # either __complex__ or __float__, even if they provide # __int__, __long__ or __index__. An old-style class @@ -138,7 +239,7 @@ class CMathTests(unittest.TestCase): # functions, by virtue of providing a __float__ method for f in self.test_functions: for arg in [2, 2.]: - self.cAssertAlmostEqual(f(arg), f(arg.__float__())) + self.assertEqual(f(arg), f(arg.__float__())) # but strings should give a TypeError for f in self.test_functions: @@ -182,12 +283,201 @@ class CMathTests(unittest.TestCase): float_fn = getattr(math, fn) complex_fn = getattr(cmath, fn) for v in values: - self.cAssertAlmostEqual(float_fn(v), complex_fn(v)) + z = complex_fn(v) + self.rAssertAlmostEqual(float_fn(v), z.real) + self.assertEqual(0., z.imag) # test two-argument version of log with various bases for base in [0.5, 2., 10.]: for v in positive: - self.cAssertAlmostEqual(cmath.log(v, base), math.log(v, base)) + z = cmath.log(v, base) + self.rAssertAlmostEqual(math.log(v, base), z.real) + self.assertEqual(0., z.imag) + + def test_specific_values(self): + if not float.__getformat__("double").startswith("IEEE"): + return + + def rect_complex(z): + """Wrapped version of rect that accepts a complex number instead of + two float arguments.""" + return cmath.rect(z.real, z.imag) + + def polar_complex(z): + """Wrapped version of polar that returns a complex number instead of + two floats.""" + return complex(*polar(z)) + + for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file): + arg = complex(ar, ai) + expected = complex(er, ei) + if fn == 'rect': + function = rect_complex + elif fn == 'polar': + function = polar_complex + else: + function = getattr(cmath, fn) + if 'divide-by-zero' in flags or 'invalid' in flags: + try: + actual = function(arg) + except ValueError: + continue + else: + test_str = "%s: %s(complex(%r, %r))" % (id, fn, ar, ai) + self.fail('ValueError not raised in test %s' % test_str) + + if 'overflow' in flags: + try: + actual = function(arg) + except OverflowError: + continue + else: + test_str = "%s: %s(complex(%r, %r))" % (id, fn, ar, ai) + self.fail('OverflowError not raised in test %s' % test_str) + + actual = function(arg) + + if 'ignore-real-sign' in flags: + actual = complex(abs(actual.real), actual.imag) + expected = complex(abs(expected.real), expected.imag) + if 'ignore-imag-sign' in flags: + actual = complex(actual.real, abs(actual.imag)) + expected = complex(expected.real, abs(expected.imag)) + + # for the real part of the log function, we allow an + # absolute error of up to 2e-15. + if fn in ('log', 'log10'): + real_abs_err = 2e-15 + else: + real_abs_err = 5e-323 + + if not (almostEqualF(expected.real, actual.real, + abs_err = real_abs_err) and + almostEqualF(expected.imag, actual.imag)): + error_message = ( + "%s: %s(complex(%r, %r))\n" % (id, fn, ar, ai) + + "Expected: complex(%r, %r)\n" % + (expected.real, expected.imag) + + "Received: complex(%r, %r)\n" % + (actual.real, actual.imag) + + "Received value insufficiently close to expected value.") + self.fail(error_message) + + def assertCISEqual(self, a, b): + eps = 1E-7 + if abs(a[0] - b[0]) > eps or abs(a[1] - b[1]) > eps: + self.fail((a ,b)) + + def test_polar(self): + self.assertCISEqual(polar(0), (0., 0.)) + self.assertCISEqual(polar(1.), (1., 0.)) + self.assertCISEqual(polar(-1.), (1., pi)) + self.assertCISEqual(polar(1j), (1., pi/2)) + self.assertCISEqual(polar(-1j), (1., -pi/2)) + + def test_phase(self): + self.assertAlmostEqual(phase(0), 0.) + self.assertAlmostEqual(phase(1.), 0.) + self.assertAlmostEqual(phase(-1.), pi) + self.assertAlmostEqual(phase(-1.+1E-300j), pi) + self.assertAlmostEqual(phase(-1.