summaryrefslogtreecommitdiffstats
path: root/Lib/test/test_math.py
diff options
context:
space:
mode:
Diffstat (limited to 'Lib/test/test_math.py')
-rw-r--r--Lib/test/test_math.py265
1 files changed, 178 insertions, 87 deletions
diff --git a/Lib/test/test_math.py b/Lib/test/test_math.py
index 48e8007..02d8b47 100644
--- a/Lib/test/test_math.py
+++ b/Lib/test/test_math.py
@@ -29,6 +29,7 @@ test_dir = os.path.dirname(file) or os.curdir
math_testcases = os.path.join(test_dir, 'math_testcases.txt')
test_file = os.path.join(test_dir, 'cmath_testcases.txt')
+
def to_ulps(x):
"""Convert a non-NaN float x to an integer, in such a way that
adjacent floats are converted to adjacent integers. Then
@@ -36,25 +37,39 @@ def to_ulps(x):
floats.
The results from this function will only make sense on platforms
- where C doubles are represented in IEEE 754 binary64 format.
+ where native doubles are represented in IEEE 754 binary64 format.
+ Note: 0.0 and -0.0 are converted to 0 and -1, respectively.
"""
n = struct.unpack('<q', struct.pack('<d', x))[0]
if n < 0:
n = ~(n+2**63)
return n
-def ulps_check(expected, got, ulps=20):
- """Given non-NaN floats `expected` and `got`,
- check that they're equal to within the given number of ulps.
- Returns None on success and an error message on failure."""
+def ulp(x):
+ """Return the value of the least significant bit of a
+ float x, such that the first float bigger than x is x+ulp(x).
+ Then, given an expected result x and a tolerance of n ulps,
+ the result y should be such that abs(y-x) <= n * ulp(x).
+ The results from this function will only make sense on platforms
+ where native doubles are represented in IEEE 754 binary64 format.
+ """
+ x = abs(float(x))
+ if math.isnan(x) or math.isinf(x):
+ return x
- ulps_error = to_ulps(got) - to_ulps(expected)
- if abs(ulps_error) <= ulps:
- return None
- return "error = {} ulps; permitted error = {} ulps".format(ulps_error,
- ulps)
+ # Find next float up from x.
+ n = struct.unpack('<q', struct.pack('<d', x))[0]
+ x_next = struct.unpack('<d', struct.pack('<q', n + 1))[0]
+ if math.isinf(x_next):
+ # Corner case: x was the largest finite float. Then it's
+ # not an exact power of two, so we can take the difference
+ # between x and the previous float.
+ x_prev = struct.unpack('<d', struct.pack('<q', n - 1))[0]
+ return x - x_prev
+ else:
+ return x_next - x
# Here's a pure Python version of the math.factorial algorithm, for
# documentation and comparison purposes.
@@ -106,24 +121,23 @@ def py_factorial(n):
outer *= inner
return outer << (n - count_set_bits(n))
-def acc_check(expected, got, rel_err=2e-15, abs_err = 5e-323):
- """Determine whether non-NaN floats a and b are equal to within a
- (small) rounding error. The default values for rel_err and
- abs_err are chosen to be suitable for platforms where a float is
- represented by an IEEE 754 double. They allow an error of between
- 9 and 19 ulps."""
+def ulp_abs_check(expected, got, ulp_tol, abs_tol):
+ """Given finite floats `expected` and `got`, check that they're
+ approximately equal to within the given number of ulps or the
+ given absolute tolerance, whichever is bigger.
- # need to special case infinities, since inf - inf gives nan
- if math.isinf(expected) and got == expected:
- return None
-
- error = got - expected
+ Returns None on success and an error message on failure.
+ """
+ ulp_error = abs(to_ulps(expected) - to_ulps(got))
+ abs_error = abs(expected - got)
- permitted_error = max(abs_err, rel_err * abs(expected))
- if abs(error) < permitted_error:
+ # Succeed if either abs_error <= abs_tol or ulp_error <= ulp_tol.
+ if abs_error <= abs_tol or ulp_error <= ulp_tol:
return None
- return "error = {}; permitted error = {}".format(error,
- permitted_error)
+ else:
+ fmt = ("error = {:.3g} ({:d} ulps); "
+ "permitted error = {:.3g} or {:d} ulps")
+ return fmt.format(abs_error, ulp_error, abs_tol, ulp_tol)
def parse_mtestfile(fname):
"""Parse a file with test values
@@ -150,6 +164,7 @@ def parse_mtestfile(fname):
yield (id, fn, float(arg), float(exp), flags)
+
def parse_testfile(fname):
"""Parse a file with test values
@@ -171,8 +186,53 @@ def parse_testfile(fname):
yield (id, fn,
float(arg_real), float(arg_imag),
float(exp_real), float(exp_imag),
- flags
- )
+ flags)
+
+
+def result_check(expected, got, ulp_tol=5, abs_tol=0.0):
+ # Common logic of MathTests.(ftest, test_testcases, test_mtestcases)
+ """Compare arguments expected and got, as floats, if either
+ is a float, using a tolerance expressed in multiples of
+ ulp(expected) or absolutely (if given and greater).
