summaryrefslogtreecommitdiffstats
path: root/Lib/test/test_random.py
diff options
context:
space:
mode:
Diffstat (limited to 'Lib/test/test_random.py')
-rw-r--r--Lib/test/test_random.py207
1 files changed, 207 insertions, 0 deletions
diff --git a/Lib/test/test_random.py b/Lib/test/test_random.py
index c3ab7d2..437a20f 100644
--- a/Lib/test/test_random.py
+++ b/Lib/test/test_random.py
@@ -1,10 +1,12 @@
#!/usr/bin/env python3
import unittest
+import unittest.mock
import random
import time
import pickle
import warnings
+from functools import partial
from math import log, exp, pi, fsum, sin
from test import support
@@ -46,6 +48,48 @@ class TestBasicOps(unittest.TestCase):
self.assertRaises(TypeError, self.gen.seed, 1, 2, 3, 4)
self.assertRaises(TypeError, type(self.gen), [])
+ @unittest.mock.patch('random._urandom') # os.urandom
+ def test_seed_when_randomness_source_not_found(self, urandom_mock):
+ # Random.seed() uses time.time() when an operating system specific
+ # randomness source is not found. To test this on machines were it
+ # exists, run the above test, test_seedargs(), again after mocking
+ # os.urandom() so that it raises the exception expected when the
+ # randomness source is not available.
+ urandom_mock.side_effect = NotImplementedError
+ self.test_seedargs()
+
+ def test_shuffle(self):
+ shuffle = self.gen.shuffle
+ lst = []
+ shuffle(lst)
+ self.assertEqual(lst, [])
+ lst = [37]
+ shuffle(lst)
+ self.assertEqual(lst, [37])
+ seqs = [list(range(n)) for n in range(10)]
+ shuffled_seqs = [list(range(n)) for n in range(10)]
+ for shuffled_seq in shuffled_seqs:
+ shuffle(shuffled_seq)
+ for (seq, shuffled_seq) in zip(seqs, shuffled_seqs):
+ self.assertEqual(len(seq), len(shuffled_seq))
+ self.assertEqual(set(seq), set(shuffled_seq))
+ # The above tests all would pass if the shuffle was a
+ # no-op. The following non-deterministic test covers that. It
+ # asserts that the shuffled sequence of 1000 distinct elements
+ # must be different from the original one. Although there is
+ # mathematically a non-zero probability that this could
+ # actually happen in a genuinely random shuffle, it is
+ # completely negligible, given that the number of possible
+ # permutations of 1000 objects is 1000! (factorial of 1000),
+ # which is considerably larger than the number of atoms in the
+ # universe...
+ lst = list(range(1000))
+ shuffled_lst = list(range(1000))
+ shuffle(shuffled_lst)
+ self.assertTrue(lst != shuffled_lst)
+ shuffle(lst)
+ self.assertTrue(lst != shuffled_lst)
+
def test_choice(self):
choice = self.gen.choice
with self.assertRaises(IndexError):
@@ -65,6 +109,8 @@ class TestBasicOps(unittest.TestCase):
self.assertEqual(len(uniq), k)
self.assertTrue(uniq <= set(population))
self.assertEqual(self.gen.sample([], 0), []) # test edge case N==k==0
+ # Exception raised if size of sample exceeds that of population
+ self.assertRaises(ValueError, self.gen.sample, population, N+1)
def test_sample_distribution(self):
# For the entire allowable range of 0 <= k <= N, validate that
@@ -197,6 +243,25 @@ class SystemRandom_TestBasicOps(TestBasicOps):
self.assertEqual(set(range(start,stop)),
set([self.gen.randrange(start,stop) for i in range(100)]))
+ def test_randrange_nonunit_step(self):
+ rint = self.gen.randrange(0, 10, 2)
+ self.assertIn(rint, (0, 2, 4, 6, 8))
+ rint = self.gen.randrange(0, 2, 2)
+ self.assertEqual(rint, 0)
+
+ def test_randrange_errors(self):
+ raises = partial(self.assertRaises, ValueError, self.gen.randrange)
+ # Empty range
+ raises(3, 3)
+ raises(-721)
+ raises(0, 100, -12)
+ # Non-integer start/stop
+ raises(3.14159)
+ raises(0, 2.71828)
+ # Zero and non-integer step
+ raises(0, 42, 0)
+ raises(0, 42, 3.14159)
+
def test_genrandbits(self):
# Verify ranges
for k in range(1, 1000):
@@ -266,6 +331,16 @@ class MersenneTwister_TestBasicOps(TestBasicOps):
# Last element s/b an int also
self.assertRaises(TypeError, self.gen.setstate, (2, (0,)*624+('a',), None))
+ # Little trick to make "tuple(x % (2**32) for x in internalstate)"
+ # raise ValueError. I cannot think of a simple way to achieve this, so
+ # I am opting for using a generator as the middle argument of setstate
+ # which attempts to cast a NaN to integer.
