diff options
Diffstat (limited to 'Lib/test/test_long.py')
-rw-r--r-- | Lib/test/test_long.py | 80 |
1 files changed, 80 insertions, 0 deletions
diff --git a/Lib/test/test_long.py b/Lib/test/test_long.py index 3ebc1f7..b417bea 100644 --- a/Lib/test/test_long.py +++ b/Lib/test/test_long.py @@ -43,6 +43,53 @@ DBL_MIN_EXP = sys.float_info.min_exp DBL_MANT_DIG = sys.float_info.mant_dig DBL_MIN_OVERFLOW = 2**DBL_MAX_EXP - 2**(DBL_MAX_EXP - DBL_MANT_DIG - 1) + +# Pure Python version of correctly-rounded integer-to-float conversion. +def int_to_float(n): + """ + Correctly-rounded integer-to-float conversion. + + """ + # Constants, depending only on the floating-point format in use. + # We use an extra 2 bits of precision for rounding purposes. + PRECISION = sys.float_info.mant_dig + 2 + SHIFT_MAX = sys.float_info.max_exp - PRECISION + Q_MAX = 1 << PRECISION + ROUND_HALF_TO_EVEN_CORRECTION = [0, -1, -2, 1, 0, -1, 2, 1] + + # Reduce to the case where n is positive. + if n == 0: + return 0.0 + elif n < 0: + return -int_to_float(-n) + + # Convert n to a 'floating-point' number q * 2**shift, where q is an + # integer with 'PRECISION' significant bits. When shifting n to create q, + # the least significant bit of q is treated as 'sticky'. That is, the + # least significant bit of q is set if either the corresponding bit of n + # was already set, or any one of the bits of n lost in the shift was set. + shift = n.bit_length() - PRECISION + q = n << -shift if shift < 0 else (n >> shift) | bool(n & ~(-1 << shift)) + + # Round half to even (actually rounds to the nearest multiple of 4, + # rounding ties to a multiple of 8). + q += ROUND_HALF_TO_EVEN_CORRECTION[q & 7] + + # Detect overflow. + if shift + (q == Q_MAX) > SHIFT_MAX: + raise OverflowError("integer too large to convert to float") + + # Checks: q is exactly representable, and q**2**shift doesn't overflow. + assert q % 4 == 0 and q // 4 <= 2**(sys.float_info.mant_dig) + assert q * 2**shift <= sys.float_info.max + + # Some circularity here, since float(q) is doing an int-to-float + # conversion. But here q is of bounded size, and is exactly representable + # as a float. In a low-level C-like language, this operation would be a + # simple cast (e.g., from unsigned long long to double). + return math.ldexp(float(q), shift) + + # pure Python version of correctly-rounded true division def truediv(a, b): """Correctly-rounded true division for integers.""" @@ -367,6 +414,23 @@ class LongTest(unittest.TestCase): return 1729 self.assertEqual(int(LongTrunc()), 1729) + def check_float_conversion(self, n): + # Check that int -> float conversion behaviour matches + # that of the pure Python version above. + try: + actual = float(n) + except OverflowError: + actual = 'overflow' + + try: + expected = int_to_float(n) + except OverflowError: + expected = 'overflow' + + msg = ("Error in conversion of integer {} to float. " + "Got {}, expected {}.".format(n, actual, expected)) + self.assertEqual(actual, expected, msg) + @support.requires_IEEE_754 def test_float_conversion(self): @@ -421,6 +485,22 @@ class LongTest(unittest.TestCase): y = 2**p * 2**53 self.assertEqual(int(float(x)), y) + # Compare builtin float conversion with pure Python int_to_float + # function above. + test_values = [ + int_dbl_max-1, int_dbl_max, int_dbl_max+1, + halfway-1, halfway, halfway + 1, + top_power-1, top_power, top_power+1, + 2*top_power-1, 2*top_power, top_power*top_power, + ] + test_values.extend(exact_values) + for p in range(-4, 8): + for x in range(-128, 128): + test_values.append(2**(p+53) + x) + for value in test_values: + self.check_float_conversion(value) + self.check_float_conversion(-value) + def test_float_overflow(self): for x in -2.0, -1.0, 0.0, 1.0, 2.0: self.assertEqual(float(int(x)), x) |