diff options
Diffstat (limited to 'Lib/test/test_random.py')
-rw-r--r-- | Lib/test/test_random.py | 54 |
1 files changed, 27 insertions, 27 deletions
diff --git a/Lib/test/test_random.py b/Lib/test/test_random.py index b3741a8..9c1383d 100644 --- a/Lib/test/test_random.py +++ b/Lib/test/test_random.py @@ -142,8 +142,8 @@ class TestBasicOps: def test_sample_on_dicts(self): self.assertRaises(TypeError, self.gen.sample, dict.fromkeys('abcdef'), 2) - def test_weighted_choices(self): - weighted_choices = self.gen.weighted_choices + def test_choices(self): + choices = self.gen.choices data = ['red', 'green', 'blue', 'yellow'] str_data = 'abcd' range_data = range(4) @@ -151,63 +151,63 @@ class TestBasicOps: # basic functionality for sample in [ - weighted_choices(5, data), - weighted_choices(5, data, range(4)), - weighted_choices(k=5, population=data, weights=range(4)), - weighted_choices(k=5, population=data, cum_weights=range(4)), + choices(5, data), + choices(5, data, range(4)), + choices(k=5, population=data, weights=range(4)), + choices(k=5, population=data, cum_weights=range(4)), ]: self.assertEqual(len(sample), 5) self.assertEqual(type(sample), list) self.assertTrue(set(sample) <= set(data)) # test argument handling - with self.assertRaises(TypeError): # missing arguments - weighted_choices(2) + with self.assertRaises(TypeError): # missing arguments + choices(2) - self.assertEqual(weighted_choices(0, data), []) # k == 0 - self.assertEqual(weighted_choices(-1, data), []) # negative k behaves like ``[0] * -1`` + self.assertEqual(choices(0, data), []) # k == 0 + self.assertEqual(choices(-1, data), []) # negative k behaves like ``[0] * -1`` with self.assertRaises(TypeError): - weighted_choices(2.5, data) # k is a float + choices(2.5, data) # k is a float - self.assertTrue(set(weighted_choices(5, str_data)) <= set(str_data)) # population is a string sequence - self.assertTrue(set(weighted_choices(5, range_data)) <= set(range_data)) # population is a range + self.assertTrue(set(choices(5, str_data)) <= set(str_data)) # population is a string sequence + self.assertTrue(set(choices(5, range_data)) <= set(range_data)) # population is a range with self.assertRaises(TypeError): - weighted_choices(2.5, set_data) # population is not a sequence + choices(2.5, set_data) # population is not a sequence - self.assertTrue(set(weighted_choices(5, data, None)) <= set(data)) # weights is None - self.assertTrue(set(weighted_choices(5, data, weights=None)) <= set(data)) + self.assertTrue(set(choices(5, data, None)) <= set(data)) # weights is None + self.assertTrue(set(choices(5, data, weights=None)) <= set(data)) with self.assertRaises(ValueError): - weighted_choices(5, data, [1,2]) # len(weights) != len(population) + choices(5, data, [1,2]) # len(weights) != len(population) with self.assertRaises(IndexError): - weighted_choices(5, data, [0]*4) # weights sum to zero + choices(5, data, [0]*4) # weights sum to zero with self.assertRaises(TypeError): - weighted_choices(5, data, 10) # non-iterable weights + choices(5, data, 10) # non-iterable weights with self.assertRaises(TypeError): - weighted_choices(5, data, [None]*4) # non-numeric weights + choices(5, data, [None]*4) # non-numeric weights for weights in [ [15, 10, 25, 30], # integer weights [15.1, 10.2, 25.2, 30.3], # float weights [Fraction(1, 3), Fraction(2, 6), Fraction(3, 6), Fraction(4, 6)], # fractional weights [True, False, True, False] # booleans (include / exclude) ]: - self.assertTrue(set(weighted_choices(5, data, weights)) <= set(data)) + self.assertTrue(set(choices(5, data, weights)) <= set(data)) with self.assertRaises(ValueError): - weighted_choices(5, data, cum_weights=[1,2]) # len(weights) != len(population) + choices(5, data, cum_weights=[1,2]) # len(weights) != len(population) with self.assertRaises(IndexError): - weighted_choices(5, data, cum_weights=[0]*4) # cum_weights sum to zero + choices(5, data, cum_weights=[0]*4) # cum_weights sum to zero with self.assertRaises(TypeError): - weighted_choices(5, data, cum_weights=10) # non-iterable cum_weights + choices(5, data, cum_weights=10) # non-iterable cum_weights with self.assertRaises(TypeError): - weighted_choices(5, data, cum_weights=[None]*4) # non-numeric cum_weights + choices(5, data, cum_weights=[None]*4) # non-numeric cum_weights with self.assertRaises(TypeError): - weighted_choices(5, data, range(4), cum_weights=range(4)) # both weights and cum_weights + choices(5, data, range(4), cum_weights=range(4)) # both weights and cum_weights for weights in [ [15, 10, 25, 30], # integer cum_weights [15.1, 10.2, 25.2, 30.3], # float cum_weights [Fraction(1, 3), Fraction(2, 6), Fraction(3, 6), Fraction(4, 6)], # fractional cum_weights ]: - self.assertTrue(set(weighted_choices(5, data, cum_weights=weights)) <= set(data)) + self.assertTrue(set(choices(5, data, cum_weights=weights)) <= set(data)) def test_gauss(self): # Ensure that the seed() method initializes all the hidden state. In |