diff options
Diffstat (limited to 'Lib')
-rw-r--r-- | Lib/decimal.py | 80 | ||||
-rw-r--r-- | Lib/fractions.py | 31 | ||||
-rw-r--r-- | Lib/test/test_float.py | 9 | ||||
-rw-r--r-- | Lib/test/test_numeric_tower.py | 151 | ||||
-rw-r--r-- | Lib/test/test_sys.py | 17 |
5 files changed, 222 insertions, 66 deletions
diff --git a/Lib/decimal.py b/Lib/decimal.py index cc71cd8..29ce398 100644 --- a/Lib/decimal.py +++ b/Lib/decimal.py @@ -862,7 +862,7 @@ class Decimal(object): # that specified by IEEE 754. def __eq__(self, other, context=None): - other = _convert_other(other, allow_float=True) + other = _convert_other(other, allow_float = True) if other is NotImplemented: return other if self._check_nans(other, context): @@ -870,7 +870,7 @@ class Decimal(object): return self._cmp(other) == 0 def __ne__(self, other, context=None): - other = _convert_other(other, allow_float=True) + other = _convert_other(other, allow_float = True) if other is NotImplemented: return other if self._check_nans(other, context): @@ -879,7 +879,7 @@ class Decimal(object): def __lt__(self, other, context=None): - other = _convert_other(other, allow_float=True) + other = _convert_other(other, allow_float = True) if other is NotImplemented: return other ans = self._compare_check_nans(other, context) @@ -888,7 +888,7 @@ class Decimal(object): return self._cmp(other) < 0 def __le__(self, other, context=None): - other = _convert_other(other, allow_float=True) + other = _convert_other(other, allow_float = True) if other is NotImplemented: return other ans = self._compare_check_nans(other, context) @@ -897,7 +897,7 @@ class Decimal(object): return self._cmp(other) <= 0 def __gt__(self, other, context=None): - other = _convert_other(other, allow_float=True) + other = _convert_other(other, allow_float = True) if other is NotImplemented: return other ans = self._compare_check_nans(other, context) @@ -906,7 +906,7 @@ class Decimal(object): return self._cmp(other) > 0 def __ge__(self, other, context=None): - other = _convert_other(other, allow_float=True) + other = _convert_other(other, allow_float = True) if other is NotImplemented: return other ans = self._compare_check_nans(other, context) @@ -935,55 +935,28 @@ class Decimal(object): def __hash__(self): """x.__hash__() <==> hash(x)""" - # Decimal integers must hash the same as the ints - # - # The hash of a nonspecial noninteger Decimal must depend only - # on the value of that Decimal, and not on its representation. - # For example: hash(Decimal('100E-1')) == hash(Decimal('10')). - - # Equality comparisons involving signaling nans can raise an - # exception; since equality checks are implicitly and - # unpredictably used when checking set and dict membership, we - # prevent signaling nans from being used as set elements or - # dict keys by making __hash__ raise an exception. + + # In order to make sure that the hash of a Decimal instance + # agrees with the hash of a numerically equal integer, float + # or Fraction, we follow the rules for numeric hashes outlined + # in the documentation. (See library docs, 'Built-in Types'). if self._is_special: if self.is_snan(): raise TypeError('Cannot hash a signaling NaN value.') elif self.is_nan(): - # 0 to match hash(float('nan')) - return 0 + return _PyHASH_NAN else: - # values chosen to match hash(float('inf')) and - # hash(float('-inf')). if self._sign: - return -271828 + return -_PyHASH_INF else: - return 314159 - - # In Python 2.7, we're allowing comparisons (but not - # arithmetic