diff options
Diffstat (limited to 'Lib')
-rw-r--r-- | Lib/test/test_math.py | 71 |
1 files changed, 61 insertions, 10 deletions
diff --git a/Lib/test/test_math.py b/Lib/test/test_math.py index 48d9b1a..6c44435 100644 --- a/Lib/test/test_math.py +++ b/Lib/test/test_math.py @@ -60,6 +60,56 @@ def ulps_check(expected, got, ulps=20): return "error = {} ulps; permitted error = {} ulps".format(ulps_error, ulps) +# Here's a pure Python version of the math.factorial algorithm, for +# documentation and comparison purposes. +# +# Formula: +# +# factorial(n) = factorial_odd_part(n) << (n - count_set_bits(n)) +# +# where +# +# factorial_odd_part(n) = product_{i >= 0} product_{0 < j <= n >> i; j odd} j +# +# The outer product above is an infinite product, but once i >= n.bit_length, +# (n >> i) < 1 and the corresponding term of the product is empty. So only the +# finitely many terms for 0 <= i < n.bit_length() contribute anything. +# +# We iterate downwards from i == n.bit_length() - 1 to i == 0. The inner +# product in the formula above starts at 1 for i == n.bit_length(); for each i +# < n.bit_length() we get the inner product for i from that for i + 1 by +# multiplying by all j in {n >> i+1 < j <= n >> i; j odd}. In Python terms, +# this set is range((n >> i+1) + 1 | 1, (n >> i) + 1 | 1, 2). + +def count_set_bits(n): + """Number of '1' bits in binary expansion of a nonnnegative integer.""" + return 1 + count_set_bits(n & n - 1) if n else 0 + +def partial_product(start, stop): + """Product of integers in range(start, stop, 2), computed recursively. + start and stop should both be odd, with start <= stop. + + """ + numfactors = (stop - start) >> 1 + if not numfactors: + return 1 + elif numfactors == 1: + return start + else: + mid = (start + numfactors) | 1 + return partial_product(start, mid) * partial_product(mid, stop) + +def py_factorial(n): + """Factorial of nonnegative integer n, via "Binary Split Factorial Formula" + described at http://www.luschny.de/math/factorial/binarysplitfact.html + + """ + inner = outer = 1 + for i in reversed(range(n.bit_length())): + inner *= partial_product((n >> i + 1) + 1 | 1, (n >> i) + 1 | 1) + outer *= inner + return outer << (n - count_set_bits(n)) + def acc_check(expected, got, rel_err=2e-15, abs_err = 5e-323): """Determine whether non-NaN floats a and b are equal to within a (small) rounding error. The default values for rel_err and @@ -365,18 +415,19 @@ class MathTests(unittest.TestCase): self.ftest('fabs(1)', math.fabs(1), 1) def testFactorial(self): - def fact(n): - result = 1 - for i in range(1, int(n)+1): - result *= i - return result - values = list(range(10)) + [50, 100, 500] - random.shuffle(values) - for x in values: - for cast in (int, float): - self.assertEqual(math.factorial(cast(x)), fact(x), (x, fact(x), math.factorial(x))) + self.assertEqual(math.factorial(0), 1) + self.assertEqual(math.factorial(0.0), 1) + total = 1 + for i in range(1, 1000): + total *= i + self.assertEqual(math.factorial(i), total) + self.assertEqual(math.factorial(float(i)), total) + self.assertEqual(math.factorial(i), py_factorial(i)) self.assertRaises(ValueError, math.factorial, -1) + self.assertRaises(ValueError, math.factorial, -1.0) self.assertRaises(ValueError, math.factorial, math.pi) + self.assertRaises(OverflowError, math.factorial, sys.maxsize+1) + self.assertRaises(OverflowError, math.factorial, 10e100) def testFloor(self): self.assertRaises(TypeError, math.floor) |