+ state_values = self.gen.getstate()[1]
+ state_values = list(state_values)
+ state_values[-1] = float('nan')
+ state = (int(x) for x in state_values)
+ self.assertRaises(TypeError, self.gen.setstate, (2, state, None))
+
def test_referenceImplementation(self):
# Compare the python implementation with results from the original
# code. Create 2000 53-bit precision random floats. Compare only
@@ -405,6 +480,38 @@ class MersenneTwister_TestBasicOps(TestBasicOps):
self.assertEqual(k, numbits) # note the stronger assertion
self.assertTrue(2**k > n > 2**(k-1)) # note the stronger assertion
+ @unittest.mock.patch('random.Random.random')
+ def test_randbelow_overriden_random(self, random_mock):
+ # Random._randbelow() can only use random() when the built-in one
+ # has been overridden but no new getrandbits() method was supplied.
+ random_mock.side_effect = random.SystemRandom().random
+ maxsize = 1<<random.BPF
+ with warnings.catch_warnings():
+ warnings.simplefilter("ignore", UserWarning)
+ # Population range too large (n >= maxsize)
+ self.gen._randbelow(maxsize+1, maxsize = maxsize)
+ self.gen._randbelow(5640, maxsize = maxsize)
+
+ # This might be going too far to test a single line, but because of our
+ # noble aim of achieving 100% test coverage we need to write a case in
+ # which the following line in Random._randbelow() gets executed:
+ #
+ # rem = maxsize % n
+ # limit = (maxsize - rem) / maxsize
+ # r = random()
+ # while r >= limit:
+ # r = random() # <== *This line* <==<
+ #
+ # Therefore, to guarantee that the while loop is executed at least
+ # once, we need to mock random() so that it returns a number greater
+ # than 'limit' the first time it gets called.
+
+ n = 42
+ epsilon = 0.01
+ limit = (maxsize - (maxsize % n)) / maxsize
+ random_mock.side_effect = [limit + epsilon, limit - epsilon]
+ self.gen._randbelow(n, maxsize = maxsize)
+
def test_randrange_bug_1590891(self):
start = 1000000000000
stop = -100000000000000000000
@@ -522,6 +629,106 @@ class TestDistributions(unittest.TestCase):
random.vonmisesvariate(0, 1e15)
random.vonmisesvariate(0, 1e100)
+ def test_gammavariate_errors(self):
+ # Both alpha and beta must be > 0.0
+ self.assertRaises(ValueError, random.gammavariate, -1, 3)
+ self.assertRaises(ValueError, random.gammavariate, 0, 2)
+ self.assertRaises(ValueError, random.gammavariate, 2, 0)
+ self.assertRaises(ValueError, random.gammavariate, 1, -3)
+
+ @unittest.mock.patch('random.Random.random')
+ def test_gammavariate_full_code_coverage(self, random_mock):
+ # There are three different possibilities in the current implementation
+ # of random.gammavariate(), depending on the value of 'alpha'. What we
+ # are going to do here is to fix the values returned by random() to
+ # generate test cases that provide 100% line coverage of the method.
+
+ # #1: alpha > 1.0: we want the first random number to be outside the
+ # [1e-7, .9999999] range, so that the continue statement executes
+ # once. The values of u1 and u2 will be 0.5 and 0.3, respectively.