operations) between floats and Decimals; so if - # a Decimal instance is exactly representable as a float then - # its hash should match that of the float. - self_as_float = float(self) - if Decimal.from_float(self_as_float) == self: - return hash(self_as_float) - - if self._isinteger(): - op = _WorkRep(self.to_integral_value()) - # to make computation feasible for Decimals with large - # exponent, we use the fact that hash(n) == hash(m) for - # any two nonzero integers n and m such that (i) n and m - # have the same sign, and (ii) n is congruent to m modulo - # 2**64-1. So we can replace hash((-1)**s*c*10**e) with - # hash((-1)**s*c*pow(10, e, 2**64-1). - return hash((-1)**op.sign*op.int*pow(10, op.exp, 2**64-1)) - # The value of a nonzero nonspecial Decimal instance is - # faithfully represented by the triple consisting of its sign, - # its adjusted exponent, and its coefficient with trailing - # zeros removed. - return hash((self._sign, - self._exp+len(self._int), - self._int.rstrip('0'))) + return _PyHASH_INF + + if self._exp >= 0: + exp_hash = pow(10, self._exp, _PyHASH_MODULUS) + else: + exp_hash = pow(_PyHASH_10INV, -self._exp, _PyHASH_MODULUS) + hash_ = int(self._int) * exp_hash % _PyHASH_MODULUS + return hash_ if self >= 0 else -hash_ def as_tuple(self): """Represents the number as a triple tuple. @@ -6218,6 +6191,17 @@ _NegativeOne = Decimal(-1) # _SignedInfinity[sign] is infinity w/ that sign _SignedInfinity = (_Infinity, _NegativeInfinity) +# Constants related to the hash implementation; hash(x) is based +# on the reduction of x modulo _PyHASH_MODULUS +import sys +_PyHASH_MODULUS = sys.hash_info.modulus +# hash values to use for positive and negative infinities, and nans +_PyHASH_INF = sys.hash_info.inf +_PyHASH_NAN = sys.hash_info.nan +del sys + +# _PyHASH_10INV is the inverse of 10 modulo the prime _PyHASH_MODULUS +_PyHASH_10INV = pow(10, _PyHASH_MODULUS - 2, _PyHASH_MODULUS) if __name__ == '__main__': diff --git a/Lib/fractions.py b/Lib/fractions.py index fc8a12c..51e67e2 100644 --- a/Lib/fractions.py +++ b/Lib/fractions.py @@ -8,6 +8,7 @@ import math import numbers import operator import re +import sys __all__ = ['Fraction', 'gcd'] @@ -23,6 +24,12 @@ def gcd(a, b): a, b = b, a%b return a +# Constants related to the hash implementation; hash(x) is based +# on the reduction of x modulo the prime _PyHASH_MODULUS. +_PyHASH_MODULUS = sys.hash_info.modulus +# Value to be used for rationals that reduce to infinity modulo +# _PyHASH_MODULUS. +_PyHASH_INF = sys.hash_info.inf _RATIONAL_FORMAT = re.compile(r""" \A\s* # optional whitespace at the start, then @@ -528,16 +535,22 @@ class Fraction(numbers.Rational): """ # XXX since this method is expensive, consider caching the result - if self._denominator == 1: - # Get integers right. - return hash(self._numerator) - # Expensive check, but definitely correct. - if self == float(self): - return hash(float(self)) + + # In order to make sure that the hash of a Fraction agrees + # with the hash of a numerically equal integer, float or + # Decimal instance, we follow the rules for numeric hashes + # outlined in the documentation. (See library docs, 'Built-in + # Types'). + + # dinv is the inverse of self._denominator modulo the prime + # _PyHASH_MODULUS, or 0 if self._denominator is divisible by + # _PyHASH_MODULUS. + dinv = pow(self._denominator, _PyHASH_MODULUS - 2, _PyHASH_MODULUS) + if not dinv: + hash_ = _PyHASH_INF else: - # Use tuple's hash to avoid a high collision