diff options
Diffstat (limited to 'Lib/test/test_math.py')
-rw-r--r-- | Lib/test/test_math.py | 265 |
1 files changed, 178 insertions, 87 deletions
diff --git a/Lib/test/test_math.py b/Lib/test/test_math.py index 48e8007..02d8b47 100644 --- a/Lib/test/test_math.py +++ b/Lib/test/test_math.py @@ -29,6 +29,7 @@ test_dir = os.path.dirname(file) or os.curdir math_testcases = os.path.join(test_dir, 'math_testcases.txt') test_file = os.path.join(test_dir, 'cmath_testcases.txt') + def to_ulps(x): """Convert a non-NaN float x to an integer, in such a way that adjacent floats are converted to adjacent integers. Then @@ -36,25 +37,39 @@ def to_ulps(x): floats. The results from this function will only make sense on platforms - where C doubles are represented in IEEE 754 binary64 format. + where native doubles are represented in IEEE 754 binary64 format. + Note: 0.0 and -0.0 are converted to 0 and -1, respectively. """ n = struct.unpack('<q', struct.pack('<d', x))[0] if n < 0: n = ~(n+2**63) return n -def ulps_check(expected, got, ulps=20): - """Given non-NaN floats `expected` and `got`, - check that they're equal to within the given number of ulps. - Returns None on success and an error message on failure.""" +def ulp(x): + """Return the value of the least significant bit of a + float x, such that the first float bigger than x is x+ulp(x). + Then, given an expected result x and a tolerance of n ulps, + the result y should be such that abs(y-x) <= n * ulp(x). + The results from this function will only make sense on platforms + where native doubles are represented in IEEE 754 binary64 format. + """ + x = abs(float(x)) + if math.isnan(x) or math.isinf(x): + return x - ulps_error = to_ulps(got) - to_ulps(expected) - if abs(ulps_error) <= ulps: - return None - return "error = {} ulps; permitted error = {} ulps".format(ulps_error, - ulps) + # Find next float up from x. + n = struct.unpack('<q', struct.pack('<d', x))[0] + x_next = struct.unpack('<d', struct.pack('<q', n + 1))[0] + if math.isinf(x_next): + # Corner case: x was the largest finite float. Then it's + # not an exact power of two, so we can take the difference + # between x and the previous float. + x_prev = struct.unpack('<d', struct.pack('<q', n - 1))[0] + return x - x_prev + else: + return x_next - x # Here's a pure Python version of the math.factorial algorithm, for # documentation and comparison purposes. @@ -106,24 +121,23 @@ def py_factorial(n): outer *= inner return outer << (n - count_set_bits(n)) -def acc_check(expected, got, rel_err=2e-15, abs_err = 5e-323): - """Determine whether non-NaN floats a and b are equal to within a - (small) rounding error. The default values for rel_err and - abs_err are chosen to be suitable for platforms where a float is - represented by an IEEE 754 double. They allow an error of between - 9 and 19 ulps.""" +def ulp_abs_check(expected, got, ulp_tol, abs_tol): + """Given finite floats `expected` and `got`, check that they're + approximately equal to within the given number of ulps or the + given absolute tolerance, whichever is bigger. - # need to special case infinities, since inf - inf gives nan - if math.isinf(expected) and got == expected: - return None - - error = got - expected + Returns None on success and an error message on failure. + """ + ulp_error = abs(to_ulps(expected) - to_ulps(got)) + abs_error = abs(expected - got) - permitted_error = max(abs_err, rel_err * abs(expected)) - if abs(error) < permitted_error: + # Succeed if either abs_error <= abs_tol or ulp_error <= ulp_tol. + if abs_error <= abs_tol or ulp_error <= ulp_tol: return None - return "error = {}; permitted error = {}".format(error, - permitted_error) + else: + fmt = ("error = {:.3g} ({:d} ulps); " + "permitted error = {:.3g} or {:d} ulps") + return fmt.format(abs_error, ulp_error, abs_tol, ulp_tol) def parse_mtestfile(fname): """Parse a file with test values @@ -150,6 +164,7 @@ def parse_mtestfile(fname): yield (id, fn, float(arg), float(exp), flags) + def parse_testfile(fname): """Parse a file with test values @@ -171,8 +186,53 @@ def parse_testfile(fname): yield (id, fn, float(arg_real), float(arg_imag), float(exp_real), float(exp_imag), - flags - ) + flags) + + +def result_check(expected, got, ulp_tol=5, abs_tol=0.0): + # Common logic of MathTests.