+ random_mock.side_effect = [1e-8, 0.5, 0.3]
+ returned_value = random.gammavariate(1.1, 2.3)
+ self.assertAlmostEqual(returned_value, 2.53)
+
+ # #2: alpha == 1: first random number less than 1e-7 to that the body
+ # of the while loop executes once. Then random.random() returns 0.45,
+ # which causes while to stop looping and the algorithm to terminate.
+ random_mock.side_effect = [1e-8, 0.45]
+ returned_value = random.gammavariate(1.0, 3.14)
+ self.assertAlmostEqual(returned_value, 2.507314166123803)
+
+ # #3: 0 < alpha < 1. This is the most complex region of code to cover,
+ # as there are multiple if-else statements. Let's take a look at the
+ # source code, and determine the values that we need accordingly:
+ #
+ # while 1:
+ # u = random()
+ # b = (_e + alpha)/_e
+ # p = b*u
+ # if p <= 1.0: # <=== (A)
+ # x = p ** (1.0/alpha)
+ # else: # <=== (B)
+ # x = -_log((b-p)/alpha)
+ # u1 = random()
+ # if p > 1.0: # <=== (C)
+ # if u1 <= x ** (alpha - 1.0): # <=== (D)
+ # break
+ # elif u1 <= _exp(-x): # <=== (E)
+ # break
+ # return x * beta
+ #
+ # First, we want (A) to be True. For that we need that:
+ # b*random() <= 1.0
+ # r1 = random() <= 1.0 / b
+ #
+ # We now get to the second if-else branch, and here, since p <= 1.0,
+ # (C) is False and we take the elif branch, (E). For it to be True,
+ # so that the break is executed, we need that:
+ # r2 = random() <= _exp(-x)
+ # r2 <= _exp(-(p ** (1.0/alpha)))
+ # r2 <= _exp(-((b*r1) ** (1.0/alpha)))
+
+ _e = random._e
+ _exp = random._exp
+ _log = random._log
+ alpha = 0.35
+ beta = 1.45
+ b = (_e + alpha)/_e
+ epsilon = 0.01
+
+ r1 = 0.8859296441566 # 1.0 / b
+ r2 = 0.3678794411714 # _exp(-((b*r1) ** (1.0/alpha)))
+
+ # These four "random" values result in the following trace:
+ # (A) True, (E) False --> [next iteration of while]
+ # (A) True, (E) True --> [while loop breaks]
+ random_mock.side_effect = [r1, r2 + epsilon, r1, r2]
+ returned_value = random.gammavariate(alpha, beta)
+ self.assertAlmostEqual(returned_value, 1.4499999999997544)
+
+ # Let's now make (A) be False. If this is the case, when we get to the
+ # second if-else 'p' is greater than 1, so (C) evaluates to True. We
+ # now encounter a second if statement, (D), which in order to execute
+ # must satisfy the following condition:
+ # r2 <= x ** (alpha - 1.0)
+ # r2 <= (-_log((b-p)/alpha)) ** (alpha - 1.0)
+ # r2 <= (-_log((b-(b*r1))/alpha)) ** (alpha - 1.0)
+ r1 = 0.8959296441566 # (1.0 / b) + epsilon -- so that (A) is False
+ r2 = 0.9445400408898141
+
+ # And these four values result in the following trace:
+ # (B) and (C) True, (D) False --> [next iteration of while]
+ # (B) and (C) True, (D) True [while loop breaks]
+ random_mock.side_effect = [r1, r2 + epsilon, r1, r2]
+ returned_value = random.gammavariate(alpha, beta)
+ self.assertAlmostEqual(returned_value, 1.5830349561760781)
+
+ @unittest.mock.patch('random.Random.gammavariate')
+ def test_betavariate_return_zero(self, gammavariate_mock):
+ # betavariate() returns zero when the Gamma distribution
+ # that it uses internally returns this same value.
+ gammavariate_mock.return_value = 0.0
+ self.assertEqual(0.0, random.betavariate(2.71828, 3.14159))
class TestModule(unittest.TestCase):
def testMagicConstants(self):