+
+ As a convenience, when neither argument is a float, and for
+ non-finite floats, exact equality is demanded. Also, nan==nan
+ as far as this function is concerned.
+
+ Returns None on success and an error message on failure.
+ """
+
+ # Check exactly equal (applies also to strings representing exceptions)
+ if got == expected:
+ return None
+
+ failure = "not equal"
+
+ # Turn mixed float and int comparison (e.g. floor()) to all-float
+ if isinstance(expected, float) and isinstance(got, int):
+ got = float(got)
+ elif isinstance(got, float) and isinstance(expected, int):
+ expected = float(expected)
+
+ if isinstance(expected, float) and isinstance(got, float):
+ if math.isnan(expected) and math.isnan(got):
+ # Pass, since both nan
+ failure = None
+ elif math.isinf(expected) or math.isinf(got):
+ # We already know they're not equal, drop through to failure
+ pass
+ else:
+ # Both are finite floats (now). Are they close enough?
+ failure = ulp_abs_check(expected, got, ulp_tol, abs_tol)
+
+ # arguments are not equal, and if numeric, are too far apart
+ if failure is not None:
+ fail_fmt = "expected {!r}, got {!r}"
+ fail_msg = fail_fmt.format(expected, got)
+ fail_msg += ' ({})'.format(failure)
+ return fail_msg
+ else:
+ return None
# Class providing an __index__ method.
class MyIndexable(object):
@@ -184,18 +244,23 @@ class MyIndexable(object):
class MathTests(unittest.TestCase):
- def ftest(self, name, value, expected):
- if abs(value-expected) > eps:
- # Use %r instead of %f so the error message
- # displays full precision. Otherwise discrepancies
- # in the last few bits will lead to very confusing
- # error messages
- self.fail('%s returned %r, expected %r' %
- (name, value, expected))
+ def ftest(self, name, got, expected, ulp_tol=5, abs_tol=0.0):
+ """Compare arguments expected and got, as floats, if either
+ is a float, using a tolerance expressed in multiples of
+ ulp(expected) or absolutely, whichever is greater.
+
+ As a convenience, when neither argument is a float, and for
+ non-finite floats, exact equality is demanded. Also, nan==nan
+ in this function.
+ """
+ failure = result_check(expected, got, ulp_tol, abs_tol)
+ if failure is not None:
+ self.fail("{}: {}".format(name, failure))
def testConstants(self):
- self.ftest('pi', math.pi, 3.1415926)
- self.ftest('e', math.e, 2.7182818)
+ # Ref: Abramowitz & Stegun (Dover, 1965)
+ self.ftest('pi', math.pi, 3.141592653589793238462643)
+ self.ftest('e', math.e, 2.718281828459045235360287)
self.assertEqual(math.tau, 2*math.pi)
def testAcos(self):
@@ -378,9 +443,9 @@ class MathTests(unittest.TestCase):
def testCos(self):
self.assertRaises(TypeError, math.cos)
- self.ftest('cos(-pi/2)', math.cos(-math.pi/2), 0)
+ self.ftest('cos(-pi/2)', math.cos(-math.pi/2), 0, abs_tol=ulp(1))
self.ftest('cos(0)', math.cos(0), 1)
- self.ftest('cos(pi/2)', math.cos(math.pi/2), 0)
+ self.ftest('cos(pi/2)', math.cos(math.pi/2), 0, abs_tol=ulp(1))
self.ftest('cos(pi)', math.cos(math.pi), -1)
try:
self.assertTrue(math.isnan(math.cos(INF)))
@@ -970,7 +1035,8 @@ class MathTests(unittest.TestCase):
def testTanh(self):
self.assertRaises(TypeError, math.tanh)
self.ftest('tanh(0)', math.tanh(0), 0)
- self.ftest('tanh(1)+tanh(-1)', math.tanh(1)+math.tanh(-1), 0)
+ self.ftest('tanh(1)+tanh(-1)', math.tanh(1)+math.tanh(-1), 0,
+ abs_tol=ulp(1))
self.ftest('tanh(inf)', math.tanh(INF), 1)
self.ftest('tanh(-inf)', math.tanh(NINF), -1)
self.assertTrue(math.isnan(math.tanh(NAN)))
@@ -1084,30 +1150,48 @@ class MathTests(unittest.TestCase):
@requires_IEEE_754
def test_testfile(self):
+ fail_fmt = "{}: {}({!r}): {}"
+
+ failures = []
for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file):
- # Skip if either the input or result is complex, or if