(ftest, test_testcases, test_mtestcases) + """Compare arguments expected and got, as floats, if either + is a float, using a tolerance expressed in multiples of + ulp(expected) or absolutely (if given and greater). + + As a convenience, when neither argument is a float, and for + non-finite floats, exact equality is demanded. Also, nan==nan + as far as this function is concerned. + + Returns None on success and an error message on failure. + """ + + # Check exactly equal (applies also to strings representing exceptions) + if got == expected: + return None + + failure = "not equal" + + # Turn mixed float and int comparison (e.g. floor()) to all-float + if isinstance(expected, float) and isinstance(got, int): + got = float(got) + elif isinstance(got, float) and isinstance(expected, int): + expected = float(expected) + + if isinstance(expected, float) and isinstance(got, float): + if math.isnan(expected) and math.isnan(got): + # Pass, since both nan + failure = None + elif math.isinf(expected) or math.isinf(got): + # We already know they're not equal, drop through to failure + pass + else: + # Both are finite floats (now). Are they close enough? + failure = ulp_abs_check(expected, got, ulp_tol, abs_tol) + + # arguments are not equal, and if numeric, are too far apart + if failure is not None: + fail_fmt = "expected {!r}, got {!r}" + fail_msg = fail_fmt.format(expected, got) + fail_msg += ' ({})'.format(failure) + return fail_msg + else: + return None # Class providing an __index__ method. class MyIndexable(object): @@ -184,18 +244,23 @@ class MyIndexable(object): class MathTests(unittest.TestCase): - def ftest(self, name, value, expected): - if abs(value-expected) > eps: - # Use %r instead of %f so the error message - # displays full precision. Otherwise discrepancies - # in the last few bits will lead to very confusing - # error messages - self.fail('%s returned %r, expected %r' % - (name, value, expected)) + def ftest(self, name, got, expected, ulp_tol=5, abs_tol=0.0): + """Compare arguments expected and got, as floats, if either + is a float, using a tolerance expressed in multiples of + ulp(expected) or absolutely, whichever is greater. + + As a convenience, when neither argument is a float, and for + non-finite floats, exact equality is demanded. Also, nan==nan + in this function. + """ + failure = result_check(expected, got, ulp_tol, abs_tol) + if failure is not None: + self.fail("{}: {}".format(name, failure)) def testConstants(self): - self.ftest('pi', math.pi, 3.1415926) - self.ftest('e', math.e, 2.7182818) + # Ref: Abramowitz & Stegun (Dover, 1965) + self.ftest('pi', math.pi, 3.141592653589793238462643) + self.ftest('e', math.e, 2.718281828459045235360287) self.assertEqual(math.tau, 2*math.pi) def testAcos(self): @@ -378,9 +443,9 @@ class MathTests(unittest.TestCase): def testCos(self): self.assertRaises(TypeError, math.cos) - self.ftest('cos(-pi/2)', math.cos(-math.pi/2), 0) + self.ftest('cos(-pi/2)', math.cos(-math.pi/2), 0, abs_tol=ulp(1)) self.ftest('cos(0)', math.cos(0), 1) - self.ftest('cos(pi/2)', math.cos(math.pi/2), 0) + self.ftest('cos(pi/2)', math.cos(math.pi/2), 0, abs_tol=ulp(1)) self.ftest('cos(pi)', math.cos(math.pi), -1) try: self.assertTrue(math.isnan(math.cos(INF))) @@ -970,7 +1035,8 @@ class MathTests(unittest.TestCase): def testTanh(self): self.assertRaises(TypeError, math.tanh) self.ftest('tanh(0)', math.tanh(0), 0) - self.ftest('tanh(1)+tanh(-1)', math.tanh(1)+math.tanh(-1), 0) + self.ftest('tanh(1)+tanh(-1)', math.tanh(1)+math.tanh(-1), 0, + abs_tol=ulp(1)) self.ftest('tanh(inf)', math.tanh(INF), 1) self.ftest('tanh(-inf)', math.tanh(NINF), -1) self.assertTrue(math.isnan(math.tanh(NAN))) @@ -1084,30 +1150,48 @@ class MathTests(unittest.TestCase): @requires_IEEE_754 def test_testfile(self): + fail_fmt = "{}: {}({!r}): {}" + + failures = [] for id, fn, ar, ai, er, ei, flags in parse_testfile(test_file): - # Skip if either the input or result is complex, or if - # flags is nonempty - if ai != 0. or ei != 0. or flags: + # Skip if either the input or result is complex + if ai != 0.0 or ei != 0.0: continue if fn in ['rect', 'polar']: # no real versions of rect, polar continue + func = getattr(math, fn) + + if 'invalid' in flags or 'divide-by-zero' in flags: + er = 'ValueError' + elif 'overflow' in flags: + er = 'OverflowError' + try: result = func(ar) - except ValueError as exc: - message = (("Unexpected ValueError: %s\n " + - "in test %s:%s(%r)\n") % (exc.args[0], id, fn, ar)) - self.fail(message) + except ValueError: + result = 'ValueError' except OverflowError: - message = ("Unexpected OverflowError in " + - "test %s:%s(%r)\n" % (id, fn, ar)) - self.fail(message) - self.ftest("%s:%s(%r)" % (id, fn, ar), result, er) + result = 'OverflowError' + + # Default tolerances + ulp_tol, abs_tol = 5, 0.0 + + failure = result_check(er, result, ulp_tol, abs_tol) + if failure is None: + continue + + msg = fail_fmt.format(id, fn, ar, failure) + failures.append(msg) + + if failures: + self.fail('Failures in test_testfile:\n ' + + '\n '.join(failures)) @requires_IEEE_754 def test_mtestfile(self): - fail_fmt = "{}:{}({!r}): expected {!r}, got {!r}" + fail_fmt = "{}: {}({!r}): {}" failures = [] for id, fn, arg, expected, flags in parse_mtestfile(math_testcases): @@ -1125,41 +1209,48 @@ class MathTests(unittest.TestCase): except OverflowError: got = 'OverflowError' - accuracy_failure = None - if isinstance(got, float) and isinstance(expected, float): - if math.isnan(expected) and math.isnan(got): - continue - if not math.isnan(expected) and not math.isnan(got): - if fn == 'lgamma': - # we use a weaker accuracy test for lgamma; - # lgamma only achieves an absolute error of - # a few multiples of the machine accuracy, in - # general. - accuracy_failure = acc_check(expected, got, - rel_err = 5e-15, - abs_err = 5e-15) - elif fn == 'erfc': - # erfc has less-than-ideal accuracy for large - # arguments (x ~ 25 or so), mainly due to the - # error involved in computing exp(-x*x). - # - # XXX Would be better to weaken this test only - # for large x, instead of for all x. - accuracy_failure = ulps_check(expected, got, 2000) - - else: - accuracy_failure = ulps_check(expected, got, 20) - if accuracy_failure is None: - continue - - if isinstance(got, str) and isinstance(expected, str): - if got == expected: - continue - - fail_msg = fail_fmt.format(id, fn, arg, expected, got) - if accuracy_failure is not None: - fail_msg += ' ({})'.format(accuracy_failure) - failures.append(fail_msg) + # Default tolerances + ulp_tol, abs_tol = 5, 0.0 + + # Exceptions to the defaults + if fn == 'gamma': + # Experimental results on one platform gave + # an accuracy of <= 10 ulps across the entire float + # domain. We weaken that to require 20 ulp accuracy. + ulp_tol = 20 + + elif fn == 'lgamma': + # we use a weaker accuracy test for lgamma; + # lgamma only achieves an absolute error of + # a few multiples of the machine accuracy, in + # general. + abs_tol = 1e-15 + + elif fn == 'erfc' and arg >= 0.0: + # erfc has less-than-ideal accuracy for large + # arguments (x ~ 25 or so), mainly due to the + # error involved in computing exp(-x*x). + # + # Observed between CPython and mpmath at 25 dp: + # x < 0 : err <= 2 ulp + # 0 <= x < 1 : err <= 10 ulp + # 1 <= x < 10 : err <= 100 ulp + # 10 <= x < 20 : err <= 300 ulp + # 20 <= x : < 600 ulp + # + if arg < 1.0: + ulp_tol = 10 + elif arg < 10.0: + ulp_tol = 100 + else: + ulp_tol = 1000 + + failure = result_check(expected, got, ulp_tol, abs_tol) + if failure is None: + continue + + msg = fail_fmt.format(id, fn, arg, failure) + failures.append(msg) if failures: self.fail('Failures in test_mtestfile:\n ' + |