-1E-300j), -pi) + self.assertAlmostEqual(phase(1j), pi/2) + self.assertAlmostEqual(phase(-1j), -pi/2) + + # zeros + self.assertEqual(phase(complex(0.0, 0.0)), 0.0) + self.assertEqual(phase(complex(0.0, -0.0)), -0.0) + self.assertEqual(phase(complex(-0.0, 0.0)), pi) + self.assertEqual(phase(complex(-0.0, -0.0)), -pi) + + # infinities + self.assertAlmostEqual(phase(complex(-INF, -0.0)), -pi) + self.assertAlmostEqual(phase(complex(-INF, -2.3)), -pi) + self.assertAlmostEqual(phase(complex(-INF, -INF)), -0.75*pi) + self.assertAlmostEqual(phase(complex(-2.3, -INF)), -pi/2) + self.assertAlmostEqual(phase(complex(-0.0, -INF)), -pi/2) + self.assertAlmostEqual(phase(complex(0.0, -INF)), -pi/2) + self.assertAlmostEqual(phase(complex(2.3, -INF)), -pi/2) + self.assertAlmostEqual(phase(complex(INF, -INF)), -pi/4) + self.assertEqual(phase(complex(INF, -2.3)), -0.0) + self.assertEqual(phase(complex(INF, -0.0)), -0.0) + self.assertEqual(phase(complex(INF, 0.0)), 0.0) + self.assertEqual(phase(complex(INF, 2.3)), 0.0) + self.assertAlmostEqual(phase(complex(INF, INF)), pi/4) + self.assertAlmostEqual(phase(complex(2.3, INF)), pi/2) + self.assertAlmostEqual(phase(complex(0.0, INF)), pi/2) + self.assertAlmostEqual(phase(complex(-0.0, INF)), pi/2) + self.assertAlmostEqual(phase(complex(-2.3, INF)), pi/2) + self.assertAlmostEqual(phase(complex(-INF, INF)), 0.75*pi) + self.assertAlmostEqual(phase(complex(-INF, 2.3)), pi) + self.assertAlmostEqual(phase(complex(-INF, 0.0)), pi) + + # real or imaginary part NaN + for z in complex_nans: + self.assert_(math.isnan(phase(z))) + + def test_abs(self): + # zeros + for z in complex_zeros: + self.assertEqual(abs(z), 0.0) + + # infinities + for z in complex_infinities: + self.assertEqual(abs(z), INF) + + # real or imaginary part NaN + self.assertEqual(abs(complex(NAN, -INF)), INF) + self.assert_(math.isnan(abs(complex(NAN, -2.3)))) + self.assert_(math.isnan(abs(complex(NAN, -0.0)))) + self.assert_(math.isnan(abs(complex(NAN, 0.0)))) + self.assert_(math.isnan(abs(complex(NAN, 2.3)))) + self.assertEqual(abs(complex(NAN, INF)), INF) + self.assertEqual(abs(complex(-INF, NAN)), INF) + self.assert_(math.isnan(abs(complex(-2.3, NAN)))) + self.assert_(math.isnan(abs(complex(-0.0, NAN)))) + self.assert_(math.isnan(abs(complex(0.0, NAN)))) + self.assert_(math.isnan(abs(complex(2.3, NAN)))) + self.assertEqual(abs(complex(INF, NAN)), INF) + self.assert_(math.isnan(abs(complex(NAN, NAN)))) + + # result overflows + if float.__getformat__("double").startswith("IEEE"): + self.assertRaises(OverflowError, abs, complex(1.4e308, 1.4e308)) + + def assertCEqual(self, a, b): + eps = 1E-7 + if abs(a.real - b[0]) > eps or abs(a.imag - b[1]) > eps: + self.fail((a ,b)) + + def test_rect(self): + self.assertCEqual(rect(0, 0), (0, 0)) + self.assertCEqual(rect(1, 0), (1., 0)) + self.assertCEqual(rect(1, -pi), (-1., 0)) + self.assertCEqual(rect(1, pi/2), (0, 1.)) + self.assertCEqual(rect(1, -pi/2), (0, -1.)) + + def test_isnan(self): + self.failIf(cmath.isnan(1)) + self.failIf(cmath.isnan(1j)) + self.failIf(cmath.isnan(INF)) + self.assert_(cmath.isnan(NAN)) + self.assert_(cmath.isnan(complex(NAN, 0))) + self.assert_(cmath.isnan(complex(0, NAN))) + self.assert_(cmath.isnan(complex(NAN, NAN))) + self.assert_(cmath.isnan(complex(NAN, INF))) + self.assert_(cmath.isnan(complex(INF, NAN))) + + def test_isinf(self): + self.failIf(cmath.isinf(1)) + self.failIf(cmath.isinf(1j)) + self.failIf(cmath.isinf(NAN)) + self.assert_(cmath.isinf(INF)) + self.assert_(cmath.isinf(complex(INF, 0))) + self.assert_(cmath.isinf(complex(0, INF))) + self.assert_(cmath.isinf(complex(INF, INF))) + self.assert_(cmath.isinf(complex(NAN, INF))) + self.assert_(cmath.isinf(complex(INF, NAN))) + def test_main(): run_unittest(CMathTests) |