- # flags is nonempty
- if ai != 0. or ei != 0. or flags:
+ # Skip if either the input or result is complex
+ if ai != 0.0 or ei != 0.0:
continue
if fn in ['rect', 'polar']:
# no real versions of rect, polar
continue
+
func = getattr(math, fn)
+
+ if 'invalid' in flags or 'divide-by-zero' in flags:
+ er = 'ValueError'
+ elif 'overflow' in flags:
+ er = 'OverflowError'
+
try:
result = func(ar)
- except ValueError as exc:
- message = (("Unexpected ValueError: %s\n " +
- "in test %s:%s(%r)\n") % (exc.args[0], id, fn, ar))
- self.fail(message)
+ except ValueError:
+ result = 'ValueError'
except OverflowError:
- message = ("Unexpected OverflowError in " +
- "test %s:%s(%r)\n" % (id, fn, ar))
- self.fail(message)
- self.ftest("%s:%s(%r)" % (id, fn, ar), result, er)
+ result = 'OverflowError'
+
+ # Default tolerances
+ ulp_tol, abs_tol = 5, 0.0
+
+ failure = result_check(er, result, ulp_tol, abs_tol)
+ if failure is None:
+ continue
+
+ msg = fail_fmt.format(id, fn, ar, failure)
+ failures.append(msg)
+
+ if failures:
+ self.fail('Failures in test_testfile:\n ' +
+ '\n '.join(failures))
@requires_IEEE_754
def test_mtestfile(self):
- fail_fmt = "{}:{}({!r}): expected {!r}, got {!r}"
+ fail_fmt = "{}: {}({!r}): {}"
failures = []
for id, fn, arg, expected, flags in parse_mtestfile(math_testcases):
@@ -1125,41 +1209,48 @@ class MathTests(unittest.TestCase):
except OverflowError:
got = 'OverflowError'
- accuracy_failure = None
- if isinstance(got, float) and isinstance(expected, float):
- if math.isnan(expected) and math.isnan(got):
- continue
- if not math.isnan(expected) and not math.isnan(got):
- if fn == 'lgamma':
- # we use a weaker accuracy test for lgamma;
- # lgamma only achieves an absolute error of
- # a few multiples of the machine accuracy, in
- # general.
- accuracy_failure = acc_check(expected, got,
- rel_err = 5e-15,
- abs_err = 5e-15)
- elif fn == 'erfc':
- # erfc has less-than-ideal accuracy for large
- # arguments (x ~ 25 or so), mainly due to the
- # error involved in computing exp(-x*x).
- #
- # XXX Would be better to weaken this test only
- # for large x, instead of for all x.
- accuracy_failure = ulps_check(expected, got, 2000)
-
- else:
- accuracy_failure = ulps_check(expected, got, 20)
- if accuracy_failure is None:
- continue
-
- if isinstance(got, str) and isinstance(expected, str):
- if got == expected:
- continue
-
- fail_msg = fail_fmt.format(id, fn, arg, expected, got)
- if accuracy_failure is not None:
- fail_msg += ' ({})'.format(accuracy_failure)
- failures.append(fail_msg)
+ # Default tolerances
+ ulp_tol, abs_tol = 5, 0.0
+
+ # Exceptions to the defaults
+ if fn == 'gamma':
+ # Experimental results on one platform gave
+ # an accuracy of <= 10 ulps across the entire float
+ # domain. We weaken that to require 20 ulp accuracy.
+ ulp_tol = 20
+
+ elif fn == 'lgamma':
+ # we use a weaker accuracy test for lgamma;
+ # lgamma only achieves an absolute error of
+ # a few multiples of the machine accuracy, in
+ # general.
+ abs_tol = 1e-15
+
+ elif fn == 'erfc' and arg >= 0.0:
+ # erfc has less-than-ideal accuracy for large
+ # arguments (x ~ 25 or so), mainly due to the
+ # error involved in computing exp(-x*x).
+ #
+ # Observed between CPython and mpmath at 25 dp:
+ # x < 0 : err <= 2 ulp
+ # 0 <= x < 1 : err <= 10 ulp
+ # 1 <= x < 10 : err <= 100 ulp
+ # 10 <= x < 20 : err <= 300 ulp
+ # 20 <= x : < 600 ulp
+ #
+ if arg < 1.0:
+ ulp_tol = 10
+ elif arg < 10.0:
+ ulp_tol = 100
+ else:
+ ulp_tol = 1000
+
+ failure = result_check(expected, got, ulp_tol, abs_tol)
+ if failure is None:
+ continue
+
+ msg = fail_fmt.format(id, fn, arg, failure)
+ failures.append(msg)
if failures:
self.fail('Failures in test_mtestfile:\n ' +