diff options
Diffstat (limited to 'Lib/test/test_statistics.py')
-rw-r--r-- | Lib/test/test_statistics.py | 35 |
1 files changed, 15 insertions, 20 deletions
diff --git a/Lib/test/test_statistics.py b/Lib/test/test_statistics.py index 01b317c..af26473 100644 --- a/Lib/test/test_statistics.py +++ b/Lib/test/test_statistics.py @@ -2198,16 +2198,6 @@ class TestQuantiles(unittest.TestCase): exp = list(map(f, expected)) act = quantiles(map(f, data), n=n) self.assertTrue(all(math.isclose(e, a) for e, a in zip(exp, act))) - # Quartiles of a standard normal distribution - for n, expected in [ - (1, []), - (2, [0.0]), - (3, [-0.4307, 0.4307]), - (4 ,[-0.6745, 0.0, 0.6745]), - ]: - actual = quantiles(statistics.NormalDist(), n=n) - self.assertTrue(all(math.isclose(e, a, abs_tol=0.0001) - for e, a in zip(expected, actual))) # Q2 agrees with median() for k in range(2, 60): data = random.choices(range(100), k=k) @@ -2248,16 +2238,6 @@ class TestQuantiles(unittest.TestCase): exp = list(map(f, expected)) act = quantiles(map(f, data), n=n, method="inclusive") self.assertTrue(all(math.isclose(e, a) for e, a in zip(exp, act))) - # Quartiles of a standard normal distribution - for n, expected in [ - (1, []), - (2, [0.0]), - (3, [-0.4307, 0.4307]), - (4 ,[-0.6745, 0.0, 0.6745]), - ]: - actual = quantiles(statistics.NormalDist(), n=n, method="inclusive") - self.assertTrue(all(math.isclose(e, a, abs_tol=0.0001) - for e, a in zip(expected, actual))) # Natural deciles self.assertEqual(quantiles([0, 100], n=10, method='inclusive'), [10.0, 20.0, 30.0, 40.0, 50.0, 60.0, 70.0, 80.0, 90.0]) @@ -2546,6 +2526,19 @@ class TestNormalDist: # Special values self.assertTrue(math.isnan(Z.inv_cdf(float('NaN')))) + def test_quantiles(self): + # Quartiles of a standard normal distribution + Z = self.module.NormalDist() + for n, expected in [ + (1, []), + (2, [0.0]), + (3, [-0.4307, 0.4307]), + (4 ,[-0.6745, 0.0, 0.6745]), + ]: + actual = Z.quantiles(n=n) + self.assertTrue(all(math.isclose(e, a, abs_tol=0.0001) + for e, a in zip(expected, actual))) + def test_overlap(self): NormalDist = self.module.NormalDist @@ -2612,6 +2605,8 @@ class TestNormalDist: def test_properties(self): X = self.module.NormalDist(100, 15) self.assertEqual(X.mean, 100) + self.assertEqual(X.median, 100) + self.assertEqual(X.mode, 100) self.assertEqual(X.stdev, 15) self.assertEqual(X.variance, 225) |