rate on - # simple fractions. - return hash((self._numerator, self._denominator)) + hash_ = abs(self._numerator) * dinv % _PyHASH_MODULUS + return hash_ if self >= 0 else -hash_ def __eq__(a, b): """a == b""" diff --git a/Lib/test/test_float.py b/Lib/test/test_float.py index b52b1db..cabeb16 100644 --- a/Lib/test/test_float.py +++ b/Lib/test/test_float.py @@ -914,15 +914,6 @@ class InfNanTest(unittest.TestCase): self.assertFalse(NAN.is_inf()) self.assertFalse((0.).is_inf()) - def test_hash_inf(self): - # the actual values here should be regarded as an - # implementation detail, but they need to be - # identical to those used in the Decimal module. - self.assertEqual(hash(float('inf')), 314159) - self.assertEqual(hash(float('-inf')), -271828) - self.assertEqual(hash(float('nan')), 0) - - fromHex = float.fromhex toHex = float.hex class HexFloatTestCase(unittest.TestCase): diff --git a/Lib/test/test_numeric_tower.py b/Lib/test/test_numeric_tower.py new file mode 100644 index 0000000..eafdb0f --- /dev/null +++ b/Lib/test/test_numeric_tower.py @@ -0,0 +1,151 @@ +# test interactions betwen int, float, Decimal and Fraction + +import unittest +import random +import math +import sys +import operator +from test.support import run_unittest + +from decimal import Decimal as D +from fractions import Fraction as F + +# Constants related to the hash implementation; hash(x) is based +# on the reduction of x modulo the prime _PyHASH_MODULUS. +_PyHASH_MODULUS = sys.hash_info.modulus +_PyHASH_INF = sys.hash_info.inf + +class HashTest(unittest.TestCase): + def check_equal_hash(self, x, y): + # check both that x and y are equal and that their hashes are equal + self.assertEqual(hash(x), hash(y), + "got different hashes for {!r} and {!r}".format(x, y)) + self.assertEqual(x, y) + + def test_bools(self): + self.check_equal_hash(False, 0) + self.check_equal_hash(True, 1) + + def test_integers(self): + # check that equal values hash equal + + # exact integers + for i in range(-1000, 1000): + self.check_equal_hash(i, float(i)) + self.check_equal_hash(i, D(i)) + self.check_equal_hash(i, F(i)) + + # the current hash is based on reduction modulo 2**n-1 for some + # n, so pay special attention to numbers of the form 2**n and 2**n-1. + for i in range(100): + n = 2**i - 1 + if n == int(float(n)): + self.check_equal_hash(n, float(n)) + self.check_equal_hash(-n, -float(n)) + self.check_equal_hash(n, D(n)) + self.check_equal_hash(n, F(n)) + self.check_equal_hash(-n, D(-n)) + self.check_equal_hash(-n, F(-n)) + + n = 2**i + self.check_equal_hash(n, float(n)) + self.check_equal_hash(-n, -float(n)) + self.check_equal_hash(n, D(n)) + self.check_equal_hash(n, F(n)) + self.check_equal_hash(-n, D(-n)) + self.check_equal_hash(-n, F(-n)) + + # random values of various sizes + for _ in range(1000): + e = random.randrange(300) + n = random.randrange(-10**e, 10**e) + self.check_equal_hash(n, D(n)) + self.check_equal_hash(n, F(n)) + if n == int(float(n)): + self.check_equal_hash(n, float(n)) + + def test_binary_floats(self): + # check that floats hash equal to corresponding Fractions and Decimals + + # floats that are distinct but numerically equal should hash the same + self.check_equal_hash(0.0, -0.0) + + # zeros + self.check_equal_hash(0.0, D(0)) + self.check_equal_hash(-0.0, D(0)) + self.check_equal_hash(-0.0, D('-0.0')) + self.check_equal_hash(0.0, F(0)) + + # infinities and nans + self.check_equal_hash(float('inf'), D('inf')) + self.check_equal_hash(float('-inf'), D('-inf')) + + for _ in range(1000): + x = random.random() * math.exp(random.random()*200.0 - 100.0) + self.check_equal_hash(x, D.from_float(x)) + self.check_equal_hash(x, F.from_float(x)) + + def test_complex(self): + # complex numbers with zero imaginary part should hash equal to + # the corresponding float + + test_values = [0.0, -0.0, 1.0, -1.0, 0.40625, -5136.5, + float('inf'), float('-inf')] + + for zero in -0.0, 0.0: + for value in test_values: + self.check_equal_hash(value, complex(value, zero)) + + def test_decimals(self): + # check that Decimal instances that have different representations + # but equal values give the same hash + zeros = ['0', '-0', '0.0', '-0.0e10', '000e-10'] + for zero in zeros: + self.check_equal_hash(D(zero), D(0)) + + self.check_equal_hash(D('1.00'), D(1)) + self.check_equal_hash(D('1.00000'), D(1)) + self.check_equal_hash(D('-1.00'), D(-1)) + self.check_equal_hash(D('-1.00000'), D(-1)) + self.check_equal_hash(D('123e2'), D(12300)) + self.check_equal_hash(D('1230e1'), D(12300)) + self.check_equal_hash(D('12300'), D(12300)) + self.check_equal_hash(D('12300.0'), D(12300)) + self.check_equal_hash(D('12300.00'), D(12300)) + self.check_equal_hash(D('12300.000'), D(12300)) + + def test_fractions(self): + # check special case for fractions where either the numerator + # or the denominator is a multiple of _PyHASH_MODULUS + self.assertEqual(hash(F(1, _PyHASH_MODULUS)), _PyHASH_INF) + self.assertEqual(hash(F(-1, 3*_PyHASH_MODULUS)), -_PyHASH_INF) + self.assertEqual(hash(F(7*_PyHASH_MODULUS, 1)), 0) + self.assertEqual(hash(F(-_PyHASH_MODULUS, 1)), 0) + + def test_hash_normalization(self): + # Test for a bug encountered while changing long_hash. + # + # Given objects x and y, it should be possible for y's + # __hash__ method to return hash(x) in order to ensure that + # hash(x) == hash(y). But hash(x) is not exactly equal to the + # result of x.__hash__(): there's some internal normalization + # to make sure that the result fits in a C long, and is not + # equal to the invalid hash value -1. This internal + # normalization must therefore not change the result of + # hash(x) for any x. + + class HalibutProxy: + def __hash__(self): + return hash('halibut') + def __eq__(self, other): + return other == 'halibut' + + x = {'halibut', HalibutProxy()} + self.assertEqual(len(x), 1) + + +def test_main(): + run_unittest(HashTest) + +if __name__ == '__main__': + test_main() diff --git a/Lib/test/test_sys.py b/Lib/test/test_sys.py index 2caf09f..c056f9a 100644 --- a/Lib/test/test_sys.py +++ b/Lib/test/test_sys.py @@ -426,6 +426,23 @@ class SysModuleTest(unittest.TestCase): self.assertEqual(type(sys.int_info.bits_per_digit), int) self.assertEqual(type(sys.int_info.sizeof_digit), int) self.assertIsInstance(sys.hexversion, int) + + self.assertEqual(len(sys.hash_info), 5) + self.assertLess(sys.hash_info.modulus, 2**sys.hash_info.width) + # sys.hash_info.modulus should be a prime; we do a quick + # probable primality test (doesn't exclude the possibility of + # a Carmichael number) + for x in range(1, 100): + self.assertEqual( + pow(x, sys.hash_info.modulus-1, sys.hash_info.modulus), + 1, + "sys.hash_info.modulus {} is a non-prime".format( + sys.hash_info.modulus) + ) + self.assertIsInstance(sys.hash_info.inf, int) + self.assertIsInstance(sys.hash_info.nan, int) + self.assertIsInstance(sys.hash_info.imag, int) + self.assertIsInstance(sys.maxsize, int) self.assertIsInstance(sys.maxunicode, int) self.assertIsInstance(sys.platform, str) |